
Government Arts College, Coimbatore(Autonomous)

PG and Research Department of Information Technology

I M.Sc(IT)SOFTWARE TESTING

Sub Code:18MIT32C
Prepared by Dr.P.Radha

Syllabus
UNIT-I: Software Development Life Cycle models: Phases of Software project – Quality,

Quality Assurance and Quality control – Testing, Verification and Validation – Process Model

to represent Different Phases - Life Cycle models. White-Box Testing: Static Testing –

Structural Testing – Challenges in White-Box Testing.

UNIT-II: Black-Box Testing: What is Black-Box Testing - Why Black-Box Testing– When to do

BlackBox Testing – How to do Black-Box Testing-Integration Testing: Integration Testing as

a Type of Testing – Integration Testing as a Phase of Testing – Scenario Testing – Defect

Bash.

UNIT-III: System and Acceptance Testing: System Testing Overview – Why is System Testing

done – Functional versus Non-functional Testing – Functional system Testing - Non-

functional Testing – Acceptance Testing – Summary of Testing Phases.

UNIT-IV: Performance Testing: Factors Governing Performance Testing – Methodology for

Performance Testing – Tools for Performance Testing – Process for Performance Testing –

Challenges. Regression Testing: What is Regression Testing – Types of Regression Testing –

When to do Regression Testing – How to do Regression Testing– Best Practices in Regression

Testing.

UNIT-V:Test Planning, Management, Execution and Reporting: Test Planning – Test

Management – Test Process – Test Reporting –Best Practices. Test Metrics and

Measurements: Project Metrics – Progress Metrics – Productivity Metrics – Release Metrics.

UNIT I

Software Development Life Cycle models:

Phases of Software project – Quality, Quality

Assurance and Quality control – Testing,

Verification and Validation – Process Model to

represent Different Phases - Life Cycle models.

White-Box Testing: Static Testing – Structural

Testing – Challenges in White-Box Testing.
TEXT BOOK: “SOFTWARE TESTING Principles and Practices”-Srinivasan

Desikan & Gopalswamy Ramesh, 2006, Pearson Education

Prepared by Dr.P.Radha

Software Development Life Cycle

models

• Phases of Software project

• Quality, Quality Assurance and Quality control

• Testing, Verification and Validation

• Process Model to represent Different Phases

• Life Cycle models.

Phases of Software project

A software project is made up of a series of
phases:

• Requirements Gathering and Analysis

• Planning

• Design

• Development or Coding

• Testing

• Deployment or Maintenance

Quality, Quality Assurance and Quality

control

Quality is meeting the requirements expected of the
software, consistently and predictably.

Each test case is further characterized by

• The environment under which the test case is to
be executed;

• Inputs that should be provided for that test case;

• What changes should be produced in the internal
state or environment ;and

• What output should be produced.

• Quality Control is defect-detection and defect-

correction oriented, and works on the product

rather than on the process.

• Quality Assurance, attempts defect prevention

by concentrating on the process of producing

rather than working on defect

detection/correction after the product is built.

Testing, Verification and Validation

• The purpose of testing is to uncover defects in

the system (and to have someone fix the

defects).

• Testing is done by a set of people within a

software product (or service) organization

whose goal and charter is to uncover the

defects in the product before it reaches the

customer.

Verification

Verification is the process of evaluating a system

or component to determine whether the products

of a given phase satisfy the conditions imposed

at the start of that phase.

Validation

Validation is the process of evaluating a system

or component during or at the end of the

development process to determine whether it

satisfies specified requirements.

Quality Assurance=Verification

Quality Control = Validation

= Testing

Process Model to represent different Phases

In this model, each phase of a software project is

characterized by the following.

• Entry criteria, which specify when that phase can be started.

Also included are the inputs for the phase.

• Tasks, or steps that need to be carried out in that phase, along

with measurements that characterize the tasks.

• Verification ,which specifies methods of checking that the

tasks have been carried out correctly.

• Exit criteria ,which stipulate the conditions under which one

can consider the phase as done. Also included are the outputs

for only the phase.

Cont…

• This model, known as the Entry Task

Verification eXit or ETVX model, offers

several advantages for effective verification

and validation.

ETVX model applied to design

Life Cycle Models

The ETVX model characterizes a phase of a project. A Life Cycle
model describes how the phases combine together to form a
complete project or life cycle. Such a model is characterized by the
following attributes.

• The activities performed

• The deliverables from each activity

• Methods of validation of the deliverables

• The sequence of activities

• Methods of verification of each activity, including

the mechanism of communication amongst the

activities

Life Cycle Models

• Waterfall Model

• Prototyping and Rapid Application

Development Models

• Spiral or Iterative Model

• The V Model

• Modified V Model

Waterfall Model

In the Waterfall model, a project is divided into a set
of phases (or activities).

• Overall business requirements

• Software requirements

• Planning

• High-level design

• Low-level design

• Coding

• Testing

Water Fall Model

Cont..

Waterfall Model is characterized by three
attributes

1.The project is divided into separate distinct
phases.

2.Each phase communicates to the next
through pre-specified outputs.

3.When an error is detected, it is traced back
to one previous phase at a time, until it gets
resolved at some earlier phase.

Prototyping and Rapid Application

Development Models

Prototyping and Rapid Application
Development (RAD)models recognize and
address the following issues.

1. Early and frequent user feedback will
increase the chances of a software project
meeting the customers' requirements.

2. Changes are unavoidable and the software
development process must be able to adapt
itself to rapid changes.

Cont…

1.Prototyping model uses constant user
interaction, early in the requirements gathering
stage to produce a prototype.

2.The prototype is used to derive the system
requirements specification and can be
discarded after the SRS is built.

3. An appropriate life cycle model is chosen for
building the actual product after the user
accepts the SRS.

RAD MODEL

• It is not a prototype that is built but the actual

product itself.

• In order to ensure formalism in capturing the

requirements and proper reflection of the

requirements in the design and subsequent

phases, a CASE tool is used throughout the

lifecycle, right from the requirements

gathering.

Spiral or Iterative Model

The progress of the product can be seen from

the beginning of the project as the model

delivers "increments" at regular intervals. Even

though it will be very difficult to plan a release

date following this model, it allows the

progress to be tracked and the customer

approvals to be obtained at regular intervals,

thereby reducing the risk of finding major

defects at a later point of time.

Cont..

The V Model

The V Model starts off being similar to the
Waterfall Model in that it envisages product
development to be made up of a number of phases
or levels.

1.The V-model splits testing into two parts-design
and execution.

2.Test design is done early, while test execution is
done in the end.

3.There are different types of tests for each phase of
life cycle.

Phases of testing for different
development phases

V-Model

Modified V Model

1.The modified V model recognizes that

different parts of a product are in different

stages of evolution.

2.Each part enters the appropriate testing

phase(such as unit testing, component testing,

and so on)when the appropriate entry criteria

are met.

Modified V Model

White-Box Testing

• Static Testing

• Structural Testing

• Challenges in White-Box Testing

WHAT IS WHITE BOX TESTING?

• White box testing is a way of testing the

external functionality of the code by

examining and testing the program code that

realizes the external functionality.

• This is also known as clear box, or glass box

or open box testing.

Cont…

• White box testing takes into account the

program code, code structure, and internal

design flow

Classification of white box testing

Static Testing

Static testing is a type of testing which

requires only the source code of the

product, not the binaries or executables.

Cont…

Static testing does not involve Static testing
executing the programs on computers but involves
select people going through the code to find out
whether

• The code works according to the functional
requirement;

• The code has been written in accordance with the
design developed earlier in the project lifecycle;

• The code for any functionality has been missed
out;

• The code handles errors properly.

Static Testing by Humans

There are multiple methods to achieve static
testing by humans. They are

• Desk checking

• Code walkthrough

• Code review

• Code inspection

Static Analysis Tools

There are several static analysis tools available

in the market that can reduce the manual work

and perform analysis of the code to find out

errors such as those listed below:

• Whether there are unreachable codes

(usage of GOTO statements some times

creates this situation; there could be other

reasons too)

Cont…

• Variables declared but not used

• Mismatch in definition and assignment of values
to variables

• Illegal or error prone type casting of variables

Use of non-portable or architecture-dependent

programming constructs

• Memory allocated but not having corresponding
Statements for freeing them up memory

• Calculation of cyclomatic complexity

STRUCTURAL TESTING

• Structural testing takes into account the code,

code structure, internal design, and how they are

coded.

• The fundamental difference between structural
testing and static testing is that in structural
testing tests are actually run by the computer on
the built product, where as in static testing, the
product is tested by humans using just the source
code and not the executables or binaries.

STRUCTURAL TESTING

• Unit/Code Functional Testing

• Code Coverage Testing

Statement Coverage

Path Coverage

Condition Coverage

Function Coverage

• Code Complexity Testing

Challenges in White box testing

• White box testing requires a sound knowledge

of the program code and the programming

language.

• Human tendency of a developer being unable

to find the defects in his or her code.

• Fully tested code may not correspond to

realistic scenarios.

