

Digital Image Processing 18MIT31C

• UNIT-V: Image Processing Tools:- Image file read/Write-Image display

commands-Create image, image show, image tool, Sub image, Color bar-

Image arithmetic-add, subtract, divide, multiply, complement-Spatial

transformations-image rotation, image resize, cropping-Image statistics-

mean, variance, standard deviation, histogram, pixel values-Image

enhancement-normalized histogram-adjusting image intensity,

adding/removing noise, median and order statistic filtering-contrast

stretching-Linear filtering.

• TEXT BOOKS

 Prathap R, “Getting started with MATLAB 7: A Quick introduction for

Scientists and Engineers”, Oxford University Press, 2005.

Prepared By : Mrs. G. Shashikala, Assistant Professor, Department of

Information Technology

Image Processing Tools:- Image file read/Write-Image display commands

Call special MATLAB functions to read and write image data from graphics file formats:

 To read a graphics file format image use imread.

 To write a graphics file format image, use imwrite.

 To obtain information about the nature of a graphics file format image, use imfinfo.

The following commands read the image ngc6543a.jpg into the workspace variable RGB and then

displays the image using the image function:

RGB = imread('ngc6543a.jpg');

image(RGB)

You can write (save) image data using the imwrite function. The statements

load clown % An image that is included with MATLAB

imwrite(X,map,'clown.bmp')

Create image, image show, image tool, Sub image, Color bar

Read:

 image=imread(filename);

Create:

 image=zeros(300,400,3); %initialize
 image(:,1:100,1)=0.5; %Red (dark red)
 image(:,101:200,1)=1; %Red (maximum value)
 image(1:100,:,2)=rand(100,400); %Green

Display

 figure, imshow(image)

imshow(f, [])’ sets variable low to the minimum value of array ‘f’ and high to its

maximum value. This helps in improving the contrast of images having a low dynamic

range.

The Image tool in the image processing toolbox provides a more interactive environment

for viewing and navigating within images, displaying detailed information about pixel

values, measuring distances and other useful operations. To start the image tool, use the

imtool function. The following statements read the image Penguins_grey.jpg saved on the

desktop and then display it using ‘imtool’:

>>B = imread(Penguins_grey.jpg);

>>imtool(B)

subimage(I) displays the RGB (truecolor), grayscale, or binary image I in the current axes.

You can use subimage in conjunction with subplot to create figures with multiple images, even if the

images have different colormaps. subimage converts images to RGB for display purposes, thus avoiding

colormap conflicts.

subimage(X,map) displays the indexed image X with colormap map in the current axes.

subimage(x,y,___) displays an image using a nondefault spatial coordinate system,

where x and y specify the image limits in the world coordinate system.

h = subimage(___) returns a handle to an image object.

Examples

Display Two Indexed Images in Same Figure

load trees

[X2,map2] = imread('forest.tif');

subplot(1,2,1), subimage(X,map)

subplot(1,2,2), subimage(X2,map2)

colormap

Set and get the current colormap

Syntax

 colormap(map)

 colormap('default')

 cmap = colormap

Description

A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0. Each row is an

RGB vector that defines one color. The kth row of the colormap defines the kth color,

where map(k,:) = [r(k) g(k) b(k)]) specifies the intensity of red, green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in map are outside the

interval [0 1], MATLAB returns the error Colormap must have values in [0,1].

colormap('default') sets the current colormap to the default colormap.

cmap = colormap retrieves the current colormap. The values returned are in the

interval [0 1].

Specifying Colormaps

https://in.mathworks.com/help/images/ref/subimage.html#mw_cdedaacf-ea86-4e2e-bba9-17f276b2806f
https://in.mathworks.com/help/images/ref/subimage.html#mw_d4855385-f4c3-4bb6-a322-528316ef8123
https://in.mathworks.com/help/images/ref/subimage.html#mw_cb7da77a-5bc5-44b1-aed5-e3b9f18e0e3f
https://in.mathworks.com/help/images/ref/subimage.html#mw_e05dba8f-0450-42dc-8724-d765bc960203
https://in.mathworks.com/help/images/ref/subimage.html#mw_13db208a-7f90-49c1-8e54-22a20bf5571c
https://in.mathworks.com/help/images/ref/subimage.html#mw_22fa53ac-1297-4ed6-98e6-9eb3df9d19f5

M-files in the color directory generate a number of colormaps. Each M-file accepts

the colormap size as an argument. For example,

 colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB

creates a colormap the same size as the current colormap.

colorbar

Display colorbar showing the color scale

Syntax

 colorbar

 colorbar('vert')

 colorbar('horiz')

 colorbar(h)

 h = colorbar(...)

 colorbar(...,'peer',axes_handle)

Description

The colorbar function displays the current colormap in the current figure and resizes

the current axes to accommodate the colorbar.

colorbar updates the most recently created colorbar or, when the current axes does

not have a colorbar, colorbar adds a new vertical colorbar.

colorbar('vert') adds a vertical colorbar to the current axes.

colorbar('horiz') adds a horizontal colorbar to the current axes.

colorbar(h) uses the axes h to create the colorbar. The colorbar is horizontal if the

width of the axes is greater than its height, as determined by the

axes Position property.

h = colorbar(...) returns a handle to the colorbar, which is an axes graphics object.

colorbar(...,'peer',axes_handle) creates a colorbar associated with the

axes axes_handle instead of the current axes.

colorbar works with two-dimensional and three-dimensional plots.

Image arithmetic-add, subtract, divide, multiply, complement

Image Arithmetic

Add, subtract, multiply, and divide images

Image arithmetic is the implementation of standard arithmetic operations, such as addition, subtraction,
multiplication, and division, on images. Image arithmetic has many uses in image processing both as a
preliminary step in more complex operations and by itself. For example, image subtraction can be used to
detect differences between two or more images of the same scene or object.

Functions

imabsdiff

Absolute difference of two images

imadd

Add two images or add constant to image

imapplymatrix

Linear combination of color channels

imcomplement

Complement image

imdivide

Divide one image into another or divide image by constant

imlincomb

Linear combination of images

immultiply

Multiply two images or multiply image by constant

imsubtract

Subtract one image from another or subtract constant from image

Spatial transformations-image rotation, image resize, cropping

imrotate

Rotate image

Syntax

J = imrotate(I,angle)
J = imrotate(I,angle,method)

J = imrotate(I,angle,method,bbox)

Description

J = imrotate(I,angle) rotates image I by angle degrees in a counterclockwise direction around its

center point. To rotate the image clockwise, specify a negative value for angle. imrotate makes the

output image J large enough to contain the entire rotated image. By default, imrotate uses nearest

neighbor interpolation, setting the values of pixels in J that are outside the rotated image to 0.

J = imrotate(I,angle,method) rotates image I using the interpolation method specified by method.

https://in.mathworks.com/help/images/ref/imabsdiff.html
https://in.mathworks.com/help/images/ref/imadd.html
https://in.mathworks.com/help/images/ref/imapplymatrix.html
https://in.mathworks.com/help/images/ref/imcomplement.html
https://in.mathworks.com/help/images/ref/imdivide.html
https://in.mathworks.com/help/images/ref/imlincomb.html
https://in.mathworks.com/help/images/ref/immultiply.html
https://in.mathworks.com/help/images/ref/imsubtract.html
https://in.mathworks.com/help/images/ref/imrotate.html#d122e162230
https://in.mathworks.com/help/images/ref/imrotate.html#d122e162264
https://in.mathworks.com/help/images/ref/imrotate.html#d122e162287
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-B
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-A
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-angle
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-B
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-A
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-angle
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-method

J = imrotate(I,angle,method,bbox) also uses the bbox argument to define the size of the output

image. You can crop the output to the same size as the input image or return the entire rotated image.

imresize

Resize image

Syntax

B = imresize(A,scale)

Description

B = imresize(A,scale) returns image B that is scale times the size of A. The input image A can be a

grayscale, RGB, or binary image. If A has more than two dimensions, imresize only resizes the first two

dimensions. If scale is in the range [0, 1], B is smaller than A. If scale is greater than 1, B is larger

than A. By default, imresize uses bicubic interpolation.

imcrop

Crop image

Syntax

Icropped = imcrop

Icropped = imcrop(I)

Xcropped = imcrop(X,cmap)
Icropped = imcrop(I,rect)

Description
Crop Image Interactively

Icropped = imcrop creates an interactive Crop Image tool associated with the grayscale, truecolor, or

binary image displayed in the current figure. imcrop returns the cropped image, Icropped.

With this syntax and the other interactive syntaxes, the Crop Image tool blocks the MATLAB® command
line until you complete the operation.

Icropped = imcrop(I) displays the grayscale, truecolor, or binary image I in a figure window and

creates an interactive Crop Image tool associated with the image.

Xcropped = imcrop(X,cmap) displays the indexed image X in a figure using the color map cmap, and

creates an interactive Crop Image tool associated with that image. imcrop returns the cropped indexed

image, Xcropped, which also has the color map cmap.

Crop Image by Specifying Crop Region

Icropped = imcrop(I,rect) crops the image I according to the position and dimensions specified in

the crop rectangle rect. The cropped image includes all pixels in the input image that are completely or

partially enclosed by the rectangle.

The actual size of the output image does not always correspond exactly with the width and height
specified by rect. For example, suppose rect is [20 20 40 30], using the default spatial coordinate

system. The upper left corner of the specified rectangle is the center of the pixel with
spatial (x,y) coordinates (20,20). The lower right corner of the rectangle is the center of the pixel with
spatial (x,y) coordinates (60,50). The resulting output image has size 31-by-41 pixels, not 30-by-40 pixels.

Image statistics-mean, variance, standard deviation

https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-B
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-A
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-angle
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-method
https://in.mathworks.com/help/images/ref/imrotate.html#buxwj90-1-bbox
https://in.mathworks.com/help/matlab/ref/imresize.html#d122e652217
https://in.mathworks.com/help/matlab/ref/imresize.html#d122e653113
https://in.mathworks.com/help/matlab/ref/imresize.html#d122e652513
https://in.mathworks.com/help/matlab/ref/imresize.html#d122e652552
https://in.mathworks.com/help/images/ref/imcrop.html#d122e120864
https://in.mathworks.com/help/images/ref/imcrop.html#d122e120885
https://in.mathworks.com/help/images/ref/imcrop.html#d122e120903
https://in.mathworks.com/help/images/ref/imcrop.html#d122e120944
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-I2
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-I2
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-I
https://in.mathworks.com/help/images/ref/imcrop.html#mw_36f36ab4-8dbf-4897-aafe-ed9a2683b81e
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-X
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-map
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-I2
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-I
https://in.mathworks.com/help/images/ref/imcrop.html#buxpscu-1-rect

The Image Statistics block calculates the mean, variance, and standard deviation of streaming video

data. Each calculation is performed over all pixels in the input region of interest (ROI).

 Histogram, pixel values-Image enhancement-normalized histogram

Create Image Histogram

 An image histogram is a chart that shows the distribution of intensities in an indexed or grayscale image.

The imhist function creates a histogram plot by defining n equally spaced bins, each representing a

range of data values, and then calculating the number of pixels within each range. You can use the
information in a histogram to choose an appropriate enhancement operation. For example, if an image
histogram shows that the range of intensity values is small, you can use an intensity adjustment function
to spread the values across a wider range.

Read an image into the workspace and display it.

I = imread('rice.png');
imshow(I)

 The imhist function displays the histogram, by default.

figure;
imhist(I);

adjusting image intensity

imadjust

Adjust image intensity values or color map

Syntax

J = imadjust(I)

J = imadjust(I,[low_in high_in])

J = imadjust(I,[low_in high_in],[low_out high_out])

Description

J = imadjust(I) maps the intensity values in grayscale image I to new values in J. By

default, imadjust saturates the bottom 1% and the top 1% of all pixel values. This operation increases

the contrast of the output image J.

J = imadjust(I,[low_in high_in]) maps intensity values in I to new values in J such that values

between low_in and high_in map to values between 0 and 1.

J = imadjust(I,[low_in high_in],[low_out high_out]) maps intensity values in I to new values

in J such that values between low_in and high_in map to values between low_out and high_out.

adding/removing noise, median and order statistic filtering

https://in.mathworks.com/help/images/ref/imadjust.html#d122e90570
https://in.mathworks.com/help/images/ref/imadjust.html#d122e90603
https://in.mathworks.com/help/images/ref/imadjust.html#d122e90624
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-J
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-I
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-J
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-I
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-low_inhigh_in
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-J
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-I
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-low_inhigh_in
https://in.mathworks.com/help/images/ref/imadjust.html#budqw0o-1-low_outhigh_out

imnoise

Add noise to image

Syntax

J = imnoise(I,'gaussian')
J = imnoise(I,'gaussian',m)
J = imnoise(I,'poisson')
J = imnoise(I,'salt & pepper')
J = imnoise(I,'salt & pepper',d)
J = imnoise(I,'speckle')
J = imnoise(I,'speckle',var_speckle)

Description

J = imnoise(I,'gaussian') adds zero-mean, Gaussian white noise with variance of 0.01 to grayscale

image I.

J = imnoise(I,'gaussian',m) adds Gaussian white noise with mean m and variance of 0.01.

J = imnoise(I,'poisson') generates Poisson noise from the data instead of adding artificial noise to

the data.

J = imnoise(I,'salt & pepper') adds salt and pepper noise, with default noise density 0.05. This

affects approximately 5% of pixels.

J = imnoise(I,'salt & pepper',d) adds salt and pepper noise, where d is the noise density.

Filter the noisy image, J, with an averaging filter and display the results. The example uses a 3-

by-3 neighborhood.

Kaverage = filter2(fspecial('average',3),J)/255;
figure
imshow(Kaverage)

Now use a median filter to filter the noisy image, J. The example also uses a 3-by-3

neighborhood. Display the two filtered images side-by-side for comparison. Notice

that medfilt2 does a better job of removing noise, with less blurring of edges of the coins.

Kmedian = medfilt2(J);
imshowpair(Kaverage,Kmedian,'montage')

contrast stretching-Linear filtering.

Contrast stretching is a simple image enhancement technique that attempts to improve the

contrast in an image by `stretching' the range of intensity values it contains to span a

desired range of values, e.g. the full range of pixel values that the image type concerned

allows.

https://in.mathworks.com/help/images/ref/imnoise.html#d122e142147
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142160
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142231
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142244
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142255
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142277
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142292
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142543
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142344
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142543
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142344
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142400
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142543
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142344
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142543
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142344
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142543
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142344
https://in.mathworks.com/help/images/ref/imnoise.html#d122e142496

Filtering of images, either by correlation or convolution, can be performed using the toolbox

function imfilter. This example filters an image with a 5-by-5 filter containing equal weights.

Such a filter is often called an averaging filter.

 I = imread('coins.png');

 h = ones(5,5) / 25;

 I2 = imfilter(I,h);

 imshow(I), title('Original Image');

 figure, imshow(I2), title('Filtered Image')

