
Digital Image Processing 18MIT31C
UNIT-IV: Introduction to MATLAB: -

Programming Environment-Basic Commands-
Characters-Strings-Operators-Conditional
statements-Loop Statements-Built-in functions-
User defined functions-Input/output functions-
Matrix Manipulations-Plots-Subplots-Figures-m-
files-Example programs.

TEXT BOOK
Prathap R, “Getting started with MATLAB 7: A
Quick introduction for Scientists and Engineers”,
Oxford University Press, 2005

Prepared By : Mrs. G. Shashikala, Assistant
Professor, Department of Information Technology

MATLAB programmingenvironment
• MATLAB environment and to femiliarize with command

window, history window, workspace, current directory,
figure window, edit window.

• MATLAB Is a particular computer program optimized to
perform engineering and scientific calculations.

• Advantages:
1. Ease of use.
2. Platform independence
3. Predefined functions
4. Device-independent plotting.
5. GUI

• Disadvantages:

1. Interpreted language

2. The Cost is high.

MATLAB ENVIRONMENT:

Command window:
• It is the space where commands may beentered.

Figure window:
• It displays plots and graphs.

Edit window:
• It permits a user to createand modify MATLAB programs by

creating new M
files or to modify existing ones.

Current directory window:
• It shows the path of the currentdirectory.

Command history:
• It display a list of commands that the user has entered in

thecommand window

Workspace:
• It is a collection of all the variables and array that can be used

by MATLAB when a particular command,M file, or function is
executed.

Basic commands:
• Clc:clear command window .

• Clf:Clear contents to terminates the figure window.

• Clear: clear variables in workspace

• Abort: (ctrl+c)for M files that appears running too
Long may contain an infinite loop that never
terminates.To terminate we use abort.

• !:It is a special character after which any character
of command will be sent to the operating system
and executed as they had been types in operating
system command prompt.

• Diary:(diary filename)

After this command,a copy of all inputs and most of the
outputs typed in the command window will be echoed in
the diary file.

• Diary off:It suspends input into the diary file.

• Diary On:It Resumes input again.

• Which: It tells which version of a file is begin executed and
where it is located.

Characters and Strings:

• Character arrays and string arrays provide storage for
text data in MATLAB.

• A character array is a sequence of characters just as
anumeric array is a sequence of numbers.a typical
use is to store short pieces of text as character
vectors Such as c='Hello world’.

• A string array is a container for pieces of text. string
arrays provide a set of functions for working with
text as data.starting in R2017a,you can create
strings using double quotes such as str=“greetings
friend”to convert data to string arrays use the string
function.

String and character formatting:

• Some special characters can only be used in the
text of a character vector or string you can use
these special characters to insert new lines or
carriage returns specify folder paths,and more.

• Use the special characters in this table to specify a
folder path using a character vector or string.

1. / ->name:slash and

backslash.

Uses:file or folder

path separation.

Description:In addition to there uses
mathematical operators the slash and backslash
characters separate the elements of a path or folder.on
Microsoft Windows based systems both slash and
backslash have the same effect on the open group Unix
based.In Unix use slash only.

2. .. ->name: dot dot

. Uses: parent folder

Description: Two dots in succession refers to the
parent of the current folder.use this character to specify
folder paths Relative to the current folder.

3.* ->name: asterisk

Uses: whilecard character

Description: In addition to being
the symbol for matrix multiplication,the
asterisk* is used as a whilecard
character.

4.@ ->name: At symbol

. Uses: class folder indicator.

Description: In Addition to being
the symbol for matrix multiplication,the
asterisk* is used as a whilecard character.

They are certain special characters that you cannot
enter as ordinary text.instead,you must use unique
character sequences to represent them.use the
symbol in this table to format strings and character
vectors on there own or in conjunction with
formatting function like compose,strings,and
error.for more information,see formatting text.

SYMBOL

‘ ‘-> single quotation mark

%%-> single percent sign

\\ -> single backslash

\a->alarm

\b-> backspace

\f-> from Feed

\n-> new line

\r-> carriage return

\t-> horizontal tab

\v-> vertical tab

\xN-> hexadecimal
number,N

\N-> octal number,N

String Functions in MATLAB

Following table provides brief description of the string function
in MATLAB:

Functions

Blanks- create string of blankcharacters

Cellstr-create cell array of strings from

characterarray Char-convert to character

array string

Incellstr-determine whether input is cell

array of strings Ischar- determine whether

item is character array Sprintf-format data

intostring

Strcat- concatenate stringshorizontally

Strjoin-join strings in cell array into single string MATLAB

Operators and special characters Arithmetic operators:

1. +

Role-addition Info-plus

2.+

Unary plus

Info:uplus

3.-

Role: subtraction

Info:minus

4.-

Role:unary minus

Info: minus

5..*

Role: Element-wise mulplication

Info: times

6.*

Role:matrix multiplication

Info:mtimes

7. ./

Role: Element-wise right division Info:rdivide

8./

Role:matrix right division

Info:mrdivide

9. .^

Role: Element-wise power

Info:power

10. ^

Role: matrix power

Info: mpower

11. .’

Role: transpose

Info:transpose

Relational operators

== equal to

~= not equal to

>Grater than

>= greater than or equal to

< less than

<= less than or equal to

Logical operators

& Logical AND

| logical OR

&& logical AND (with shortcircuiting)

|| logical OR(with short circuiting)

~Logical NOT

Conditional statements

⚫ Decision making structures require that the
programmer should specify one or more
conditions to be evaluated or tested by the
program, along with a statement or statements to
be executed if the condition is determined to be
true, and optionally, other statements to be
executed if the condition is determined to be false.

⚫ Following is the general form of a typical decision
making structure found in most of the
programming languages .

⚫ MATLAB provides following types of decision
making statements.

The simplest conditional statement is an if statement.
For example:

If statement:

Syntax

if <expression>

<statements>

end

a = 10;

% check the condition using if statement

if a < 20

% if condition is true then print the following

fprintf('a is less than 20\n');

end

fprintf('value of a is : %d\n', a);

When you run the file, it displays the following
result −

a is less than 20

value of a is : 10

If else statements: can include alternate choices, using
the optional keywords elseif or else. For example:
a= 10;
if a< 0

fprintf('Negative/n');
elseif a> 0

fprintf('Positive/n');
else

fprintf('Zero/n');
end

Output:
Positive

If.. elseif.. else.. end statement :

Syntax
if <expression 1>

<statement(s)>
elseif <expression 2>

statement(s)>
elseif <expression 3>

<statement(s)>
else

<statement(s)>
end

a = 100;
%check the boolean condition

if a == 10
fprintf('Value of a is 10\n');

elseif(a == 20)
fprintf('Value of a is 20\n');

elseif a == 30
fprintf('Value of a is 30\n');

else
fprintf('None of the values are matching\n');

fprintf('Exact value of a is: %d\n', a);
end

Output :None of the values are matching

Exact value of a is: 100

Nested if statement :

Syntax

if <expression 1>

% Executes when the boolean expression 1 is true

if <expression 2>

% Executes when the boolean expression 2 is true

end

end

Switch statement :

Syntax

switch <switch_expression>

case <case_expression>

<statements>

case <case_expression>

<statements>

...

otherwise

<statements>

end

grade = 'B';

switch(grade)

case 'A'

fprintf('Excellent!\n');

case 'B'

fprintf('Well done\n');

case 'C'

fprintf('Well done\n');

case 'D'

fprintf('You passed\n');

case 'F'

fprintf('Better try again\n');

otherwise

fprintf('Invalid grade\n');

end

When you run the file, it displays −

Well done

Loop statements :

⚫ A loop statement allows us to execute a
statement or group of statements multiple
times and following is the general form of a
loop statement in most of the programming
languages −

⚫ MATLAB provides following types of loops to
handle looping requirements.

• With loop control statements, you can repeatedly
execute a block of code.

For loops:

• for statements loop a specific number of times, and
keep track of each iteration with an incrementing
index variable.

Syntax

for index = values

<program statements>

...

end

for a = 10:20

fprintf('value of a: %d\n', a);

end

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

While loop:

The while loop repeatedly executes statements
while condition is true.

Syntax

while <expression>

<statements>

end

a = 10;

% while loop execution

while(a < 20)

fprintf('value of a: %d\n', a);

a=a+1;

end

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Loop Control Statements

⚫ Loop control statements change execution
from its normal sequence. When execution
leaves a scope, all automatic objects that were
created in that scope are destroyed.

⚫ MATLAB supports the following control
statements.

a = 10;

% while loop execution

while (a < 20)

fprintf('value of a: %d\n', a);

a = a + 1;

if(a > 15)

% terminate the loop using break statement

break;

end

end

I

When you run the file, it displays the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

a = 9;

%while loop execution

while a < 20

a = a + 1;

if a == 15

% skip the iteration

continue;

end

fprintf('value of a: %d\n', a);

end

When you run the file, it displays the following
result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Functions

• A complex problem is often easier to solve by
dividing it into several smaller parts, each of
which can be solved by itself.

• Function, which can accept input arguments and
output arguments. Internal variables are local to
the function.

• Function provide reusable code.

• Make debugging easier.

Built in functions

➢ Inv(A): inverse of A

➢ Rank(A): rank of matrix A

➢A’: transpose of A

➢Det(A): determinant

❖Exponential

➢exp(x)

➢sqrt(x)

❖Log arithmic

➢log(x) natural logarithm ln

➢log10(x)

➢log2(x)
❖numeric
➢ceil(x) round to nearest integer towards +
➢fix(x) round to nearest integer towards 0
➢floor(x) round to nearest integer towards -
➢round(x) round to nearest integer
➢sign(x) +1, 0 or -1
➢rem(x,y) Finds remainder of x/y

❖Trigonometric and their inverse

➢cos(x) acos(x)

➢sin(x) asin(x)

➢tan(x) atan(x)

➢cot(x) acot(x)

➢csc(x) acsc(x)

➢sec(x) asec(x)

User defined function

➢User –defined functions are similar to the
MATLAB pre-defind functions.

➢A function is a MATLAB program that can accept
inputs and produce the outputs.

➢ The MATLAB function must be same name of the
function.

➢ Code for function is done in an Editor window or
ant text editor.

Syntax

function [output list] = Function_Name(input list)

➢ Save the function m-file as Function_Name.m

➢All functions use the Local Variables.

➢ Functions ca have any combination of scalars,
vectors and arrays as inputs and outputs.

Example

• Function [C] = matrix_multiply(A,B,n)

• C = zeros(n,n);

• for i=1:n

• for j=1:n

• c(i,j) = c(i,j) + a(i,k)*B(k,j);

• end;

• end;

• end;

INPUT FUNCTION

• What is the input function in matlab?

• The input function return the text exactly as typed.

• If the input is empty this code assigns a default
value,’y’,to str.

INPUT

• SYNTAX
• x= input(prompt)

• Str= input(prompt, ‘s’)

• DESCRIPTION

• x= input (prompt) displays the text in prompt and waits
for the user to input a value and press the return key.

• The user can enter expression, like pi/4 or r

and(3),and can use variable in the workspace.

• If the user presses the return key without

entering anything, then input returns an empty

matrix.

• If the user enters an invalid expression at the

prompt, then matlab display the relevant error

message and then displays the prompt.

• Str = input(prompt ,’ s’) return the entered text,

without evaluating the input as an expression.

EXAMPLES

• Request a numeric input, and then multiply

the input by 10.
• Prompt= ‘What is the original value?’;

x = input (prompt)

y = x*10

• At the prompt, enter a numeric value of Array , such as 42.

x = 42

y = 420

• The input function also accepts expressions. For example, rerun the code.

• Prompt = ‘ what is the original value?’;

x = input(prompt)

y = x*10

• At the prompt, enter magic(3)

x = 8 1 6

3 5 7

4 9 2

y = 80 10 60

30 50 70

40 90 20

• Request a simple text response that requires no evaluation.

• Prompt = ‘ Do you want more? Y/N[Y]: ‘;

Str = input(prompt ,’s’)’

If isempty (str)

Str = ‘Y’;

end

• The input function returns the text exactly a typed.

• If the input is empty, this code assigns a default
value, ‘Y’ .to str.

OUTPUT FUNCTIONS.

• What is output in matlab?

• An output function is a function that an optimization function calls
at each iteration of its algorithm,..

• Typically you use an output function to generates graphical output,
record the history of the data the algorithm generates, or halt the
algorithm based on the data at the current iteration.

• You can create an output function as a function file, a local function,
or a nested function.

• You can use the outputFcn option with the following MATLAB
optimization functions .

▪ fminbnd

▪ fminsearch

▪ fzero

• Creating and using an output function.

• The following is a simple example of an output
function that plots the points generated by an
optimization function.

function stop = outfun(x, optimvalues,
state)

stop = false;

hold on;

plot(x(1),x(2),’-’);

drawnow

• You can use this output function to plot the points
generated by fminsearch in solving the
optimization problem

CONTENTS:

• INTRODUCTION

• MATRIX

• MATRIX OPERATIONS

• ARRAYS

• THE COLON(:)

• MATRIX:
• A matrix is a two-dimensional array of numbers.

• In MATLAB ,you can create a matrix by entering elements in

each row as comma or space delimited numbers and using

semicolons to mark the end of each row.

• Ex: create 4 by 5 matrix.

• a =[1 2 3 4 5;2 3 4 5 6;3 4 5 6 7; 4 5 6 7 8]

• MATLAB will execute the above statement and return the

following result −

• a =

• 1 2 3 4 5

• 2 3 4 5 6

• 3 4 5 6 7

• 4 5 6 7 8

• Referencing the Elements of a Matrix

• To reference an element in the mth row and nth column, of a matrix mx
we write

• mx (m, n); For example, to refer to the element in the 2nd row and
5th column, of the matrix a, as created in the last section, we type

• a =[12345;23456;34567;45678];a(2,5)

• MATLAB will execute the above statement and return the following
result −

• ans = 6 To reference all the elements in the mth column we type A(:,m).

• Let us create a column vector v, from the elements of the 4th row of the
matrix a −

• a =[12345;23456;34567;45678];

• v =a(:,4)

• MATLAB will execute the above statement and return the following
result −

• v = 4 5 6 7

• MATLAB will execute the above statement and return the following

result

• v = 4

• 5

• 6

• 7

• Deleting a Row or a Column in a Matrix

• Row:

• You can delete an entire row or column of a matrix by assigning an

empty set of square braces [] to that row or column. Basically, []

denotes an empty array.

• For example, let us delete the fourth row of a

• a =[12345;23456;34567;45678];

• a(4,:)=[]

• MATLAB will execute the above statement and return the following
result −

• a = 1 2 3 4 5

• 2 3 4 5 6

• 3 4 5 6 7

• Column:

• Next, let us delete the fifth column of a

• a =[12345;23456;34567;45678];

• a(:,5)=[]

• MATLAB will execute the above statement and return the
following result −

• a = 1 2 3 4

• 2 3 4 5

• 3 4 5 6

• 4 5 6 7

• Matrix Operations
• In this section, let us discuss the following basic and commonly used

matrix operations −

• Addition and Subtraction of Matrices

• Division of Matrices

• Scalar Operations of Matrices

• Transpose of a Matrix

• Concatenating Matrices

• Matrix Multiplication

• Determinant of a Matrix

• Inverse of a Matrix

• You can add or subtract matrices. Both the operand matrices must

have the same number of rows and columns.

• Example

https://www.tutorialspoint.com/matlab/matlab_matrix_add_subtract.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_division.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_scalar_operation.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_transpose.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_concatenation.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_multiplication.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_determinant.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_inverse.htm

• Addition and Subtraction of matrices :

• You can add or subtract matrices. Both the operand matrices must
have the same number of rows and columns.

• Example

• Create a script file with the following code

• a =[123;456;789];b =[756;208;571];

• c = a + b

• d = a - b

• When you run the file, it displays the following result −

• c = 8 7 9

• 6 5 14

• 12 15 10

• d = -6 -3 -3

• 2 5 -2

• 2 1 8

• Division of matrix:
• You can divide two matrices using left (\) or right (/) division operators.

Both the operand matrices must have the same number of rows and
columns.

• Example

• Create a script file with the following code

• a =[123;456;789];b =[756;208;571];

• c = a / b

• d = a \ b

• When you run the file, it displays the following result

• c = -0.52542 0.68644 0.66102

• -0.42373 0.94068 1.01695

• -0.32203 1.19492 1.37288

• d = -3.27778 -1.05556 -4.86111

• -0.11111 0.11111 -0.27778

• 3.05556 1.27778 4.30556

• Scalar operation :

• When you add, subtract, multiply or divide a matrix by a

number, this is called the scalar operation.

• Scalar operations produce a new matrix with same number of

rows and columns with each element of the original matrix

added to, subtracted from, multiplied by or divided by the

number.

• Example:

• Create a script file with the following code

• a =[10 12 23;14 8 6;27 8 9];b =2;

• c = a + b

• d = a – b

• e= a * b

• f = a / b

• When you run the file, it displays the following result −

• c = 12 14 25

• 16 10 8

• 29 10 11

• d = 8 10 21

• 12 6 4

• 25 6 7

• e = 20 24 46

• 28 16 12

• 54 16 18

• f = 5.0000 6.0000 11.5000

• 7.0000 4.0000 3.0000

• 13.5000 4.0000 4.5000

• Transpose of matrices
• The transpose operation switches the rows and columns in a matrix. It

is represented by a single

• Create a script file with the following code

• a =[101223;1486;2789]

• b = a'

• When you run the file, it displays the following result

• a = 10 12 23

• 14 8 6

• 27 8 9

• b = 10 14 27

• 12 8 8

• 23 6 9

• Concatenation of two matrices:

• You can concatenate two matrices to create a larger matrix. The pair of

square brackets '[]' is the concatenation operator.

• MATLAB allows two types of concatenations −

• Horizontal concatenation

• Vertical concatenation

• When you concatenate two matrices by separating those using

commas, they are just appended horizontally. It is called horizontal

concatenation.

• Alternatively, if you concatenate two matrices by separating those

using semicolons, they are appended vertically. It is called vertical

concatenation.

• Create a script file with the following code −

• a =[101223;1486;2789]

• b =[123145;80-9;45211]

• c =[a, b]

• d =[a; b]

• When you run the file, it displays the following result −

• a =

• 10 12 23

• 14 8 6

• 27 8 9

• b =

• 12 31 45

• 8 0 -9

• 45 2 11

• c =

• 10 12 23 12 31 45

• 14 8 6 8 0 -9

• 27 8 9 45 2 11

• d =

• 10 12 23

• 14 8 6

• 27 8 9

• 12 31 45

• 8 0 -9

• 45 2 11

• Matrix multiplication:
• Consider two matrices A and B. If A is an m x n matrix and B is an n x

p matrix, they could be multiplied together to produce an m x n matrix

C. Matrix multiplication is possible only if the number of columns n in

A is equal to the number of rows n in B.

• In matrix multiplication, the elements of the rows in the first matrix

are multiplied with corresponding columns in the second matrix.

• Each element in the (i, j)th position, in the resulting matrix C, is the

summation of the products of elements in ith row of first matrix with

the corresponding element in the jth column of the second matrix.

• Matrix multiplication in MATLAB is performed by using the *

operator.

• Example

• Create a script file with the following code

• a =[123;234;125]b =[213;50-2;23-1]

• prod= a * b

• When you run the file, it displays the following result

• a = 1 2 3

• 2 3 4

• 1 2 5

• b = 2 1 3

• 5 0 -2

• 2 3 -1

• prod = 18 10 -4

• 27 14 -4

• 22 16 -6

• Determinant of matrix:
• Determinant of a matrix is calculated using the det function of

MATLAB. Determinant of a matrix A is given by det(A).

• Example

• Create a script file with the following code −

• a =[123;234;125]

• det(a)

• When you run the file, it displays the following result −

• a = 1 2

• 2 3 4

• 1 2 5

• ans = -2

• Inverse of matrices:
• The inverse of a matrix A is denoted by A−1 such that the following

relationship holds −

• AA−1= A−1A=1

• The inverse of a matrix does not always exist. If the determinant of the
matrix is zero, then the inverse does not exist and the matrix is singular.

• Inverse of a matrix in MATLAB is calculated using the inv function.
Inverse of a matrix A is given by inv(A).

• Example

• Create a script file and type the following code

• a =[123;234;125]

• inv(a)

• When you run the file, it displays the following result

• a = 1 2 3

• 2 3 4

• 1 2 5

• ans = -3.5000 2.0000 0.5000

• 3.0000 -1.0000 -1.0000

• -0.5000 0 0.5000

• Arrays:
• Special Arrays in MATLAB

• In this section, we will discuss some functions that create some special
arrays. For all these functions, a single argument creates a square
array, double arguments create rectangular array.

• The zeros() function creates an array of all zeros −

• For example −

• zeros(5)

• MATLAB will execute the above statement and return the following
result −

• ans = 0 0 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

• The ones() function creates an array of all ones −

• For example

• ones(4,3)

• MATLAB will execute the above statement and return the following

result

• ans = 1 1 1 1

• 1 1 1 1

• 1 1 1 1

• The eye() function creates an identity matrix.

• For example −

• eye(4)

• MATLAB will execute the above statement and return the following

result −

• ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1

• Arrays:
• Special Arrays in MATLAB

• In this section, we will discuss some functions that create some special
arrays. For all these functions, a single argument creates a square
array, double arguments create rectangular array.

• The zeros() function creates an array of all zeros −

• For example −

• zeros(5)

• MATLAB will execute the above statement and return the following
result −

• ans = 0 0 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

• MATLAB will execute the above statement and return the following

result −

• ans = 1 0 0 0

• 0 1 0 0

• 0 0 1 0

• 0 0 0 1

• The rand() function creates an array of uniformly distributed random
numbers on (0,1) −

• For example

• rand(3,5)

• MATLAB will execute the above statement and return the following
result

• ans =

• 0.8147 0.9134 0.2785 0.9649 0.9572

• 0.9058 0.6324 0.5469 0.1576 0.4854

• 0.1270 0.0975 0.9575 0.9706 0.8003

• The colon(:)

• The colon(:) is one of the most useful operator in MATLAB. It is used

to create vectors, subscript arrays, and specify for iterations.

• If you want to create a row vector, containing integers from 1 to 10,

you write

• 1:10

• MATLAB executes the statement and returns a row vector containing

the integers from 1 to 10

• ans = 1 2 3 4 5 6 7 8 9 10

• If you want to specify an increment value other than one, for example

−

• 100:-5:50

• MATLAB executes the statement and returns the following result −

• ans = 100 95 90 85 80 75 70 65 60 55 50

• You can use the colon operator to create a vector of indices to select

rows, columns or elements of arrays.

• The following table describes its use for this purpose (let us have a

matrix A) −

• A(:,j)

• is the jth column of A.

• A(i,:)

• is the ith row of A.

• A(:,:)

• is the equivalent two-dimensional array. For matrices this is the

same as A.

• A(j:k)

• is A(j), A(j+1),...,A(k).

• A(:,j:k)

• is A(:,j), A(:,j+1),...,A(:,k).

• A(:,:,k)

• is the kth page of three-dimensional array A.

• A(i,j,k,:)

• is a vector in four-dimensional array A. The vector includes A(i,j,k,1),

A(i,j,k,2), A(i,j,k,3), and so on.

• A(:)

• is all the elements of A, regarded as a single column. On the left side of

an assignment statement, A(:) fills A, preserving its shape from before.

In this case, the right side must contain the same number of elements

as A.

• Example

• Create a script file and type the following code in it

• A =[1234;4567;78910]

• A(:,2)% second column of A

• A(:,2:3)% second and third column of A

• A(2:3,2:3)% second and third rows and second and third columns

• When you run the file, it displays the following result −

• A = 1 2 3 4

• 4 5 6 7

• 7 8 9 10

• ans = 2

• 5

• 8

• ans = 2 3

• 5 6

• 8 9

• ans = 5 6

• 8 9

CONTENT

• plot

• Adding Title, Labels, Grid Lines and Scaling on
the Graph

• Drawing Multiple Functions on the Same
Graph

• Setting Colors on Graph

• Setting Axis Scales

• Generating Sub-Plots

PLOT

To plot the graph of a function, you need
to take the following steps −

• Define x, by specifying the range of values for
the variable x, for which the function is to be
plotted

• Define the function, y = f(x)

• Call the plot command, as plot(x, y)

Following example would demonstrate
the concept. Let us plot the simple function

y = x for the range of values for x from 0 to
100, with an increment of 5.

Create a script file and type the following
code −

x = [0:5:100];

y = x;

plot(x, y)

When you run the file, MATLAB

displays the following plot −

• Let us take one more example to plot the
function y = x2. In this example, we will draw two
graphs with the same function, but in second
time, we will reduce the value of increment.
Please note that as we decrease the increment,
the graph becomes smoother.

• Create a script file and type the following code −

x = [1 2 3 4 5 6 7 8 9 10];

x = [-100:20:100];

y = x.^2;

plot(x, y)

When you run the file, MATLAB displays the
following plot −

Change the code file a little, reduce the
increment to 5 −

x = [-100:5:100];

y = x.^2;

plot(x, y)

MATLAB draws a smoother graph −

Adding Title, Labels, Grid Lines and
Scaling on the Graph

MATLAB allows you to add title, labels along the x-axis
and y-axis, grid lines and also to adjust the axes to spruce
up the graph.

• The xlabel and ylabel commands generate labels along x-
axis and y-axis.

• The title command allows you to put a title on the graph.
• The grid on command allows you to put the grid lines on

the graph.
• The axis equal command allows generating the plot with

the same scale factors and the spaces on both axes.
• The axis square command generates a square plot.

EXAMPLE

Create a script file and type the following code −

x = [0:0.01:10];

y = sin(x);

plot(x, y), xlabel('x'), ylabel('Sin(x)'),
title('Sin(x) Graph'),

grid on, axis equal

MATLAB generates the following graph −

DRAWING MULTIPLE FUNCTIONS ON
THE SAME GRAPH

You can draw multiple graphs on the same
plot. The following example demonstrates the
concept −

Example

Create a script file and type the following code −

x = [0 : 0.01: 10];

y = sin(x);

g = cos(x);

plot(x, y, x, g, '.-'), legend('Sin(x)', 'Cos(x)')

MATLAB generates the following graph −

SETTING COLORS ON GRAPH
MATLAB provides eight basic color options for

drawing graphs. The following table shows the colors
and their codes −

code color

W White

K Black

B Blue

R Red

C Cyan

G Green

M Magenta

Y Yellow

Example

Let us draw the graph of two polynomials

• f(x) = 3x4 + 2x3+ 7x2 + 2x + 9 and

• g(x) = 5x3 + 9x + 2

Create a script file and type the following code −

x = [-10 : 0.01: 10];

y = 3*x.^4 + 2 * x.^3 + 7 * x.^2 + 2 * x + 9;

g = 5 * x.^3 + 9 * x + 2;

plot(x, y, 'r', x, g, 'g')

When you run the file, MATLAB generates
the following graph −

SETTING AXIS SCALES

The axis command allows you to set the axis
scales. You can provide minimum and maximum values
for x and y axes using the axis command in the
following way −
axis ([xmin xmax ymin ymax])

The following example shows this −
Example
Create a script file and type the following code −

x = [0 : 0.01: 10];
y = exp(-x).* sin(2*x + 3);
plot(x, y), axis([0 10 -1 1])

When you run the file, MATLAB generates
the following graph −

GENERATING SUB-PLOTS

When you create an array of plots in the same
figure, each of these plots is called a subplot. The
subplot command is used for creating subplots.
Syntax for the command is −
subplot(m, n, p)

• where, m and n are the number of rows and
columns of the plot array and p specifies where
to put a particular plot.

• Each plot created with the subplot command can
have its own characteristics. Following example
demonstrates the concept −

Example
Let us generate two plots −
y = e−1.5xsin(10x)
y = e−2xsin(10x)
Create a script file and type the following code −

x = [0:0.01:5];
y = exp(-1.5*x).*sin(10*x);
subplot(1,2,1)
plot(x,y), xlabel('x'),ylabel('exp(–1.5x)*sin(10x)'),axis([0 5 -1 1])
y = exp(-2*x).*sin(10*x);
subplot(1,2,2)
plot(x,y),xlabel('x'),ylabel('exp(–2x)*sin(10x)'),axis([0 5 -1 1])

When you run the file, MATLAB generates
the following graph −

Figures

• Create figure window

Syntax

figure

figure(Name,Value)

f = figure(___)

figure(f)

figure(n)

Description
– figure creates a new figure window using default property

values. The resulting figure is the current figure.
– figure(Name,Value) modifies properties of the figure

using one or more name-value pair arguments. For
example, figure('Color','white') sets the background color
to white.

– f = figure(___) returns the Figure object. Use f to query or modify
properties of the figure after it is created.

– figure(f) makes the figure specified by f the current figure
and displays it on top of all other figures

– figure(n) finds a figure in which the Number property is
equal to n, and makes it the current figure. If no figure
exists with that property value, MATLAB® creates a new
figure and sets its Number property to n.

https://in.mathworks.com/help/matlab/ref/figure.html

Specify Figure Title

– Create a figure, and specify the Name property.
By default, the resulting title includes the figure
number.

– figure('Name','Measured Data’);

– Specify the Name property again,

but this time, set the NumberTitle

property to 'off’. The resulting title

does not include the figure number.

• figure('Name','Measured Data','NumberTitle','off’);

Working with Multiple Figures
Simultaneously

Create two figures, and then create a
line plot. By default, the plot command

targets the current figure.

f1 = figure;

f2 = figure;

plot([1 2 3],[2 4 6]);

• Set the current figure to f1, so that it is the
target for the next plot. Then create a
scatter plot.

figure(f1);

scatter((1:20),rand(1,20));

Input Arguments

f — Target figure
Figure object

– Target figure, specified as a Figure object.

n — Target figure number
scalar integer value

– Name-Value Pair Arguments
– Example: figure('Color','white') creates a figure with a white

background.
– Specify optional comma-separated pairs of Name,

Value arguments. Name is the argument name and Value is the
corresponding value. Name must appear inside single quotes (' ').
You can specify several name and value pair arguments
as Name1,Value1,...,NameN, ValueN.

'Name' — Name
'' (default) | character vector | string scalar

– Name of the figure, specified as a character vector or a string
scalar.

– Example: figure('Name','Results') sets the name of the figure
to 'Results’.

– By default, the name is 'Figure n', where n is an integer.
When you specify the Name property, the title of the figure
becomes 'Figure n: name'. If you want only the Name value
to appear, set IntegerHandle or NumberTitle to 'off’.

'Color' — Background color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Background color, specified as an RGB triplet, a hexadecimal color
code, a color name, or a short name. If you specify 'none', the
background color appears black on screen, but if you print the figure,
the background prints as though the figure window is transparent.

For a custom color, specify an RGB triplet or a hexadecimal color code.

•An RGB triplet is a three-element row vector whose elements specify
the intensities of the red, green, and blue components of the color.
The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

•A hexadecimal color code is a character vector or a string scalar that
starts with a hash symbol (#) followed by three or six hexadecimal
digits, which can range from 0 to F. The values are not case sensitive.
Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are
equivalent.

Current Figure

The current figure is the target for graphics

commands such as axes and colormap.

Typically, it is the last figure created or the last

figure clicked with the mouse. The gcf command

returns the current figure.

The M Files

• MATLAB allows writing two kinds of program files:
Scripts - script files are program files with .m extension.

In these files, you write series of commands, which you want to
execute together. Scripts do not accept inputs and do not
return any outputs. They operate on data in the workspace.

Functions - functions files are also program files with .m
extension. Functions can accept inputs and return outputs.
Internal variables are local to the function.
• We can use the MATLAB editor or any other text editor to

create your .m files. In this section, we will discuss the script
files. A script file contains multiple sequential lines of
MATLAB commands and function calls. We can run a script
by typing its name at the command line.

Creating and Running Script File

• To create scripts files, you need to use a text
editor. You can open the MATLAB editor in
two ways:

Using the command prompt

Using the IDE

• If you are using the command prompt, type
edit in the command prompt. This will open
the editor. You can directly type edit and then
the filename (with .m extension)

• The above command will create the file in
default MATLAB directory. If you want to store
all program files in a specific folder, then you
will have to provide the entire path.

• Let us create a folder named progs. Type the
following commands at the command
prompt(>>):

• If you are creating the file for first time,

MATLAB prompts you to confirm it.

Click Yes.

• Alternatively, if you are using the IDE, choose NEW ->
Script. This also opens the editor and creates a file
named Untitled. You can name and save the file after
typing the code.

• Type the following code in the editor:

• After creating and saving the file,
you can run it in two ways:
Clicking the Run button on
the editor window or Just typing
the filename (without extension)
in the command prompt: >> prog1 The command window
prompt displays the result:

Example of M Files

Examples

• Let us draw the graph of two polynomials

x = linspace(0,10, x = linspace(0,10,50);
y1 = sin(x);
plot(x,y1)
title('Combine Plots')

hold on

y2 = sin(x/2);
plot(x,y2)

y3 = 2*sin(x);
scatter(x,y3)

hold off

• x = linspace(0,10,50);
• y1 = sin(x);
• y2 = rand(50,1);
• tiledlayout(2,1) % Requires R2019b or later

• % Top plot
• nexttile
• plot(x,y1)
• title('Plot 1')

• % Bottom plot
• nexttile
• scatter(x,y2)
• title('Plot 2')

