
ARTIFICIAL INTELLIGENCE & ROBOTICS

(18MIT25E)

UNIT III

Knowledge Representation Issues:

Approaches to Knowledge

Representation – The Frame Problem –

Computable Functions & Predicates –

Resolution – Procedural versus

Declarative Knowledge.
TEXT BOOKS:

1. ELAINE RICH AND KEVIN KNIGHT, ARTIFICIAL INTELLIGENCE,

TMH, SECOND EDITION

2. CRAIG JJ, INTRODUCTION TO ROBOTICS,MECHANICS AND

CONTROL, PEARSON EDUCATION, NEW DELHI, 2004

-Dr.P.Radha

KNOWLEDGE REPRESENTATION

• For the purpose of solving complex problems encountered
in AI, we need both a large amount of knowledge and some
mechanism for manipulating that knowledge to create
solutions to new problems.

• A variety of ways of representing knowledge (facts) have
been exploited in AI programs. In all variety of knowledge
representations , we deal with two kinds of entities.

• Facts: Truths in some relevant world. These are the things
we want to represent.

• Representations of facts in some chosen formalism

• Representations and Mappings
– In order to solve complex problems encountered in artificial

intelligence, one needs both a large amount of knowledge and
some mechanism for manipulating that knowledge to create
solutions.

– Knowledge and Representation are two distinct entities. They
play central but distinguishable roles in the intelligent system.

– Knowledge is a description of the world. It determines a
system’s competence by what it knows.

– Moreover, Representation is the way knowledge is encoded. It
defines a system’s performance in doing something.

• Different types of knowledge require different kinds of
representation

• One way to think of structuring these entities

is as two levels:
• Knowledge level at which facts are described.

• Symbol level at which representations of objects at the

knowledge level are defined in terms of symbols that can be

manipulated by programs.

• Rather than thinking on one level on top of another,

we will focus on facts, on representations, and on the

two-way mappings that must exist between them ,

these links are called as Representation Mappings.

• Forward representation mapping maps from facts to

representation

• Backward representation mapping goes from

representation to facts.

• One representation of facts is to represent using

natural language (English) sentences.

Example:

English Sentence: Spot is a dog

Represented in Logic as dog(Spot)

Approaches to Knowledge Representation

Mapping between Facts and Representation

 Knowledge is a collection of facts from some domain.
 Also, We need a representation of “facts“ that can manipulate by a program.

 Moreover, Normal English is insufficient, too hard currently for a computer program to

draw inferences in natural languages.

 Thus some symbolic representation is necessary.

A good knowledge representation enables fast and accurate access to knowledge and

understanding of the content.

A knowledge representation system should have following properties.

1. Representational Adequacy

 The ability to represent all kinds of knowledge that are needed in that domain.

2. Inferential Adequacy

 Also, The ability to manipulate the representational structures to derive new

structures corresponding to new knowledge inferred from old.

3. Inferential Efficiency

 The ability to incorporate additional information into the knowledge structure that

can be used to focus the attention of the inference mechanisms in the most

promising direction.

4. Acquisitional Efficiency

 Moreover, The ability to acquire new knowledge using automatic methods

wherever possible rather than reliance on human intervention.

Relational Knowledge

 The simplest way to represent declarative facts is a set of relations of the same sort used

in the database system.

 Provides a framework to compare two objects based on equivalent attributes. o Any

instance in which two different objects are compared is a relational type of knowledge.

 The table below shows a simple way to store facts.

 Also, The facts about a set of objects are put systematically in columns.

 This representation provides little opportunity for inference.

 Given the facts, it is not possible to answer a simple question such as: “Who is the

heaviest player?”

 Also, But if a procedure for finding the heaviest player is provided, then these facts will

enable that procedure to compute an answer.

 Moreover, We can ask things like who “bats – left” and “throws – right”.

• Inheritable Knowledge
– Here the knowledge elements inherit attributes from their parents.
– The knowledge embodied in the design hierarchies found in the

functional, physical and process domains.
– Within the hierarchy, elements inherit attributes from their parents,

but in many cases, not all attributes of the parent elements prescribed
to the child elements.

– Also, The inheritance is a powerful form of inference, but not
adequate.

– Moreover, The basic KR (Knowledge Representation) needs to
augment with inference mechanism.

– Property inheritance: The objects or elements of specific classes
inherit attributes and values from more general classes.

– So, The classes organized in a generalized hierarchy.

Inheritable knowledge

 Boxed nodes — objects and values of attributes of objects.
 Arrows — the point from object to its value.

 This structure is known as a slot and filler structure, semantic network or a collection of

frames.

The steps to retrieve a value for an attribute of an instance object:

1. Find the object in the knowledge base

2. If there is a value for the attribute report it

3. Otherwise look for a value of an instance, if none fail

4. Also, Go to that node and find a value for the attribute and then report it

5. Otherwise, search through using is until a value is found for the attribute.

• Inferential Knowledge
– This knowledge generates new information from the given information.
– This new information does not require further data gathering form source but

does require analysis of the given information to generate new knowledge.
– Example: given a set of relations and values, one may infer other values or

relations. A predicate logic (a mathematical deduction) used to infer from a
set of attributes. Moreover, Inference through predicate logic uses a set of
logical operations to relate individual data.

– Represent knowledge as formal logic: All dogs have tails ∀x: dog(x) →
hastail(x)

– Advantages:
• A set of strict rules.
• Can use to derive more facts.
• Also, Truths of new statements can be verified.
• Guaranteed correctness.

– So, Many inference procedures available to implement standard rules of logic
popular in AI systems. e.g Automated theorem proving

The Frame Problem

• In artificial intelligence, the frame problem describes an

issue with using first-order logic to express facts about a

robot in the world. Representing the state of a robot with

first-order logic requires the use of many axioms that

simply imply that things in the environment do not change

arbitrarily. For example, Hayes describes a "block world"

with rules about stacking blocks together. The frame

problem is the problem of finding adequate collections of

axioms for a viable description of a robot environment.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Block_world

• The frame problem occurs even in very simple domains. A
scenario with a door, which can be open or closed, and a
light, which can be on or off, is statically represented by
two propositions open and on. If these conditions can
change, they are better represented by two predicates
open(t) and on(t) that depend on time;

• such predicates are called fluents. A domain in which the
door is closed and the light off at time 0, and the door
opened at time 1, can be directly represented in
logic[clarification needed] by the following formulae.

• ¬open(0)

• ¬on(0)

• open(1)

Computable Functions and Predicates

– To express simple facts, such as the following

greater-than and less-than relationships: gt(1,O)

lt(0,1) gt(2,1) lt(1,2) gt(3,2) lt(2,3)

– It is often also useful to have computable functions

as well as computable predicates. Thus we might

want to be able to evaluate the truth of gt(2 + 3,1)

– To do so requires that we first compute the value

of the plus function given the arguments 2 and 3,

and then send the arguments 5 and 1 to gt.

• Explicit formal type of knowledge

– Explicit knowledge

– Exists outside a human being;

– It is embedded.

– Can be articulated formally.

– Also, Can be shared, copied, processed and stored.

– So, Easy to steal or copy

• Drawn from the artifact of some type as a
principle, procedure, process, concepts.

Consider the following set of facts, again involving Marcus:

• Marcus was a man.

man(Marcus)

• Marcus was a Pompeian.

Pompeian(Marcus)

• Marcus was born in 40 A.D.

born(Marcus, 40)

• All men are mortal.

x: man(x) → mortal(x)

• All Pompeians died when the volcano erupted in 79 A.D.

erupted(volcano, 79) ∧ ∀ x : [Pompeian(x) → died(x, 79)]

• No mortal lives longer than 150 years.

∀ x: ∀ t1: ∀ t2: mortal(x) ∧ born(x, t1) ∧ gt(t2 – t1,150) → dead(x, t2)

• It is now 1991.

now = 1991

• So, Above example shows how these ideas of computable functions
and predicates can be useful. It also makes use of the notion of
equality and allows equal objects to be substituted for each other
whenever it appears helpful to do so during a proof.
– So, Now suppose we want to answer the question “Is Marcus alive?”

– The statements suggested here, there may be two ways of deducing an
answer.

– Either we can show that Marcus is dead because he was killed by the
volcano or we can show that he must be dead because he would
otherwise be more than 150 years old, which we know is not possible.

– Also, As soon as we attempt to follow either of those paths rigorously,
however, we discover, just as we did in the last example, that we need
some additional knowledge. For example, our statements talk about
dying, but they say nothing that relates to being alive, which is what the
question is asking.

So we add the following facts:

• Alive means not dead.

∀ x: ∀ t: [alive(x, t) → ¬ dead(x, t)] ∧ [¬ dead(x, t)
→ alive(x, t)]

• If someone dies, then he is dead at all later times.

∀ x: ∀ t1: ∀t2 : died(x, t1) ∧ gt(t2, t1) → dead(x, t2)

• So, Now let’s attempt to answer the question “Is
Marcus alive?” by proving: ¬ alive(Marcus, now)

Resolution

Propositional Resolution

• Convert all the propositions of F to clause form.

• Negate P and convert the result to clause form. Add it to the set of
clauses obtained in step 1.

• Repeat until either a contradiction is found or no progress can be
made:
– Select two clauses. Call these the parent clauses.

– Resolve them together. The resulting clause, called the resolvent, will
be the disjunction of all of the literals of both of the parent clauses with
the following exception: If there are any pairs of literals L and ¬ L such
that one of the parent clauses contains L and the other contains ¬L, then
select one such pair and eliminate both L and ¬ L from the resolvent.

• If the resolvent is the empty clause, then a contradiction has been
found. If it is not, then add it to the set of classes available to the
procedure

• The Unification Algorithm
– In propositional logic, it is easy to determine that two literals

cannot both be true at the same time.

– Simply look for L and ¬L in predicate logic, this matching
process is more complicated since the arguments of the
predicates must be considered.

– For example, man(John) and ¬man(John) is a contradiction,
while the man(John) and man(Spot) is not.

– Thus, in order to determine contradictions, we need a matching
procedure that compares two literals and discovers whether there
exists a set of substitutions that makes them identical.

– There is a straightforward recursive procedure, called the
unification algorithm, that does it.

Algorithm: Unify(L1, L2)

• If L1 or L2 are both variables or constants, then:

– If L1 and L2 are identical, then return NIL.

– Else if L1 is a variable, then if L1 occurs in L2 then return {FAIL}, else return (L2/L1).

– Also, Else if L2 is a variable, then if L2 occurs in L1 then return {FAIL}, else return
(L1/L2) Else return {FAIL}.

• If the initial predicate symbols in L1 and L2 are not identical, then return {FAIL}.

• If LI and L2 have a different number of arguments, then return {FAIL}.

• Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the substitutions
used to unify L1 and L2.)

• For I ← 1 to the number of arguments in L1 :

– Call Unify with the ith argument of L1 and the ith argument of L2, putting the result in S.

– If S contains FAIL then return {FAIL}.

– If S is not equal to NIL then:

• Apply S to the remainder of both L1 and L2.

• SUBST: = APPEND(S, SUBST).

• Return SUBST.

Resolution Procedure

– Resolution is a procedure, which gains its efficiency from the fact that
it operates on statements that have been converted to a very convenient
standard form.

– Resolution produces proofs by refutation.

– In other words, to prove a statement (i.e., to show that it is valid),
resolution attempts to show that the negation of the statement
produces a contradiction with the known statements (i.e., that it is
unsatisfiable).

– The resolution procedure is a simple iterative process: at each step, two
clauses, called the parent clauses, are compared (resolved), resulting in
a new clause that has inferred from them. The new clause represents
ways that the two parent clauses interact with each other. Suppose that
there are two clauses in the system:

• winter V summer

• ¬ winter V cold

– Now we observe that precisely one of winter and ¬ winter will be true
at any point.

– If winter is true, then cold must be true to guarantee the truth of the
second clause. If ¬ winter is true, then summer must be true to
guarantee the truth of the first clause.

– Thus we see that from these two clauses we can deduce summer V cold

– This is the deduction that the resolution procedure will make.

– Resolution operates by taking two clauses that each contains the same
literal, in this example, winter.

– Moreover, The literal must occur in the positive form in one clause and
in negative form in the other. The resolvent obtained by combining all
of the literals of the two parent clauses except the ones that cancel.

– If the clause that produced is the empty clause, then a contradiction has
found.

Procedural versus Declarative

Knowledge

• We have discussed various search techniques

in previous units. Now we would consider a

set of rules that represent,

– Knowledge about relationships in the world and

• Knowledge about how to solve the problem

using the content of the rules

Procedural vs Declarative

Knowledge Procedural Knowledge

• A representation in which the control
information that is necessary to use the
knowledge is embedded in the knowledge
itself for e.g. computer programs, directions,
and recipes; these indicate specific use or
implementation;

• The real difference between declarative and
procedural views of knowledge lies in where
control information reside.

• For example, consider the following

• Man (Marcus)

• Man (Caesar)

• Person (Cleopatra)

• ∀x: Man(x) → Person(x)

• Now, try to answer the question. Type equation here.

• ∃𝑦:Person(y)

• The knowledge base justifies any of the following
answers.

• Y=Marcus Y=Caesar Y=Cleopatra

• We get more than one value that satisfies the
predicate.

• If only one value needed, then the answer to the
question will depend on the order in which the
assertions examined during the search for a
response.

• If the assertions declarative then they do not
themselves say anything about how they will be
examined. In case of procedural representation,
they say how they will examine

Declarative Knowledge

• A statement in which knowledge specified, but
the use to which that knowledge is to be put is
not given.

• For example, laws, people’s name; these are
the facts which can stand alone, not dependent
on other knowledge;

• So to use declarative representation, we must
have a program that explains what is to do
with the knowledge and how.

• For example, a set of logical assertions can combine
with a resolution theorem prover to give a complete
program for solving problems but in some cases, the
logical assertions can view as a program rather than
data to a program.

• Hence the implication statements define the legitimate
reasoning paths and automatic assertions provide the
starting points of those paths.

• These paths define the execution paths which is similar
to the ‘if then else “in traditional programming.

• So logical assertions can view as a procedural
representation of knowledge

