Soft Computing

UNIT-V:

Fuzzy systems: Crisp logic: Laws of Propositional logic-Inference in
Propositional logic. Predicate logic: Interpretations of Predicate logic
formula — Inference in Predicate logic. Fuzzy logic: Fuzzy quantifiers —
Fuzzy inference, Fuzzy Rule based system — Defuzzification.

Text Book:

S.Rajasekaran & G.A.Vijayalakshmi Pai, “Neural Networks, Fuzzy Logic,
And Genetic Algorithms Synthesis And Applications, PHI, 2005.

Prepared By: Dr. D. DEVAKUMARI




7.1 CRISP LOGIC

Consider the statements “Water boils at 90°C” and “Sky is blue”. An agreement or disagreement
with these statements is indicated by a “True” or “False” value accorded to the statements. While
the first statement takes on a value false, the second takes on a value true.

Thus, a statement which is either ‘True’ or ‘False’ but not both is called a proposition. A

proposition is indicated by upper case letters such as P, Q. R and so on. T

Example: P: Water boils at 90°C.
Q: Sky is blue.

are propositions. .

A simple proposition is also known as an arom. Propositions alone are insufficient to
represent phenomena in the real world. In order to represent complex information, one has to
build a sequence of propositions linked using connectives or operators. Propositional logic

recognizes five major operators as shown in Table 7.1.

Table 7.1 Propositional logic connectives

-~

Symbol Connective Usage Description
A and PAQ P and Q are true.
v or PvQ Either P or Q is true.
- or ~ not ~Por - P P is not true.
= implication P =0 P implies Q is true.
= equality P=0 P and Q are equal (in truth values) is true.




sitions While ~is 4

ol ro ,

‘un (?bserve that A, v, =, and = are “binary" operators Sl ::::Oerefr(;d to as conjunction
ary’ operator iri : 4 tions : ‘=
Pe requiring a single proposition. A and v Operd sition occurring before the ‘=

led as the consequent.
l d usingftruth table. A

the logical formula
five connectives.

and disjunction respectively. In the case of = operator, the propo
Symbol is called as the antecedent and the one occurring after 15 Ca%
The semantics or meaning of the logical connectives are explainc
truth table comprises rows known as interpretations, each of which evaluates
for the given set of truth values. Table 7.2 illustrates the truth table for the

Table 7.2 Truth table for the connectives A, Vs =+ = )
DG
P Q PAQ PvQ ~P p=0 i g_
& b T T F T T
T F F T F F F
F F F F T T T
F T F T T T F

T : True, F : False

A logical formula comprising n propositions will have 2" interpretations in its truth table. A

fi : - : :
r:Crml:lla fwhnch has all its interpretations recording true is known as a tautology and the one which
ords false for all its Interpretations is known as contradiction.




~

Example 7.1
a tautology?

Obtain a truth table for the formula (Pv Q) = (-P). Is it

Solution
The truth table for the given formula ig
P Q PvQ ~P PvQ=~P
¢ F E: F F
F T T T T
T T g & F F
F F F T T

No, it is not a tautology since all interpretations do not record ‘True’ in its last column.

Example 7.2

Is (P = Q) A (Q = P) = (P = Q) a tautology?

Solution

A: B:

¥ o Q P=0 0O=pP (P=Q)A(Q=P) P=Q A=p
T F F T F E T
F T T F F E T
T g i T T T T T
F F o T T T T

Yes, the given formula is a tautology.




Example 7-3
how that (P = Q) =(Pv Q)

S

Solution

The truth table for the given formula is
P Q AxP=s Q ~P B ~7P v Q e
T T T = = -
T F E . - T
F F T T . ’
4} T T T . :

Since the last column yields ‘True’ for all interpretations, it is a tautology.

The logical formula presented in Example 7.3 is of practical importance since (P = Q) is
shown to be equivalent to (~P v Q), a formula devoid of ‘=’ connective. This equivalence can
therefore be utilised to eliminate ‘=’ in logical formulae.

It is useful to view the ‘=’ operator from a set oriented perspective. If X is the universe of
discourse and A, B are sets defined in X, then propositions P and Q could be defined based on an
element x € X belonging to A or B. That is,




P:xe A

Q:xeB (7.1)

Here, P, Q are true if x € A and x € B respectively, and ~P, ~Q are true if x ¢ A and x ¢ B

respectively. In such a background, P = Q which is equivalent to (~ P v Q) could be interpreted
as

P=>0Q):xe¢A or xeB (7.2)

However, if the ‘=’ connective deals with two different universes of discourse, that is,
Ac X and B c Y where X and Y are two universes of discourse then the ‘=’ connective is
represented by the relation R such that

R=(AxB)uU(A xY) (7.3)

In such a case, P = Q is linguistically referred to as [F A THEN B. The compound

proposition (P = Q) v (~P = §) linguistically referred to as [F A THEN B ELSE C is equivalent
to \

IF A THEN B (P = Q)
IF ~A THEN C (~P = §)
where P, Q, and § are defined by sets A, B, C,Ac X, and B, C c Y.

(7.4)




'/7/.1.1 Laws of Propositional Logic

Crisp sets as discussed in Section 6.2.2. exhibit properties which help in their simplification.
- cffcc(iny used for

Sin.milarly.‘ propositional logic also supports the following laws which can
their simplification. Given P, Q. R to be the propositions,

(v) Negation

(1) Commutativity P A ~P = False
PvQ)=(@QvP Pv ~P = True
PAQ)=(QAP) (vi) tdempotence
() Associativity PvP=P
(PvQ)vVR=Pv(QVR PAP=P
PAQAR=PA(QAR (vii) Absorption
(i)  Distributivity PA(PvQ=P
(PVvQAR=(PAR)V(QAR) Pv(PAQ) =P
(PAQVR=(PVR)A(QVR) (viii) De Morgan’s laws '
(iv) Identity ~PvQ)=(~PA~Q)
P v false = P ~PAQ)=(~Pv~Q)
PATue=P (ix) Involution
~~P)=P

P A False = False
P v True = True Each of these laws can be tested to be a tautology using truth tables




Example 7.4

WVerify IDe Morgan’™s laws.
(a) —(P v O = (—F ~ -0
(b)) —~(FP ~ Q)= (—F v —C2)

Solutiorn
(@)
P o P v Q A: ~(P v Q) ~P ~Q B: ~P A ~Q A=RB
5 I8 T : B F F F F T
T F T F F T F T
F T T F T F F T
F ¥ F T T j 5 K ®
Therefore, ~(P v Q) = (=P » ~Q)
(®)
P Q P AQ A: ~(P A O ~P ~-Q B: ~P v ~Q A=B8B
T T T F F F F T
T F F T F T T T
F Y b F T T T T g §
F F F T T F T T

Therefore ~(P A Q) = (=P v ~Q)




Example 7.5
Simplify (~(PA Q) > R)AP A Q

Solution
Consider (~PAQ >R APAQ

=(~~PAQ)VR)APAQ
(by eliminating ‘=’ using (P = Q) = (~P v Q))

=(PAQ@)VvR)YAPAQ (bythe law of involution)

= (P A Q) (by the law of absorption)




7.1.2 Inference in Propositional Logic

Inference is a technique by which, given a set of facts or postulates or axioms‘ or premises F L
F a goal G is to be derived. For example, from the facts “Where there is smoke there is
veeey Fopy

fire”, and “There is smoke in the hill”, the statement “Then the hill is on fire” can be easily
deduced.

: namely
: inferring facts.
In propositional logic, three rules are widely used for in

(1) Modus Ponens

(1) Modus Tollens. and
(1) Chain rule

Modus ponens (mod pons)
Given P = Q and P to be true, Q i1s true.

P=Q
! o
(7.14)
Q

i ! which can
Here, the formulae above the line are the premises and the one below is the goa
be inferred from the premises.




Modus tollens
Given P = Q and ~Q to be true, ~P is true.
P50
~Q
~P (7.15)

Chain rule

Given P = Q and Q = R to be true, P = R is true.

P=0
Q=R
P=>R (7.16)
Note that the chain rule is a representation of the transitivity relation with respect to the ‘=’
connective.
Example 7.6
Given
@ CvD

(ii) ~H = (A A ~B)
(iii) (Cv D) = --H.
(iv. AA~B)=(RVYS)

Can (R v S) be inferred from the above?




Solution
From (i) and (i11) using the rule of Modus Ponens . ~H can be inferred.

(1) C v D
(ii1) (CvD)y=~-H
~H (v)

From (ii) and (iv) using the chain rule, ~H = (R v §) can be inferred.
(i1) ~H = (A A ~B)
(iv) (AA~B)=(RVvYS)

~H = (RVvYS) (v1)
From (v) and (vi) using the rule of Modus Ponens (R v S) can be inferred.

(v1) ~-H= (R VS
(v) ~H
R v S

Hence. the result.
o




' 72 PREDICATE LOGIC

In propositional logic, events are symbolised as propositions which acquire either ‘True/False’
values. However. there are situations in the real world where propositional logic falls short of its

expectation. For example, consider the following statements:

P : All men are mortal.

Q : Socrates i1s a man.

statements it is possible to infer that Socrates is mortal. However, from the
propositions P, Q which symbolise these statements nothing can be made out. The reason being,
propositional logic lacks the ability to symbolise quantification. Thus, in this example, the
quantifier ““All” which represents the entire class of men encompasses Socrates as well, who is
declared to be a man, in proposition Q. Therefore, by virtue of the first proposition P, Socrates
who is a man also becomes a mortal, giving rise to the deduction Socrates is mortal. However, the

deduction is not directly perceivable owing to the shortcomings in propositional logic. Therefore,
propositional logic needs to be augmented with more tools to enhance its logical abilities.
Predicate logic comprises the following apart from the connectives and propositions

recognized by propositional logic’”

From the given

(i) Constants
(ii) Variables
(i1) Predicates
(iv) Quantifiers
(v) Functions
Consrants represent objects that do not change values.




Example Pencil, Ram, Shaft, 100°C.

Variables are symbols which represent values acquired by the object
quantifier with which they are associated with.

Example x, y, z.

jables and
: . : tants or variables d
Predicates are representative of associations between objects that are con;»e g the association
acquire truth values ‘True’ or ‘False’. A predicate carries a name repre

followed by its arguments representing the objects it is to associate.

Example

likes (Ram, tea) (Ram likes tea)
plays (Sita, x) (Sita plays anything) o K
: i ects. ,
Here, likes and plays are predicate names and Ram, tea and Sita, x are the assoc:.nat;edthoe Jvaluc false
the predicates acquire truth values. If Ram disliked tea, likes (Ram, tea) acquire

i is suitabl
and if Sita played any sport, plays (Sita, x) would acquire the value true provided x is suitably
qualified by a quantifier.

Quantifiers are symbols which indicate the two types of quantification, namely, All (V) and Some

(3). ¥’ is termed universal guantifier and ‘3’ is termed existential qua_r_t_t_f___,ﬁer-'




Example Let,

man (x) : X 1S a mane
mortal (x) :  x is mortal,
mushroom (x) : x is a mushroom.
poisonous (x) : x is poisonous.

Then, the statements

All men are mortal.
Some mushrooms are poisonous.

are represented as
Vv x (man (x) = mortal (x))

3 x (mushroom (x) A poisonous (x))

Here, a useful rule to follow is that a universal quantifier goes with implication and an
existential quantifier with conjunction. Also, it is possible for logical formula to be quantified by
multiple quantifiers.

Example Every ship has a captain.
Vv x 3y (ship (x) = captain (x, y))
where, ship (x) : x is a ship
captain (x, y) : ¥ is the captain of x.
Functions are similar to predicates in form and in their representation of association bet\&een

“objects but unlike predicates which acquire truth values alone, functions acquire values other than
truth values. Thus, functions only serve as object descriptors.




Example
plus (2, 3) (2 plus 3 which is 5)
mother (Krishna) (Krishna’s mother)

Observe that plus (O and mother () indirectly describe 57
respectively.

Example 7.7

and “Krishna’s mother”

Write predicate logic statements for
(i) Ram likes all kinds of food

(ii) Sita likes anything which Ram likes.
(iii) Raj likes those which Sita and Ram both like.
(iv) Ali likes some of which Ram likes.

Solution

Let food (x) - x is food.
likes (x, y) : x likes y
T\hen the above statements are translated as

=
). VvV x food (x) = likes (Ram, x))
(i) V x (likes (Ram, x) = likes (Sita, x))

(Gii) WV x (likes (Sita, x) A likes (Ram, x)) = likes (Raj, x))
(iv) 3x (likes (Ram, x) A likes (Al1, x))

The application of the rule of universal quantifier and ruole of existential quantifier can be
observed in the translations given above.




1721 Interpretations of Predicate Logic Formula

] = g . : th values acquired by the propositions,
i tional logic, depending on the tru : h .
fh(::r ;ut;znt':ll)llz l;tgrof:tzl tlhe forn%ula. But in the case of pre.dl.cate logic, deperlmlmg 01:‘ th; tr:ll:l;
values acquired b;p the predicates, the nature of the gu:ctntnflers, Cland the values taken by
constants and functions over a domain D, the formula is interpreted.

Example

Interpret the formulae
@® ¥V xpx)
(i) 3x px)

here the domain D = {1, 2} and
where the dom (1) (2)
True False

Solution
: _ : wise 1t s false
) Vx p(x) is true only if p(x) is true for all values of x in the domain D. ot"!Cfelv portulbm

Here, for x = 1 and x = 2, the two possible values for x chosen from 0. “*:"‘: 2 2. Hrice:

and p(2) = false respectively, yields (i) to be false since p(x) is not true It

V x p(x) is false.

(1) 3x p(x) is true only if there is atleast one value of v for whichu!’(-")’ 1S "“""c

Here, for x = 1, p(x) is true resulting in (i) to be true. Hence, dx p(x) is true.




Example 7.8

Interpret Vx 3y P(x, y) for D = {1, 2} and

P(1, 1) P(1,2) P2, 1) PQ2.2)

True False False True
Solution

For X = 1, there eXists a y, (y = 1) for which P(x y), e (P(1L1)) s true.
For x = 2, there exists a Y, (y 2) for which P(x, y) (P(2, 2)) is true.

Thus, for all values of x there exists a y for which P(x, y) is true.
Hence, Vx 3y P(x, y) is true.




7.2.2 Inference in Predicate Logic

The rules of inference such as Modus Ponens, Modus Tollens and Chain rule. and the laws of
propositional logic are applicable for inferring predicate logic but not before the quantifiers have
been appropriately eliminated (refer Chang & Lee, 1973).

Example

Given (1) All men are mortal.
(1) Confucius is a man.
Prove: Confucius is mortal.
Translating the above into predicate logic statements

(1) Vx (man (x) = mortal (x))
(11)) man (Confucius)
(ii11) mortal (Confucius)
Since (i) is a tautology qualified by the universal quantifier for \ — Confucius, the statement i
o § ment s

true, i.e.
man (Confucius) = mortal (Confucius)

—> -~man (Confucius) v mortal (Confucius)

But from (ii), man (Confucius) is true.
Hence (iv) simplifies to
False v mortal (Confucius)
= mortal (Confucius)
Hence, Confucius is mortal has been proved.




Example 7.9

Given (1 Every soldier is strong-willed.
(i) All who are strong-willed and sincere will succeed in their career.
(iii) Indira is a soldier.

(iv) Indira is sincere.

Prove: Wwill Indira succeed in her career?

Solution

Let soldier (x) : x i1s a soldier.
strong-willed (x) : x is a strong-willed.
sincere (x) : X 1S Sincere.

succeed_career (x) : x succeeds in career.

Now (i) to (iv) are translated as

Vx (soldier (x) = strong-willed (x)) (1)
Vx ((strong-willed (x) A sincere (x)) = succeed_career (x)) (i1)
soldier (Indira) (111)
sincere (Indira) (1v)

To show whether Indira will succeed in her career, we need to show

succeed_career(Indira) is true. (v)




Since (i) and (ii) are quantified by Vv, they should be true for x = Indira.
Substituting x = Indira in (i) results in (soldier (Indira) = strong-willed (Indira),

1.€. ~soldier (Indira) v strong-willed (Indira) (v1)

Since from (iii) soldier (Indira) is true, (vi) simplifies to

strong-willed (Indira) (vii)

Substituting x = Indira in (i1),
(strong-willed (Indira) A sincere (Indira)) = succeed_career (Indira)

Le. ~(strong-willed (Indira) A sincere (Indira)) v succeed_career (Indira)
©® P=>Q=~PVv Q)

Le. ~(strong-willed (Indira) v ~sincere (Indira)) v succeed_career (Indira)
(De Morgan'’s law) (viii)

From (vii), strong-willed (Indira) is true and from (iv) sincere (Indira) is true. Substituting these in

(viii),
False v False v succeed_career (Indira)

ie. succeed_career (Indira) (using law of identity)

Hence, Indira will succeed in her career is true.




7.3 FUZZY LOGIC

e 2-valued, namely True,
ar -

n fuzzy logic, truth values

. . e icates
In crisp logic, the truth values acquired by propositions or predicate
and so on and are

: . . ver, i
False which may be treated numerically equivalent to (0, 1). Howlc very true.
are multivalued such as absolutely true, partly true, absolutely false.

numerically equivalent to (0-1).

Fuzzy propositions B kit Tozy
| iven P to be a

A fuzzy pr 1ion is a statement which acquires a_fuzzy truth value. :‘hT:; iimpleS‘ form, fuzzy

proposition, 7(P) represents the truth value (0O—1) attached o P'a] e associated with the fuzzy

propositions are associated with fuzzy sets. The fuzzy membership valu

set A for P is treated as the fuzzy truth value T(P).

ie.  T(P) = piz(x) where 0<u;(x)<1 (7.17)

Example

P : Ram is honest.
T(P) = 0.8, if Pis partly true.
T(P)=1,if Pis a'bsolutely true.




Fuzzy connectives

—_—

Fuzzy logic similar to crisp logic supports the following connectives:

(1) Negatian{, D -
(11) Disjunction : v
(1) Conjunction : A

(iv) Implication : =

Table 7.3 illustrates ‘the definition of the connectives. Here P, O are fuzzy propositions .and
T(P), T(Q), are their truth values.

Table 7.3 Fuzzy connectives

Symbol Connective Usage Definition
- Negation P 1 - T(P)
Y Disjunction PvO max (T(P), T©))
& Conjunction PAQ min (T(B), T(())
= — P=0 ~Pv0 = max (- 75), 1(g))




p and O related by the ‘=’ operator are known as antecedent and consequent respectively. Also.
just as In crisp logic, here too, ‘=" represents the IF-THEN statement as

IF xis A THEN y is B, and is equivalent to
R =(AxB)U(AxY)

(7.18)
The membership function of R is given by

Hg(x,y) = max(min(u;z (x), Lz(y)), 1 - p;(x)) (7.19)

Also, for the compound implication IF x is A THEN y is B ELSE y is C the relation R is
equivalent to

R=(AxB)U(AxC) (7.20)
The membership function of R is given by

¢ Hp(x,y) = max (min (i; (x), pz(y)), min (1 = p;(x), 4z (y))) /(1.21)




' _Ex{mple
.’

P : Mary is efficient, T( P ) = 0.8
O : Ram is efficient, 7( Q) = 0.65

(1) P : Mary is not efficient.
TP)=1-T@P)=1—08 =02
Gi)) P A Q : Mary is efficient and so is Ram.
T(P A Q) = min (T(P), T(Q))

= min (0.8 , 0.65)
= 0.65

(iii) T(P v Q) : Either Mary or Ram is efficient.
T(P v Q) = max (T(P), T(Q))

= max (0.8, 0.65)
= 0.8

(iv) P = O : If Mary is efficient tﬂ/e; so is Ram.

T(P=0Q) =max (1 —T(P), T(Q))

max (0.2, 0.65)
0.65.




Example 7.10

Let X = {a. b, c,d} vy = {1, 2, 3, 4}
and A = {(a, 0) (5, 0.8)(c, 0.6)(d. 1))
B = {(1,0.2)(2, 1)(3, 0.8)(4, 0)}

C = {(1,0)(2, 0.4)(3, 1)(4, 0.8))

Determine the implication relations

—

(i) IinsA'TI-IENyis ;O
(i) IF xis A THEN y is B ELSE y is C .
Solution
To determine (i) compute

R = (AxB)U(AxY) where

My (x,y) = max (min (z(x), #5(»). 1 — Mz (x))

1 2 3 4
K 0 0 0o
0.2 0.8 0.8 O

0
0

1
X
w1}
I

0.2 0.6 0.6
02 1 08

R o o 8




1 2 3 4
all 1 1 1
6102 02 02 0.2
c|04 04 04 04
dfo0 0 0 o

—

Here, Y the universe of discourse could be viewed as {(1, 1) (2, D@3, 1)@, 1 il fiigzy st
all of whose elements x have p(x) = 1.
Therefore,

1 2 3 4
2+ & 1 17
0.2 0.8 0.8 0.2
04 06 06 04

a
b
R =
d|02 0.1 08 0
B

which represents IF x is A THEN y is B.




To determine (ii) compute

R =(ﬁx§)u(§x(§) where
Mp(x,yv) = max (min (u (x), ag(y)), min (1 — Mi(x), paps-Cy)y))
1 2> 3 a
alo (0] 0 O |
L 5|02 0.8 08 O
ARE = o2 06 D6 O
4|02 1 0.8 O |
1 2 3 4
alO0 0.4 1 0.8
- 5|0 02 02 02
AxE = o o4 04 4
d|lo o o o
Therefore,
R = max ((A < B), (A < C)) gives
1 5 3 a
a0 04 1 0.8
B 5|02 0.8 0.8 0.2
& = o3 o6 06 04
dlo2 1 0.8 O

The above R represents IF x is A THEN y is B ELSE y is C-




r}dﬂ Fuzzy Quantifiers

Just as in crisp logic where predicates are quantified by quantiﬁcrsl fuzzy logic propositions are
o quantified by fuzzy quantifiers. There are two classes of fuzzy quantifiers such as

(i) Absolute quantifiers and

(i) Relative quantifiers
While absolute quantifiers are defined over R, relative quantifiers are defined over [0-1].

Example

e—

T . : uantifier
Absolute quantifier RM/,___

round about 250 almost
much greater than 6
most

about
some where around 20 e ———




\/{3.2 Fuzzy Inference

. : . : jonal procedures used
Fuzzy inference also referred to as approximate reasoning refers to s.omg:;tal arcp
for evaluating linguistic descriptions. The two important inferring procedures

(1) Generalized Modus Ponens (GMP)

(1) Generalized Modus Tollens (GMT)
GMP is formally stated as

IF xis A THEN yis B
xisA’

sis (7.22)

analytically known and what is below is analytically unknown.

_ To compute the membership function of B’ the max-min composition of fuzzy set A’ with
R (x, y) which is the known implication relation (IF-THEN relation) is used. That is.

Here, A, B, A" and B’ are fuzzy terms. Every fuzzy linguistic statement above the line 1s

B’ = A’ R(x, y) (7.23)




In terms of membership function,
My (¥) = max (min (i;.(x), gz (x,y))) (7.24)

where u;.(x) is the membership function of A, Hz(x,y)is the membership function of the
implication relation and g (y) is the membership function of B’

On the other hand, GMT has the form
IF x is A THEN y is B
yis B’

xis A’

The membership of A’ is computed on similar lines as

~

A' = B'o R(x’y)
In terms of membership function,

i (x} = max (min (g (y), Lz (x, y))) (7.25)




Example
Apply ithe fl.l_lr,}-' Modus Ponens rule o0 deduce Hotation s quinte slow piven
(i} If the temperature is high then the rotation

(ii) The temperature is very high.

1% slonwae

Let H (High), VH (Very High), § (Slow) and (A Y
fuzzy sets as follows:

For X = {30, 40, 50, 60, 70, 80, 90,
the set of rotations per minute,

(Quite Slow) indicate the asso tatescd

100}, the set of temperatures and ¥ = { 10}, 205, 30, 40. S0 ) |

A = {(70, 1) (BO, 1) (90, 0.3)]

VH = {(90, 0.9) (100, 13}
Q3 = {(10, 1) (20, 0.8)}

3 = {(30, 0.8) (40, 1) (50, 0.6)}

To derive R {x, v) representing the implication -rcl..'.ltiu-n (i), we need "o compuie
R (x, ¥) = max(f = §, i = ¥

10 20 30 40 S50 60

30l[o 0 0o O 0 o
400 O O 0O 0O 0O
50|10 0 0o O O ©
fFx§— [0 0 0o 0o o0 o
JO|.0 0% 08 1 0.6 0
0|0 0 OB 1 06 O
s0lo 3 03 03 03 0
1000 O 0 o o 0




10 20 30 40 50 60
e[ 1 1 1 1

50

T
X
*
Il

1
1
1
70|0
80| 0
0 7 7 0.7 7

1

ks

1
1
1
1
0
0
7 0.
1

1 1 1
1 1 1
1 1 1
0 0 0
0 0 0
07 07 0
1 1 1

_ 0 O O = =

3

jo 20 30 40 50 60

30[1
40| 1
50| 1
60| 1
70| 0 © o8 8
80|00 0 08 1 0.6
90 0.70'3.-'# 0.7 0.7 0.7
100 1 1 1 1 1 .

— -

R(x,y) =

— e - -
p—-———
(=)

1
1
1
|
0.

7

F'_QOO—-—

To deduce Rotation is quite slow we make use of the composition rule

QS = VH- R(x.,y)

F1 a1- . a 4 17
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7.4 FUZZY RULE BASED SYSTEM

Fuzzy linguistic descriptions are formal representations of Systems made through fuzzy IF-THEN

rules. They encode knowledge about a system in statements of the form—
IF (a set of conditions) are satisfied THEN (a set of consequents) can be inferred.

Fuzzy IF-THEN rules are coded in the form—
IF (x; is A,,xz is /iz,...,x,, is A,) THEN (y 1is §l,y2 1S §2,...,y,, is B)).

where linguistic variables x;, y; take the values of fuzzl sets A; and B; respectively.

Example
If there is heavy rain and strong winds
then there must be severe flood warning.
Here, heavy, strong, and severe are fgzzy sets qualifying the variables rain, wind, and flood

warning respectively. '
A collection of rules referring to a particular system is known as a fuzzy rule base. If the

conclusion C to be drawn from a rule base R is the W of all the individua] consequents
C; of each rule, then




(.‘2 ("l =) C'z (Y0 TS (:n
where

He(y) = min (fe (y), He,(¥)ss Be (¥)). VyeY (7.27)

where Y is the universe of discourse.

On the other hand, if the conclusion C to be drawn from a rule base R i
the individual consequcnts of each rule, then

s the disjunction of

C= C| W Cz ) C} Siva e Cn (728)
where

He(y) = max (uc,(w,ucz(y),...,u(,m), VyeY (7.29)




1’5 DEFUZZIFICATION

In many situations, for a system whose output is fuzzy, it is easier to take a cnisp decision 1if the
output is represented as a single scalar quantf%. This conversion of a fuzzy set to single crisp
value is called defuzzification and is the reverse process of fu--i on.

Several methods are available in the literature (Hellendoorn and Thomas, 1993) of which we
illustrate a fcw of the widely used methods, namely centroid method, centre of sums and mean of
maxima.

o o

Centroid method

Also known as the centre of gravity or the centre of area method. it obtains the centre of area (x*)
~ occupied by the fuzzy set. It is given by the expression = 2

- Ju(x)xdx

xS = (7.30)
J u(x)d x
for a continuous membership function, and
n
in-l‘(xi)
x* = 122 (7.31)

i u(x;)

r=1
for a discrete membership function.

Here, n represents the number of elements in the sample, x;’s are the elements. and u(x,) is

its membership function.




L \Centre of sums (COS) method

In the centroig method, the ovgllapping area 15 counted once whereas in centre of sums, the

OVerlapping area is cg%u;d_m'u;gl COS builds the resultant membership function by taking the
algebraic sum of outputs from cach of the contributing fuzzy sets 4,, A,,..., etc. The defuzzified

Villue x* is given by

i‘t,Zp&(I,) (7.32)

implemented easily
. )t can be 1mP
COS is actually the most commonly USSJ defuzzification methOD

\_-and leads to rather fast inference cycles.

) )X
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' @ean of maxima (MOM) defuzzification
| with the highest degree of

One simple way of defuzzifying the output is toé? the crisp value lue. the mean value of
membership. In cases with more than one elemen avin~ the m?xm?um \;)a'u ’ :
the maxima is taken.’ The equation of the defuzzified value x* is given y

5
(7.33)

xeM
|M |

x*..

where M = {x, |u(x;) is equal to the height of fuzzy set}

M| is the cardinality of the set M. In the continuous case, M could be defined as
M = {x € [~c, c] |(x) is equal to the height of the fuzzy set} (7.34)

In such a case, the mean of maxima is the arithmetic average of mean values of all intervals

contained in M including zero length intervals.
The height of a fuzzy set A, i.e. h(A) is the largest membership grade obtained by any

element in that set.) k
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Example
A, }1'2, and A are three fuzzy sets as shown in Fig. 7.1(a), (b), and (c). Figure 7.2 illustrates the
aggregate of the fuzzy sets. 1.0
A 0.75 +
g 0.5
1.0 + 1
) 0.25+
"0.75¢
H 0
05 + g
I T —— .,.. ___________ 0.3 (C) AS
0.25+
Fig. 7.1 Fuzzy sets Ay, A;, A;.
0 : ! : } \ ; TR
o 1 2 3 4 5 6 7 8§ X ﬁ |
(a) A, T
i
1.0 ¢
0.75 + 0.5
y 5
0.5 0.3+
0.25 + :
0 o 1 2 3,4 546 7 8
3.6 55

Fig. 7.2 Aggregated fuzzy set of A,, A, and As.




d (iii)

.. f sums method, an mean
The defuzzification using (i) centroid method, (ii) centre & of
maxima method is illustrated as follows.

Centroid method \/'

To compute x* the centroid, we view the aggreg
Note that in Fig. 7.3 the aggregated output has been

zy sets as shown in Figs. 7.2 apq 73
ed into areas for better understan ding'

ated fuz
divid

4

1.0T1

®
X

m-n--___.__

@

9

e

W -
'bdi-

(@]
-t
w —_
o €

N
NE D)

Fig. 7.3 Aggregated fuzzy set of A,, A,, and A; viewed as area segments.




Table 7.4 illustrates the computations for obtaining x*.

Table 7.4 Computation of x*

Area segment no. Area (A) x ax
- 1
1N 5 x 03 x 1=0.15 0.67 0.1005
\ 2 2.6 x 0.3 =0.78 . 2.3 1.748
3 03 x 04=0.12 3.8 0.456
4 1
3 04 x 0.2 = 0.04 3.8667 0.1546
5 1.5 x 0.5 = 0.75 4.75 3.5625
6 1.5 x 0.5=10.75 5.75 1.4375
| ;
7 5 * 05 x05=0.125 5.833 0.729
8 I x1=1
6.5
9 i 6.5
7 X1 x1=05 133 3.665

—

In Table 7.4, Area (A) shows the area of the segments _
the corresponding centroid. Now, of the aggregated fuzzy set and X show




QAR

X" = Z
i.e. x* = 18.353/3.695
=49

Centre of sums method _

Here, unlike centroid method the overlapping area is counted not once but twice. Making use of
the aggregated fuzzy set shown in Fig.7.2, the centre of sums, x* is given by

2X0-3><(3+5)><2.5+%x0.5x(4+2)x5+-;—><lx(3+1)X6-5

x* =

—_

1
5x0.3x(3+5)+-;-x0.5x(4+2)+%><lX(3+5)
=23

Here, the areas covered by the fuzzy sets A;, A,, A; (Refer Figs. 7.1(a), (b), and (c)) are given by

%x0.3x(3+5), %XO.S X(4+2), and %xlx(3+l) respectively.
/‘ i




Mean of maxima method >~
Since the aggregated fuzzy set shown in Fig. 7.2 is a continuous set, x* the mean of maxima is

computed as x* = 6.5.
Here, M = {X € [6, 7]|x (x) = 1} and the height of the aggregated fuzzy set is 1.

Figure 7.4 shows the defuzzified outputs using the above three methods.

A

o

1.0+

0.51

0.3T1

=23 x* =49 x* = 6.5 (Mean of maxima method)

(Centre of sums (Centroid method)
method)
d outputs of the aggregate of A,, A,, and Aa.

Fig. 7.4 Defuzzifie




