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Fuzzy Set Theory
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It was Lotfi A. Zadeh who propounded the fuzzy set theory in his seminal paper (Zadeh, 1965).

Fuzzy Versus CRISP

Consider the query, “is water colourless?” The answr to this a definite Yes/True, or No/False, as
warranted by the situation. -

If “Yes”["true” is accorded a value of 1 and “no”/"false” is accorded a value of o, this statement
results in o/1 type of situation.

‘Such a logic which demands a binary (o/1) type of handing is termed crisp in the domin of fuzzy set
theory. '

Thus, statements such as "Temperature is 32'C, “the running time of the program is 4 seconds” are
-examples of crisp situations. '



Fuzzy versus Crisp
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On the other hand, consider the statement; “Is Ram honest?” The answer to
this query need not be a definite “yes” or “*no”.

~ Considering the degree to which one knows Ram, a variety of answer spanning

a range, such as "extremely honest”, “honest at time”, “very honest” could be
generated.

If, for instance, "Extremely honest” were to be accorded a value of 1, at the
high end of the spectrum of values, “"extremely dishonest” a value of o at the
low end of the spectrum, then, “honest at times” and “very hones” could be
assigned values of 0.4 and 0.85 respectively. .

The situation is therefore so fluid that it can accept value between o and 1, in
contrast to the earlier one which was eithera o or 1. :

Such a situation is termed fuzzy figure 6.1 shows a simple diagram to illustrate
- fuzzy and crisp situations.



Q Is water colourless?
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Fig. 6.1 Fuzzy versus crisp.
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= Crisp set theorylwas propounded by Grorge Cantor is fundamental to the study of fuzzy sets.

Classical/Boolean
logic

Crisp sets

Fig. 6.2 Crisp sets and fuzzy sets.
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2 CRISP SETS

Uﬁ}:,,sa of discourse
\/

The iverse af discourse or universql set is the
contains all Ei“ﬁ?b_lcﬁle'_“&‘ms hilving the same
The universal set is denoted by £ ‘

set whlch. with reference to a particular context,
charactcristics and from which sets can be formed.

Example
(i) The universal set of all numbers in Euclidean space

(i) The umversal set of all students IN a university. «

set

A set is a well defined collection of objects, Here, well defined means the object either belongs to
or does not belong to the set (observe the “crispness” in the definition).
A set in certain contexts may be associated with its universal set from which it is derived.
Given a set A whose objects are ay, as, a,..., a,, we write A as A = {a,, a»,..., a,}. Here,
a,, ay,..., a, are called the members of the set. Such a form of representing a set is known as list form.




Example
A = {Gandhi, Bose, Nehru}
B = {Swan, Peacock, Dove)

A set may also be defined based on the properties the members have to satisfy. In such a

case, a set A 1s defined as
A= (x| P) 6.1)

Here, P(x) stands for the property P to be satisfied by the member x. This is read as ‘A is the set
of all X such that P(x) is satisfied’.

Example
A = {x|x is an odd number}
= {y|y >0 and y mod 5 = 0}




ehn diagram ~ ' defined over a universal
g ictorial representations to denote a set. Given a set A L
o Ciapram are picter d E is as shown in Fig. 6.3.
set E, the Venn diagram fer A an

Fig. 6.3 Venn diagram of a set A.

the set of
. m represent
Example  then A may rep

: ity student
In Fig. 6.3, if E represents the set of university
female students. :




t A. The membership ;s

- . : : o the s€
An element x is said to be a member of a set A if x belongs t belongs to A and x ¢ A

1 " v ans x
indicated by ‘e’ and is pronounced “belongs to”. Thus, x € A me
means x does nor belong to A.

Example . . ‘> Q
€
Given A = (4,5, 6, 7, 8, 10}, for x = 3 and y = 4, we have x g A and ¥

Here, observe that each element either belongs to or does not belong to a set. Tll'u: ;::;Zit ;):
membership is definite and therefore crisp (1—belongs to, 0—does not belong to). SR i
we shall see later, a ‘fuzzy set accommodates membership values which are not only

anything between 0 and 1.

_Cardinality

The number of elements in a set is called its cardinality. Cardinality of a set A is denoted as n(A)
or |A| or #A.

Example
If A={4,5,6,7} then |A| =4
amily of sets

A set whose members are sets themselves, is referred to as a family of sets.

o

Example

A =1{{1 3,5}, {2, 4, 6}, {5, 10}} is a set whose members are the sets {1, 3, 5}, {2. 4. 6}. and
{5,A40}. - , .




8 Null Set/Empty Set

A set is said to be a null set or empty set if it has no members. A null
and indicates an impossible event. Also, |D| =077

yingleton Set
A set with a single element is called

Example

IfA={a}, then |A|=1

Given sets A and B defined over E the unwersal
contained in B, that is, every element of A




Jenoted a -

Denote s A < 8, we say that A is a subset of 8. or A is 1 proper subset of B. On the other
hand. if A 15 contained in or equivalent o that of & [Iun we denote the subset r-t"ltlnm as A — B
I_I_[ ﬁl“-..h ol CAsEe, -4 l:"'l Ll.l.li'i.li |!]L"‘ "r_r.'l'l'?lf’fl" *‘llt""‘\{_" l"T H -

Sﬂ;;ersef

Lmeq s::l:-'_.-l and B on E the universal set. A is said to be a superser of B if every element of B is
contaimed 1n A.

_ Denoted as A S B, we Say A 1S a superset of B or A contains B. If A contains B8 and is
equivalent w0 B, then we denote it as A - B

3.4} B = (3. 4.5} and C =

and B o A
and B o C

A power ser of a set A is the set of all possible subsets that are derivable from A including null

sel. -
A power set is indicated as P(A) and has cardinality of |P(A)| = 2W

Example "\E---f‘-l‘:u LA 57{ oy
Let A= {3, 4.6, 7)

PlAY = {{3}. {4}, (6}, (T}, (3. 4}, {4. 6) 6.7}, {3, 7). {3.6). {4. 7).
(3. 4.6}, {4, 6, 7). {3.6, 7). {3. 4, 7} {3, 4.6, 7)., &)

Here, |[A| = 4 and |P(A)| =2 16,




2.1 Operations on Crisp Sets

Union (V)

The union of two sets A and B (A v B) is the set of all elements that belong to A or B or both.

AUB = |(x/xe A or xeB) (6.2)
Example

Given A = {a, b, c. 1,2} and B = {1. 2, 3, a, c}, we get A U B={a, b cl. 2, 3)
Figure 6.4 illustrates the Venn diagram representation for A U B

Fig. 6.4 Venn diagram for A . B.




Intersection (M)

belong 1O A and B
The interse

ction of two sets A and B (A ~ B) 1s the set of all elements e (6.3)
AB = (x/xe A and xe€ B)

Any two sets which have A M B = @ are called Disjoint Sets.

Example

B
= {a., C., l.d—}
Given A = {a, b, ¢, 1.2) and B={1.2.3.a.c), wegetAn B=|

Figure 6.5 illustrates the Venn diagram for A n B

/a

Fig. 6.5 Venn diagram for A N B.




Complement (°)
The complement of a set A (A| A°) is the set of all elements which are in E but not in A.

A° = [x/xg A, x € E) (6.4)
Example

Given X = {1,2,3,4,5,6,7} and A = {S, 4, 3}, we get A° = {1, 2, 6. 7}
Figure 6.6 illustrates the Venn diagram for A°.

AN

Fig. 6.6 Venn diagram for A°

Difference (—)

The difference of the set A and B is A — B, the set of all elements which are in A byt not in B
n B.

A-B ={x|xe€eA and x & B}




EIEmF]E

Gi"-"ﬂ“ A= {H. IrJa, C. E.I’, E']r and B - {f}l d]h we get A-B = ':H. - E‘l‘

Figure 6.7 illustrates the Venn diagram for 4 _ B
]

Fig. 6.7 Venn diagram for A - B




2.2 Properties of Crisp Sets

The following properties of sets are important for further manipulation of sets.
| Commutrativity: AUB=BUA
ANB=BnNA
O Associativity: AUBUC=AU@BUO
ANnB NC=AnBnNO
2 Distributivity: AUBNO=AUBN@AUO
ANnBuO=ANnBUAnO
A. Idempotence: AUA=A
ANA=A
g . Identity: AvD=A
ANnE=A
AND=0
AUE=E

6 Law of Absorption: AU@ANB=A
ANn(AuB)=A

. Transitivity: If A< B, B < CthenA c C
(A=A

« Involution:

. Law of the Excluded Middle: AWVAS=E
" ' ANnA =D

(Ag)B)"=A"f\Br
(Ar\B)(zAruB"

. Law of Contradiction:

. De Morgan’s laws:

All the properties could be verified by means of Venn diagrams.




Example 6.1 W
Given three sets A B. and C. Prove De Morgan's laws using Venn diagra
Solution
To prove De Morgan's laws, we reed to show that

) AVBUCS =A "~ B A e

(i) AnBAC) = AAUR uC

7/ [ L
by (AwBuU()
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pxample =

. the sety A, B, C. and E be given as follows-
Le '

g = all students enrolled in the university cricket club

4 = male students, B = boewlers, and C =

individual Venn diagrams to itllustrate (

batsmen.

Draw ) female students (b) bowlers who are not batsmen

and bat.

)y female students who can both bow]
(¢

Soluﬁ""

(a) Female students

C

b) Bowlers who are not batsmen




Example 6.3

In Example 6.2, assume that |E|] =
male students who are bowlers “a
total number of male students wh

Determine the number of stu
(iv) Females and who can bowl but

Solution

C

{C) Female students who can both bowl and bat

5 = he number of
— 300, |B| = 225, |C| 160. Also, let t
6g)O,bI:|lOO 25 of whom are batsmen too (A M B M C), and the

n (A N C) be 85. -
odarfi bv?/tlf;n:re'( (i) Females, (ii) Not bowlers, (iii) Not batsmen,
ents -

not bat.

From - -
e Siven.dus, tie Venn diagram obtained is as follows:

(1)
(11)
(111)

(iv)

No.
No.

- of female students who can bowl JA© ~ B| = 125 (from the Venn diagram)

e - —FF—— 1 F = 600
- of female students |[A‘| = |E| — |[A] = 600 — 300 = 300
of students who are not bowlers |IB| = |E| — |B|] = 600 — 225 = 375
of students who are not batsmen |C<]l = |E| — |C] = 600 — 160 = 440




6.2.3 Partition and Covering
Partition

A partition on A is defined to be a set of non-empty subsets A; each

and whose union yields the original set A.
Partition on A indicated as II(A). is therefore

of which is pairwise disjoint

() A,NA, =D for each pair (i, j)el, i+ J

i | Ja, =a

iel
The members A; of the partition are known as blocks (refer Fig. 6.8)..

Fig. 6.8 Partition of set A

Example
Given A = {a, b, c, d, e}, A, = {a, b}, A, = {c. d} and A; = (e}, which gives

A]hA:=®,AlhA3=®,A2ﬁA3=®

Also, Al VA VA=A = {a, b, ¢, d e)

Hence, {A;, A,, A3}, is a partition on A.




Covefi"g

A (m'crmg on A is defined to be a set of non-empty subsets A, whose union ‘he original

The non-empty subsets need not be disjoint (Refer Fie. 6.9).

A,

Fig. 6.9 Covering of set A.

Example
Gi\"en A = {a, b. C, (1. e}. Al = {a‘ b}. A: — {b C. d}. and “\; - {‘[. (,}. This g'\c\

Ap N A,y = {b)
AlNA; =0
Ay N A; = {d]
Also, AfVA,UA;={a,b,c,d e} =A

Hence, {A,. A;, A3} is a covering on A.




Rule of Addition

Given a partition on A where A;, i = 1, 2..... n are its non-empty subsets then,

Al =14l = YAl

Example
Given A = {a, b, c,
Al =2+2+1=5

d: e}s A] = {ﬂ, b}‘ A'-’. = {C" d}"' A} = {E}- lA|: S\ Ell'ld

Rule of Inclusion and Exclusion

able on the covering of set A, especially if the subsets are not

Rule of addition is not applic
clusion and exclusion is applied.

pairwise disjoint. In such a case, the rule of in

Example
Given A to be a covering of n sets Ay, Az
forn=2, A] = A U Ao| = Al + |Aq] - AL 0 Ay (6.19)
for n = 3, |A|=|J41UA2UA3|=|AI|+|A2|+|A_%|
- A ﬁAlI"lAZhAZ*l"'MI N Azl + |A) N A N Ay (6.20)




Generalizing.

|A| = IOIA,l = ill‘,l = Z ZIA, N Al
& =1

i=1l j=1
[ #

n n+l mA’

+ii Z lAimA/nAkl”'(’i) i=1

j:l}:l k=1

iz j2k

6.3 FUZZY SETS

Euzzy sets support a flexible sense of membership of elements to
an element either belongs to or does not belong-to a set, in fuz
membership (between 0 and 1) are allowed. Thus, a membership f

a set. While ip Crisp

Zy set theory many

; . (“ . .
unetion 414V is associateq with a




fuzzy set A such that the function maps every element of the universe of discourse X (or the
reference-set) to the interval [0, 1].

Formally. the mapping is written as pi(x) : X —» [0, 1]

A fuzzy set i1s defined as follows:
If X is a universe of discourse and x is a particular element of X, then :(fuzzy set A defined on X
may be written as a collection of ordered pairs I

-

A = {(x, puz(x)), xe X} ) (6.23)

where each pair (x, 13 (x)) is called a singleton. In crisp sets, 115 (x) is dropped.
An alternative definition which indicates a fuzzy set as a union of all u, (x)/x singletons is
given by

A= 2 U;(x;)/x, in the discrete case (6.24)

xeX

A= J./JA(X)/X in the continuous case
X

Here, the summation and integration signs indicate the union of all u; (x)/x singletons.

Example

Let X = {g,. g2. 83, 84. &5} be the reference set of students. Let A be the fuzzy set of “smart”
students. where “smart” is a fuzzy linguistic term.

A = {(g,0.4) (g,,0.5) (g3.1) (g4 0.9) (g5.0.8)} \

Here A indicates that the smartness of g, is 0.4, g, is 0.5 and so on when graded over a scale of O0—1.

Though fuzzy sets model vagueness, it needs to be realized that the definition of the sets
varies according to the context in which it is used. Thus, the fuzzy linguistic term “tall” could
have one kind of fuzzy set while referring to the height of a building and another kind of fuzzy
set while referring to the height of human beings.




6.3.1 Membership Function

The membership function values need not always be described by discrete values. Quite often,
these turn out to be as described by a continuous function. |

The fuzzy membership function for the fuzzy linguistic term “cool” relating to temperature
may turn out to be as illustrated in Fig. 6.10.

cool

5 10 15 20 25 30 35 40
Temperature

Fig. 6.10 Continuous membership function for “cool”.




A membership function can also be given mathematically 2

l‘(w\.) — w
HA (1 + x)~

The graph is as shown in Fie.

i i ion.
Fig. 6.11 Continuous membership function dictated by a mathematical funct

trapezoidal,

Different shapes of membership functions exist. The shapes could be triangular,
curved or their variations as shown in Fig. 6.12.

u9)| | /\ ()
/-
i —

Fig. 6.12 Different shapes of membership function graphs.




Example

Consider the set of people in the following age groups

0-10 40-50
10-20 50-60
20-30 60-70
30-40 70 and above

The fuzzy sets “young”, “middle-aged”, and “old™” are represented by the membership function

graphs as illustrated in Fig. 6.13.

| young middle aged

1

of 10 20 30 40 50 60 70 8o gg

Fig. 6.13 Example of fuzzy sets expressing “young”, ‘middle-aged”. ang “old"




e

g.3.2 Basic Fuzzy Set Operations

Given X to be the universe of discourse and A and B to be fuzzy sets with 14 (x) and pz(x) as
their respective membership functions, the basic fuzzy set operations are as follows

Union

The union of two fuzzy sets A and B is a new fuzzy set A s B also on X with a membership

function defined as
(6 36;

3

{.. p(x) = max(u,(x). Hg(.X))
AuB \ A

Example

Let A be the fuzzy set of young people and B be the fuzzy set of middle-aged people as

will be given by

illustrated in Fig. 6.13. Now A w B. the fuzzy set of “young Or middle-aged™

l
‘young or middle-aged’

-~




In its discrete form, for xj, X2, X3

if A = ((1,0.5), (52,07, (x3.0)} and B = ((x,.0-8),(x2,0.2). (x3.1)]

AUB = {(x.,0.8),(x;,0.7), (x3.1}
MHio5(%) max( (%), yg(xl))
max (0.5, 0.8)

0.8

i 5(x2) = max(z (). Hp(x2) = max(0.2,0.7) = 0.7

= 1

ﬂ,iu[;(x3) = max(pﬁ(x3), Hz(x3)) = max(0,1)

Intersection

A and B is a new fuzzy set A N % with membership function

The intersection of fuzzy sets

defined as
Hin50) = min(uz (%), H3(x)) (6.27)




Example

For A and B defined as “young” and “middle-aged™ as illustrated in previ

ous examples.

‘young and middle-aged’

X,

\

30

In its discrete form, for x,, x5, x;

if

A

ANnB

{(xl’o's)‘(x:‘0.7)‘ ('r3~0)} and B — {(XI.O-8)~(-":.O.2).(."}»l)}

{(x,,0.5), (x,,0.2), (x5,0)}

= min (g;(x)), gz(x;))

min (0.5, 0.8)
0.5

min (M;(x5), Hz(x3))
min (0.7, 0.2)

= 0.2

“Amé(x3) ==

min (&;(x3), Lz(x3))

min (0.1)
0



Complement

- -
The complement of a fuzzy set A is a new fuzzy set A with a membership functi
nction

”zid".) =1- ufi(x)
2
Example (6-28)
For the fuzzy set A defined as “young” the complement “not S P
yYoun A -
form, for x;. xa2. & 1S given by A In its discrete

“not young”

" e

50 60

{(x;. 0.5) (x2. 0.7) (x3. 0)}
= {(x;, 0.5) (x2. 0.3) (x3. D}
= 1—puz(xy)
1 — 0.5
=05
= 1— pz(x3)
1 — 0.7
= 0.3
1 — pz(x3)
=1-0
=1




Other operations are,
Product of two fuzzy sets
The product of two fuzzy sets A and B is a new fuzzy set A - B whose membership function is

defined as
Hi5(x) = fz(x) pz(x) (6.29)

Example 3
A = {(x, 0.2), (x5, 0.8), (x5, 0.4)}

B = {(Xl. 04) (_Xz. 0), (X3. Ol)}

A. - B = {(Il, 008) (.rz. O) (I}, 004)}

Haig(x) = Hz(x) Hz(x;)
=0.2-04=0.08

i p(x) = Hz(x) pz(xz)

=08-0=0
Ui plxg) = pgx) pilxs)

=04-01

= (.04




Equality

Two fuzzy sets A and B are said 1o be equal (A = B) if ;(x) = H(x)

Example
A= ((x,,0.2)(x,,0.8)}
B = {(x,,0.6)(x,,0.8))

= {(,I'l ,02)()2.08)]




Product of a fuzzy set with a crisp number

Multiplying a fuzzy set A by a crisp number a_results in a new fuzzy set product @with the
membership function =

Hoi(x) = a-pz(x) (6.31)
Example

,& = {(Xl,0.4),(XZ.0.6),(X3,0.8)}
For i
‘/qa . /i‘ = {(x1,0.12), (X'_).‘O.lg), (X3 .024)}
Bod) = aopy o)

=03:04
=0.12

H,i(X2) = a pi;(x,)

=03:06
=0.18

il .”..,"":I'

04y .- 0K
0.24




Power of a fuzzy sel

The o power of a f‘ll?.f,)’ set A s a new fuzzy set A” whose membership function 1s given by

Moo (x) = (p | )"

-
(6.3

)

Raising a fuzzy set to its second power is called Concentration (CON) and taking the square rool

1s called Dilation (DIL.),

Example

For

A= {(x,,0.4),(x,,0.2),(x;,0.7)}

o= 2

i () = (5(x))°

(A)* = {(x,,0.16), (x,,0.04), (x4,0.49) ]

i (x) = (M;(x,))7 = (0.4)° = 0.16

i (x3) = (H3(x))° = (0.2)> = 0.04

L (x3) = (#;(x3))% = (0.7)° = 0.49




Difference
The difference of two fuzzy sets A and B is a new fuzzy set A — B defined as
A-B=(ANB) (6.33)

Example
A = {(x,0.2),(x,,0.5),(x3,0.6)}; B = {(x,,0.1), (x5 0.4), (x3,0.5)}

B = {(x,,0.9),(x,,0.6), (x5,0.5)}
A-B = ANnB"
= {(x,,0.2)(x,,0.5)(x3,0.5))

Disjunctive sum

The disjunctive sum of two fuzzy sets A and B is a new fuzzy set A @ B defined as

A®B = (ANB)U(AN BY)




A = {(x,,0.4)(x,,0.8)(x;,0.6))
B = {(x,,0.2)(x,,0.6)(x;.0.9))
A° = {(x,,0.6)(x,.0.2)(x;,0.4))

B = {(x,,0.8)(x, 0.4)(x;.0.1)}

AN B = {(x,,0.2)(x,,0.2)(x;,0.4))

AN B = {(x,,0.4)(x,,0.4)(x;,0.1))

A®B = ((x,,0.4)(x,,0.4)(x;,0.4))




6.3.3 Properties of Fuzzy Sets

Fuzzy sets follow some of the properties satisfied by crisp sets. In fact, crisp sets can be thought
of as special instances of fuzzy sets. Any fuzzy set A is a subset of the reference set X. Also, the
membership of any element belonging to the null set & is 0 and the membership of any element
belonging to the reference set is 1.

The properties satisfied by fuzzy sets are

Commuztativiry:
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Idempotence:

Identity:

>1>'>l>'>:
C 2¢ €5

Transitivity: IfAc B < C,then A < C

Involution: A=A

De Morgan’'s laws: (AN B) = (A U §¢‘)
(AU B) =(A“N B9




RISP RELATIONS

In this section. we review crisp relations as a prelude to fuzzy relations. The concept of relations
between sets is built on the Cartesian product operator of sets.

6.4.1 Cartesian Product

The Cartesian product of two sets A and B denoted by A x B is the set of all ordered pairs such
that the first element in the pair belongs to A and the second element belongs to B.

i.e.

Ax B = {(a.b)/ac A, be B}
If A = B and A and B are non-empty then A x B # B x< A.

The Cartesian product could be extended to n number of sets

> A,

(a,.as.as.....a,)/a; € A; for every i 1, 2
i=1

..... n}

Observe that Il A
i=1
Example

Given A, = {a,b}. A= {1, 2}, A= { ]},

A X Az = {(@, 1), (. 1), (@, 2), (b D). A x Ax =4, and il =}Aal =2
Here,

A1 > Ayl = |4,] - |4,

_ {(a, 1, @), (a, 2, ), (b, 1, @), (b, 2, O)}
M > Az x A5l = 4 = |y - 14y - |4




6.4.2 Other Crisp Relations

: i bset of the
An n-ary relation denoted as R(X,, X,,..., X,) among crisp sets X;, X3,..., X, is a su
H\-
n

. — . le elements.
Cartesian product X X; and is indicative of an association or relation among the tup

e : ion: = ion i
For n = 2, the relation R(X,, X,) is termed as a binary relation; for n = 3, the relat s

termed ternary; for n = 4, quarternary; for n = 5, gquipary and so on.

If the universe of discourse or sets are finite, n-ary relation can be expressed as an
n-dimensional relation matrix. Thus, for a binary relation R(X, Y) where X = {x;, x2,..., x,} and
Y = {y, y,...., Ym}, the relation matrix R is a two dimensional matrix where X represents the rows,

Y represents the columns and R (Z ) =1if (x;, y) €R and R(,j) = 0 if (xi,¥;)eR.

Example

Given X = {1, 2, 3, 4},

XxX:{

(L. DA,2){A,3)(1,4)(2,1)(2.2)(2,3)(2, 4)
(3.D(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4, 4)

_‘-’-/’——w
Let the J’elation R Be defined as
!

R={(xy)/y = x+1, x,yeX}

Tht3[’?£‘“LEE"QB given by




6.4.3 Operations on Relations

Given two relations R and S defined on X x Y and re

operations are supported by R and S presented by relation

matrices, the following

RO S(x,y) max (R(x,y), S(x, y))
R M S(x,y) min (R(x,y), S(x, y))

R(x,y) = 1 — R(x,y)

composition of relations: R - S

Given R to be a relation on X, ¥ and S to be a relation on ¥, Z then R o S is a composition of
relation on X, Z defined as

RoS§ = {(xsZ)!'(x»Z)EXXZ. 3 yeY such that (x,y)e€ R and [y,z}ES} (6.50)

A common form of the composition relation is the rmax-min composition.

—

Max-min composition:

Given the relation matrices of the relation R and S, the max-min composition is defined as

For = RoS

]
r 'Itx z) max(rnm(R(x,y} S(J»u :—:)}} Jl (6.51)

yE}’




Example
Let R. S be defined on the sets {1, 3,5} x {I, 3, 5}
R{(x,y) |y=x+2}, S {(xy|x=y]

R = {(1, 3%(3, 5} S ={(1, 3)(1, 5) (3, 5]

Let

The relation matrices are
1 3 5

ife 1 0
R: 310 0 1
50 0 0

Using max-min composition




— —

_ : : 0
R oS (1, 1) = max(min (0, 0), min(L, 0) min(0. 0)

= max (0,0, 0) = 0.
RoS(l,3)=max{0,0,0)=0
RoS(1,5)=max{0, 1,0} = L.
Similarly, RoS(3,1)=0.

o

RoS(3,3)=Ro5(3,5=R=S51D=R 0§(5,3) =

R o § from the relation matrix is {(1, 5)}.
1 3 5

0 0 1]
000
0 0 0




FUZZY RELATIONS

Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets X Als A X>,..., X, where the

n-tuples (x;, x,,..., x,) may have varying degrees of membership within ﬁie relation. The
membership values indicate the strength of the relation between the tuples.

Example
Let R be the fuzzy relation between two sets X, and X, where X, is the set of diseases and

X, 1s the set of symptoms.
X, = {typhoid, viral fever, common cold}

X, = {running nose, high temperature, shivering}

The fuzzy relation R may be defined as

Running High Shivering
nose temperature

Typhoid 0.1 09 . 0.8
Viral fever 0.2 0.9 0.7
Common cold 0.9 0.4 0.6




6.5.1 Fuzzy Cartesian Product

Let A be a fuzzy set defined on the universe X and B be a fuzzy set defj a4

= ne
the Cartesian product between the fuzzy sets A and B
fuzzy relation R is given by

- £ane on the universe Y,
icated as A x B and resulting in a

R=AxBc XxY (6.52)

where R has its membership function given by

Hplx.¥) = ;. slx.¥)
man (U (x). g (V) (6.53)
Example

Let A = {(x). l?‘:.]' (x2. 0.7), (x3. 0.4)} and (vy. 0.5). (v, 0.6)} be two fuzzy sets defined on
the universes of discourse X = {x, x,, x3} and . v»} respectively. Then the fuzzy relation R

{m
resulting -out of the fuzzy Cartesian product =x B is given by

WV Vv

X i{).
= Ax B=x ||0,
0.

6
4

X

since.
R(xy,») =min (&3 (x;). #z(»)) =min(0.2,0.5) = 0.2
R(x,.¥,) = min(0.2,0.6) = 0.2
R(x5.y) =min(0.7,0.5) = 0.5
R(x,,y,) =min(0.7,0.6) =0.6
R(x3.y,) = min(0.4,0.5) =0.4
R(x3.¥,) =min(0.4,0.6) = 0.4




6.5.2 Operations on Fuzzy Relations

Let R and S be fuzzy relations on X x Y.

Union

Mz, 5(x,y) = max (Uz(x,y), Hs(x,)) (6.54)
Intersection

Uz s (x.y) = min(Ug(x, ), H5(x.y)) (6.55)

Complement

Hige(x,y) =1 - Hz(x,y) (6.56)
Composition of relations -

The definition is similar to that of crisp relation. Suppose R is a fuzzy relation defined on X x Y,

- - .
and S is a fazzy relation defined on ¥ x Z, then R o § is a fuzzy relationon X x Z. The fuzzy
max-min Composition- is defined as '

(1,2)))

(6,57)




Example

X = {.".. X2, x}} y = {_Vl, _VZ’ Z = ‘Z]. 2 ZJ’

Y1 Y2
0.5 0.1

- 0.2 0.9
Let R be a fuzzy relation =
0.8 0.6

Zy <> <3

»[0.6] 0.4 0.7J
0.5/ 0.8 0.9

ILet S be a fuzzy relation
y2

Then R-> S, by max-min composition yields,
Zl Z> Z3

0.5 0.4 0.5
0.5 0.8 0.9
0.6 0.6 0.7

Hg.s(x1,2;) = max (min (0.5, 0.6), min (0.1, 0.5)»

= max (0.5, 0.1)
= 0.5

= max (min (0.5, 0.4), min (0.1, 0.8))

= max (0.4, 0.1)
= 0.4




Similarly,

Hz,5(X1,23) = max 05,0.1) =05
Hz.5(X2,2)) = max 0.2, 0.5) = 0.5
Hios(X2,25) = max (0.2, 0.8) = 0.8
Hio5(X2,23) = max (0.2, 0.9) = 0.9
Hiz5(X3,2,) = max (0.6, 0.5) = 0.6

H.5(X3,2,) = max (04, 0.6) = 06

[.lkog(X3.Z3) = max (07, 06) =(.7




