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2. Back propagation Networks 

 

What is Backpropagation? 

 Back-propagation is the essence of neural net training. It is the method of fine-tuning 

the weights of a neural net based on the error rate obtained in the previous epoch (i.e., 

iteration). Proper tuning of the weights allows you to reduce error rates and to make the 

model reliable by increasing its generalization. 

 Backpropagation is a short form for "backward propagation of errors." It is a standard 

method of training artificial neural networks. This method helps to calculate the gradient of a 

loss function with respects to all the weights in the network. 

Why We Need Backpropagation? 
 Most prominent advantages of Backpropagation are: 

• Backpropagation is fast, simple and easy to program 

• It has no parameters to tune apart from the numbers of input 

• It is a flexible method as it does not require prior knowledge about the network 

• It is a standard method that generally works well 

• It does not need any special mention of the features of the function to be learned. 

History of Backpropagation 
• In 1961, the basics concept of continuous backpropagation were derived in the 

context of control theory by J. Kelly, Henry Arthur, and E. Bryson. 

• In 1969, Bryson and Ho gave a multi-stage dynamic system optimization method. 

• In 1974, Werbos stated the possibility of applying this principle in an artificial neural 

network. 

• In 1982, Hopfield brought his idea of a neural network. 

• In 1986, by the effort of David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, 

backpropagation gained recognition. 

• In 1993, Wan was the first person to win an international pattern recognition contest 

with the help of the backpropagation method. 



Disadvantages of using Backpropagation 
• The actual performance of backpropagation on a specific problem is dependent on the 

input data. 

• Backpropagation can be quite sensitive to noisy data 

• You need to use the matrix-based approach for backpropagation instead of mini- 

Batch 

2.1 Architecture of a Backpropagation Network 

The Perceptron Model 
 The perceptron is a classification algorithm. Specifically, it works as a linear binary 

classifier. It was invented in the late 1950s by Frank Rosenblatt. The perceptron basically 

works as a threshold function — non-negative outputs are put into one class while negative 

ones are put into the other class. 

 

 
 



 
 

 

 

 

 

 

 



 

 
 



 
 



 
 

 

 

 



 
 



 
 

 

  



 



 



 
 

 

2.3 Training Algorithm 

For training, BPN will use binary sigmoid activation function. The training of BPN will 

have the following three phases. 

• Phase 1 − Feed Forward Phase 

• Phase 2 − Back Propagation of error 

• Phase 3 − Updating of weights 

All these steps will be concluded in the algorithm as follows 

Step 1 − Initialize the following to start the training − 

• Weights 

• Learning rate αα 

For easy calculation and simplicity, take some small random values. 

Step 2 − Continue step 3-11 when the stopping condition is not true. 



Step 3 − Continue step 4-10 for every training pair. 

Phase 1 

Step 4 − Each input unit receives input signal xi and sends it to the hidden unit for all i = 1 

to n 

Step 5 − Calculate the net input at the hidden unit using the following relation − 

Qinj=b0j+∑i=1nxivijj=1topQinj=b0j+∑i=1nxivijj=1top 

Here b0j is the bias on hidden unit, vij is the weight on j unit of the hidden layer coming 

from i unit of the input layer. 

Now calculate the net output by applying the following activation function 

Qj=f(Qinj)Qj=f(Qinj) 

Send these output signals of the hidden layer units to the output layer units. 

Step 6 − Calculate the net input at the output layer unit using the following relation − 

yink=b0k+∑j=1pQjwjkk=1tomyink=b0k+∑j=1pQjwjkk=1tom 

Here b0k  is the bias on output unit, wjk is the weight on k unit of the output layer coming 

from j unit of the hidden layer. 

Calculate the net output by applying the following activation function 

yk=f(yink)yk=f(yink) 

Phase 2 

Step 7 − Compute the error correcting term, in correspondence with the target pattern 

received at each output unit, as follows − 

δk=(tk−yk)f′(yink)δk=(tk−yk)f′(yink) 

On this basis, update the weight and bias as follows − 

∆vjk=αδkQij∆vjk=αδkQij 

∆b0k=αδk∆b0k=αδk 

Then, send δkδk back to the hidden layer. 

Step 8 − Now each hidden unit will be the sum of its delta inputs from the output units. 

δinj=∑k=1mδkwjkδinj=∑k=1mδkwjk 

Error term can be calculated as follows − 

δj=δinjf′(Qinj)δj=δinjf′(Qinj) 

On this basis, update the weight and bias as follows − 

∆wij=αδjxi∆wij=αδjxi 

∆b0j=αδj∆b0j=αδj 



Phase 3 

Step 9 − Each output unit (ykk = 1 to m) updates the weight and bias as follows − 

vjk(new)=vjk(old)+∆vjkvjk(new)=vjk(old)+∆vjk 

b0k(new)=b0k(old)+∆b0kb0k(new)=b0k(old)+∆b0k 

Step 10 − Each output unit (zjj = 1 to p) updates the weight and bias as follows − 

wij(new)=wij(old)+∆wijwij(new)=wij(old)+∆wij 

b0j(new)=b0j(old)+∆b0jb0j(new)=b0j(old)+∆b0j 

Step 11 − Check for the stopping condition, which may be either the number of epochs 

reached or the target output matches the actual output. 

Generalized Delta Learning Rule 

Delta rule works only for the output layer. On the other hand, generalized delta rule, also 

called as back-propagation rule, is a way of creating the desired values of the hidden layer. 

Mathematical Formulation 

For the activation function yk=f(yink)yk=f(yink) the derivation of net input on Hidden layer 

as well as on output layer can be given by 

yink=∑iziwjkyink=∑iziwjk 

And yinj=∑ixivijyinj=∑ixivij 

Now the error which has to be minimized is 

E=12∑k[tk−yk]2E=12∑k[tk−yk]2 

By using the chain rule, we have 

∂E∂wjk=∂∂wjk(12∑k[tk−yk]2)∂E∂wjk=∂∂wjk(12∑k[tk−yk]2) 

=∂∂wjk⟮ ⟮ ⟮ ⟮12[tk−t(yink)]2 =∂∂wjk 12[tk−t(yink)]2  

=−[tk−yk]∂∂wjkf(yink)=−[tk−yk]∂∂wjkf(yink) 

=−[tk−yk]f(yink)∂∂wjk(yink)=−[tk−yk]f(yink)∂∂wjk(yink) 

=−[tk−yk]f′(yink)zj=−[tk−yk]f′(yink)zj 

Now let us say δk=−[tk−yk]f′(yink)δk=−[tk−yk]f′(yink) 

The weights on connections to the hidden unit zj can be given by − 

∂E∂vij=−∑kδk∂∂vij(yink)∂E∂vij=−∑kδk∂∂vij(yink) 

Putting the value of yinkyink we will get the following 

δj=−∑kδkwjkf′(zinj)δj=−∑kδkwjkf′(zinj) 

Weight updating can be done as follows − 

For the output unit 



∆wjk=−α∂E∂wjk∆wjk=−α∂E∂wjk 

=αδkzj=αδkzj 

For the hidden unit  

∆vij=−α∂E∂vij∆vij=−α∂E∂vij 

=αδjxi 

 

2.4 Effect of Tuning parameters of the Back Propagation Neural Network 

• Sigmoidal gain 

• Threshold value 

 

 2.5 Selection of various parameters in BPN 

• Number of hidden nodes 

• Momentum coefficient  

• Sigmoidal Gain 

• Local Minima 

• Learning Coefficient 

 

 

 

 

 

 

 

 

 


