
18MIT23C - Network Security

Unit - II

AES Requirements

• private key symmetric block cipher
• 128-bit data, 128/192/256-bit keys
• stronger & faster than Triple-DES
• active life of 20-30 years (+ archival use)
• provide full specification & design details
• both C & Java implementations
• NIST have released all submissions &

unclassified analyses

Advanced Encryption Standard

AES Evaluation Criteria

• initial criteria:
– security – effort for practical cryptanalysis
– cost – in terms of computational efficiency
– algorithm & implementation characteristics

• final criteria
– general security
– ease of software & hardware implementation
– implementation attacks
– flexibility (in en/decrypt, keying, other factors)

AES Shortlist

• after testing and evaluation, shortlist in Aug-99:
– MARS (IBM) - complex, fast, high security margin
– RC6 (USA) - v. simple, v. fast, low security margin
– Rijndael (Belgium) - clean, fast, good security margin
– Serpent (Euro) - slow, clean, v. high security margin
– Twofish (USA) - complex, v. fast, high security margin

• then subject to further analysis & comment
• saw contrast between algorithms with

– few complex rounds verses many simple rounds
– which refined existing ciphers verses new proposals

The AES Cipher - Rijndael

• designed by Rijmen-Daemen in Belgium
• has 128/192/256 bit keys, 128 bit data
• an iterative rather than feistel cipher

– processes data as block of 4 columns of 4 bytes
– operates on entire data block in every round

• designed to be:
– resistant against known attacks
– speed and code compactness on many CPUs
– design simplicity

Rijndael
• data block of 4 columns of 4 bytes is state
• key is expanded to array of words
• has 9/11/13 rounds in which state undergoes:

– byte substitution (1 S-box used on every byte)
– shift rows (permute bytes between groups/columns)
– mix columns (subs using matrix multipy of groups)
– add round key (XOR state with key material)
– view as alternating XOR key & scramble data bytes

• initial XOR key material & incomplete last round
• with fast XOR & table lookup implementation

Rijndael

Byte Substitution

• a simple substitution of each byte
• uses one table of 16x16 bytes containing a

permutation of all 256 8-bit values
• each byte of state is replaced by byte indexed by row

(left 4-bits) & column (right 4-bits)
– eg. byte {95} is replaced by byte in row 9 column 5
– which has value {2A}

• S-box constructed using defined transformation of
values in GF(28)

• designed to be resistant to all known attacks

Byte Substitution

Shift Rows

• a circular byte shift in each each
– 1st row is unchanged
– 2nd row does 1 byte circular shift to left
– 3rd row does 2 byte circular shift to left
– 4th row does 3 byte circular shift to left

• decrypt inverts using shifts to right
• since state is processed by columns, this step

permutes bytes between the columns

Shift Rows

Mix Columns

• each column is processed separately
• each byte is replaced by a value dependent on

all 4 bytes in the column
• effectively a matrix multiplication in GF(28)

using prime poly m(x) =x8+x4+x3+x+1

Mix Columns

Mix Columns

• can express each col as 4 equations
– to derive each new byte in col

• decryption requires use of inverse matrix
– with larger coefficients, hence a little harder

• have an alternate characterisation
– each column a 4-term polynomial
– with coefficients in GF(28)
– and polynomials multiplied modulo (x4+1)

Add Round Key

• XOR state with 128-bits of the round key
• again processed by column (though effectively

a series of byte operations)
• inverse for decryption identical

– since XOR own inverse, with reversed keys

• designed to be as simple as possible
– a form of Vernam cipher on expanded key
– requires other stages for complexity / security

Add Round Key

AES Round

AES Key Expansion

• takes 128-bit (16-byte) key and expands into
array of 44/52/60 32-bit words

• start by copying key into first 4 words
• then loop creating words that depend on

values in previous & 4 places back
– in 3 of 4 cases just XOR these together
– 1st word in 4 has rotate + S-box + XOR round

constant on previous, before XOR 4th back

AES Key Expansion

Key Expansion Rationale

• designed to resist known attacks
• design criteria included

– knowing part key insufficient to find many more
– invertible transformation
– fast on wide range of CPU’s
– use round constants to break symmetry
– diffuse key bits into round keys
– enough non-linearity to hinder analysis
– simplicity of description

AES Decryption

• AES decryption is not identical to encryption
since steps done in reverse

• but can define an equivalent inverse cipher
with steps as for encryption
– but using inverses of each step
– with a different key schedule

• works since result is unchanged when
– swap byte substitution & shift rows
– swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects

• can efficiently implement on 8-bit CPU
– byte substitution works on bytes using a table of

256 entries
– shift rows is simple byte shift
– add round key works on byte XOR’s
– mix columns requires matrix multiply in GF(28)

which works on byte values, can be simplified to
use table lookups & byte XOR’s

Implementation Aspects

• can efficiently implement on 32-bit CPU
– redefine steps to use 32-bit words
– can precompute 4 tables of 256-words
– then each column in each round can be computed

using 4 table lookups + 4 XORs
– at a cost of 4Kb to store tables

• designers believe this very efficient
implementation was a key factor in its
selection as the AES cipher

Multiple Encryption & DES

• clear a replacement for DES was needed
– theoretical attacks that can break it
– demonstrated exhaustive key search attacks

• AES is a new cipher alternative
• prior to this alternative was to use multiple

encryption with DES implementations
• Triple-DES is the chosen form

Double-DES?

• could use 2 DES encrypts on each block
– C = EK2(EK1(P))

• issue of reduction to single stage
• and have “meet-in-the-middle” attack

– works whenever use a cipher twice
– since X = EK1(P) = DK2(C)
– attack by encrypting P with all keys and store
– then decrypt C with keys and match X value
– can show takes O(256) steps

Triple-DES with Two-Keys

• hence must use 3 encryptions
– would seem to need 3 distinct keys

• but can use 2 keys with E-D-E sequence
– C = EK1(DK2(EK1(P)))
– nb encrypt & decrypt equivalent in security
– if K1=K2 then can work with single DES

• standardized in ANSI X9.17 & ISO8732
• no current known practical attacks

Triple-DES with Three-Keys

• although are no practical attacks on two-key
Triple-DES have some indications

• can use Triple-DES with Three-Keys to avoid
even these
– C = EK3(DK2(EK1(P)))

• has been adopted by some Internet
applications, eg PGP, S/MIME

Modes of Operation

• block ciphers encrypt fixed size blocks
– eg. DES encrypts 64-bit blocks with 56-bit key

• need some way to en/decrypt arbitrary
amounts of data in practise

• ANSI X3.106-1983 Modes of Use (now FIPS
81) defines 4 possible modes

• subsequently 5 defined for AES & DES
• have block and stream modes

Electronic Codebook Book (ECB)

• message is broken into independent blocks
which are encrypted

• each block is a value which is substituted, like
a codebook, hence name

• each block is encoded independently of the
other blocks
Ci = DESK1(Pi)

• uses: secure transmission of single values

Electronic Codebook Book (ECB)

Advantages and Limitations of ECB

• message repetitions may show in ciphertext
– if aligned with message block
– particularly with data such graphics
– or with messages that change very little, which

become a code-book analysis problem
• weakness is due to the encrypted message

blocks being independent
• main use is sending a few blocks of data

Cipher Block Chaining (CBC)

• message is broken into blocks
• linked together in encryption operation
• each previous cipher blocks is chained with

current plaintext block, hence name
• use Initial Vector (IV) to start process

Ci = DESK1(Pi XOR Ci-1)

C-1 = IV

• uses: bulk data encryption, authentication

Cipher Block Chaining (CBC)

Message Padding

• at end of message must handle a possible last
short block
– which is not as large as blocksize of cipher
– pad either with known non-data value (eg nulls)
– or pad last block along with count of pad size

• eg. [b1 b2 b3 0 0 0 0 5]
• means have 3 data bytes, then 5 bytes pad+count

– this may require an extra entire block over those in
message

• there are other, more esoteric modes, which
avoid the need for an extra block

Advantages and Limitations of CBC

• a ciphertext block depends on all blocks before
it

• any change to a block affects all following
ciphertext blocks

• need Initialization Vector (IV)
– which must be known to sender & receiver
– if sent in clear, attacker can change bits of first block, and

change IV to compensate
– hence IV must either be a fixed value (as in EFTPOS)
– or must be sent encrypted in ECB mode before rest of

message

Cipher FeedBack (CFB)

• message is treated as a stream of bits
• added to the output of the block cipher
• result is feed back for next stage (hence name)
• standard allows any number of bit (1,8, 64 or 128

etc) to be feed back
– denoted CFB-1, CFB-8, CFB-64, CFB-128 etc

• most efficient to use all bits in block (64 or 128)
Ci = Pi XOR DESK1(Ci-1)

C-1 = IV

• uses: stream data encryption, authentication

Cipher FeedBack (CFB)

Advantages and Limitations of CFB

• appropriate when data arrives in bits/bytes
• most common stream mode
• limitation is need to stall while do block

encryption after every n-bits
• note that the block cipher is used in

encryption mode at both ends
• errors propogate for several blocks after the

error

Output FeedBack (OFB)

• message is treated as a stream of bits
• output of cipher is added to message
• output is then feed back (hence name)
• feedback is independent of message
• can be computed in advance

Ci = Pi XOR Oi
Oi = DESK1(Oi-1)

O-1 = IV

• uses: stream encryption on noisy channels

Output FeedBack (OFB)

Advantages and Limitations of OFB

• bit errors do not propagate
• more vulnerable to message stream modification
• a variation of a Vernam cipher

– hence must never reuse the same sequence
(key+IV)

• sender & receiver must remain in sync
• originally specified with m-bit feedback
• subsequent research has shown that only full block

feedback (ie CFB-64 or CFB-128) should ever be used

Counter (CTR)

• a “new” mode, though proposed early on
• similar to OFB but encrypts counter value

rather than any feedback value
• must have a different key & counter value for

every plaintext block (never reused)
Ci = Pi XOR Oi
Oi = DESK1(i)

• uses: high-speed network encryptions

Counter (CTR)

Advantages and Limitations of CTR

• efficiency
– can do parallel encryptions in h/w or s/w
– can preprocess in advance of need
– good for bursty high speed links

• random access to encrypted data blocks
• provable security (good as other modes)
• but must ensure never reuse key/counter

values, otherwise could break (cf OFB)

Stream Ciphers

• process message bit by bit (as a stream)
• have a pseudo random keystream
• combined (XOR) with plaintext bit by bit
• randomness of stream key completely destroys

statistically properties in message
– Ci = Mi XOR StreamKeyi

• but must never reuse stream key
– otherwise can recover messages (cf book cipher)

Stream Cipher Structure

Stream Cipher Properties

• some design considerations are:
– long period with no repetitions
– statistically random
– depends on large enough key
– large linear complexity

• properly designed, can be as secure as a block
cipher with same size key

• but usually simpler & faster

RC4

• a proprietary cipher owned by RSA DSI
• another Ron Rivest design, simple but effective
• variable key size, byte-oriented stream cipher
• widely used (web SSL/TLS, wireless WEP)
• key forms random permutation of all 8-bit values
• uses that permutation to scramble input info

processed a byte at a time

RC4 Key Schedule

• starts with an array S of numbers: 0..255
• use key to well and truly shuffle
• S forms internal state of the cipher

for i = 0 to 255 do
S[i] = i
T[i] = K[i mod keylen])

j = 0
for i = 0 to 255 do

j = (j + S[i] + T[i]) (mod 256)
swap (S[i], S[j])

RC4 Encryption

• encryption continues shuffling array values
• sum of shuffled pair selects "stream key" value

from permutation
• XOR S[t] with next byte of message to

en/decrypt
i = j = 0
for each message byte Mi

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
Ci = Mi XOR S[t]

RC4 Overview

RC4 Security

• claimed secure against known attacks
– have some analyses, none practical

• result is very non-linear
• since RC4 is a stream cipher, must never reuse

a key
• have a concern with WEP, but due to key

handling rather than RC4 itself

The basics – and a few minor details

• Modulo arithmetic
– Addition and additive inverse are easy
– Multiplicative inverse doesn’t always exist

• Properties of primes
– A prime is divisible only by itself and one
– Determining primality is not all that easy

• Multiword arithmetic
– Additional method – Chinese remainder theorem

• Finding inverses in finite fields
– Modified Euclid’s algorithm applies here also

Useful results of number theory

• Private key crypto
– RSA algorithm
– Elliptic curve cryptography

• Diffie-Hellman algorithm
– Generates a shared secret key

• Chinese remainder theorem
– Sometimes results in easier multiword arithmetic

algorithms
• Generation and testing of large primes

– Useful in all the above

The prime factorization theorem

• A prime is a number divisible only by itself and
one

• Any number can be factored uniquely into a
product of primes to some power
– Example 1100 = 2252111

• Relatively prime means (a,b)=1
– (a,b) means gcd(a,b)
– (a,b) is found using Euclid’s algorithm

Useful theorems involving ax mod n

• Fermat’s
– ap-1 = 1 mod p, p doesn’t divide a

• Euler’s phi function
– (n) = number of numbers <n and relatively prime to n
– Easily found if factorization is known

• Euler’s theorem
– a (n) = 1 mod n – reduces to Fermat’s for n prime

• Miller-Rabin test
– Based on inverse of Fermat’s theorem

n is not prime if an-1 K1 mod n

• Fast exponentiation
– Convert x to binary – for example x8 is x squared three times

Prime Numbers

• prime numbers only have divisors of 1 and self
– they cannot be written as a product of other numbers
– note: 1 is prime, but is generally not of interest

• eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
• prime numbers are central to number theory
• list of prime number less than 200 is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
61 67 71 73 79 83 89 97 101 103 107 109 113 127
131 137 139 149 151 157 163 167 173 179 181 191

193 197 199

Prime Factorisation

• to factor a number n is to write it as a product
of other numbers: n=a x b x c

• note that factoring a number is relatively hard
compared to multiplying the factors together
to generate the number

• the prime factorisation of a number n is when
its written as a product of primes
– eg. 91=7x13 ; 3600=24x32x52

Relatively Prime Numbers & GCD

• two numbers a, b are relatively prime if have no
common divisors apart from 1
– eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8

and of 15 are 1,3,5,15 and 1 is the only common factor
• conversely can determine the greatest common

divisor by comparing their prime factorizations and
using least powers
– eg. 300=21x31x52 18=21x32 hence
GCD(18,300)=21x31x50=6

Prime Distribution

• prime number theorem states that primes
occur roughly every (ln n) integers

• but can immediately ignore evens
• so in practice need only test 0.5 ln(n)

numbers of size n to locate a prime
– note this is only the “average”
– sometimes primes are close together
– other times are quite far apart

Primitive Roots

• from Euler’s theorem have aø(n)mod n=1
• consider am=1 (mod n), GCD(a,n)=1

– must exist for m = ø(n) but may be smaller
– once powers reach m, cycle will repeat

• if smallest is m = ø(n) then a is called a primitive
root

• if p is prime, then successive powers of a "generate"
the group mod p

• these are useful but relatively hard to find

Private-Key Cryptography

• traditional private/secret/single key
cryptography uses one key

• shared by both sender and receiver
• if this key is disclosed communications are

compromised
• also is symmetric, parties are equal
• hence does not protect sender from receiver

forging a message & claiming is sent by sender

Public-Key Cryptography

• probably most significant advance in the 3000
year history of cryptography

• uses two keys – a public & a private key
• asymmetric since parties are not equal
• uses clever application of number theoretic

concepts to function
• complements rather than replaces private key

crypto

Why Public-Key Cryptography?

• developed to address two key issues:
– key distribution – how to have secure

communications in general without having to trust
a KDC with your key

– digital signatures – how to verify a message
comes intact from the claimed sender

• public invention due to Whitfield Diffie &
Martin Hellman at Stanford Uni in 1976
– known earlier in classified community

Public-Key Cryptography

• public-key/two-key/asymmetric cryptography
involves the use of two keys:
– a public-key, which may be known by anybody, and can be

used to encrypt messages, and verify signatures
– a private-key, known only to the recipient, used to decrypt

messages, and sign (create) signatures
• is asymmetric because

– those who encrypt messages or verify signatures cannot
decrypt messages or create signatures

Public-Key Cryptography

Public-Key Characteristics

• Public-Key algorithms rely on two keys where:
– it is computationally infeasible to find decryption key

knowing only algorithm & encryption key
– it is computationally easy to en/decrypt messages when

the relevant (en/decrypt) key is known
– either of the two related keys can be used for encryption,

with the other used for decryption (for some algorithms)

Public-Key Cryptosystems

Public-Key Applications

• can classify uses into 3 categories:
– encryption/decryption (provide secrecy)
– digital signatures (provide authentication)
– key exchange (of session keys)

• some algorithms are suitable for all uses,
others are specific to one

Security of Public Key Schemes
• like private key schemes brute force exhaustive

search attack is always theoretically possible
• but keys used are too large (>512bits)
• security relies on a large enough difference in

difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

• more generally the hard problem is known, but is
made hard enough to be impractical to break

• requires the use of very large numbers
• hence is slow compared to private key schemes

RSA

• by Rivest, Shamir & Adleman of MIT in 1977
• best known & widely used public-key scheme
• based on exponentiation in a finite (Galois) field over

integers modulo a prime
– nb. exponentiation takes O((log n)3) operations (easy)

• uses large integers (eg. 1024 bits)
• security due to cost of factoring large numbers

– nb. factorization takes O(e log n log log n) operations (hard)

RSA Key Setup

• each user generates a public/private key pair by:
• selecting two large primes at random - p, q
• computing their system modulus n=p.q

– note ø(n)=(p-1)(q-1)
• selecting at random the encryption key e

• where 1<e<ø(n), gcd(e,ø(n))=1

• solve following equation to find decryption key d
– e.d=1 mod ø(n) and 0≤d≤n

• publish their public encryption key: PU={e,n}
• keep secret private decryption key: PR={d,n}

RSA Use

• to encrypt a message M the sender:
– obtains public key of recipient PU={e,n}
– computes: C = Me mod n, where 0≤M<n

• to decrypt the ciphertext C the owner:
– uses their private key PR={d,n}
– computes: M = Cd mod n

• note that the message M must be smaller
than the modulus n (block if needed)

Why RSA Works
• because of Euler's Theorem:

– aø(n)mod n = 1 where gcd(a,n)=1
• in RSA have:

– n=p.q
– ø(n)=(p-1)(q-1)
– carefully chose e & d to be inverses mod ø(n)
– hence e.d=1+k.ø(n) for some k

• hence :
Cd = Me.d = M1+k.ø(n) = M1.(Mø(n))k

= M1.(1)k = M1 = M mod n

RSA Example - Key Setup

1. Select primes: p=17 & q=11

2. Compute n = pq =17 x 11=187

3. Compute ø(n)=(p–1)(q-1)=16 x 10=160

4. Select e: gcd(e,160)=1; choose e=7
5. Determine d: de=1 mod 160 and d < 160

Value is d=23 since 23x7=161= 10x160+1
6. Publish public key PU={7,187}
7. Keep secret private key PR={23,187}

RSA Example - En/Decryption

• sample RSA encryption/decryption is:
• given message M = 88 (nb. 88<187)
• encryption:

C = 887 mod 187 = 11

• decryption:
M = 1123 mod 187 = 88

Exponentiation

• can use the Square and Multiply Algorithm
• a fast, efficient algorithm for exponentiation
• concept is based on repeatedly squaring base
• and multiplying in the ones that are needed to

compute the result
• look at binary representation of exponent
• only takes O(log2 n) multiples for number n

– eg. 75 = 74.71 = 3.7 = 10 mod 11

– eg. 3129 = 3128.31 = 5.3 = 4 mod 11

Exponentiation

c = 0; f = 1
for i = k downto 0

do c = 2 x c
f = (f x f) mod n

if bi == 1 then
c = c + 1

f = (f x a) mod n
return f

Efficient Encryption

• encryption uses exponentiation to power e
• hence if e small, this will be faster

– often choose e=65537 (216-1)
– also see choices of e=3 or e=17

• but if e too small (eg e=3) can attack
– using Chinese remainder theorem & 3 messages

with different modulii
• if e fixed must ensure gcd(e,ø(n))=1

– ie reject any p or q not relatively prime to e

Efficient Decryption

• decryption uses exponentiation to power d
– this is likely large, insecure if not

• can use the Chinese Remainder Theorem
(CRT) to compute mod p & q separately. then
combine to get desired answer
– approx 4 times faster than doing directly

• only owner of private key who knows values
of p & q can use this technique

RSA Key Generation

• users of RSA must:
– determine two primes at random - p, q
– select either e or d and compute the other

• primes p,q must not be easily derived from
modulus n=p.q
– means must be sufficiently large
– typically guess and use probabilistic test

• exponents e, d are inverses, so use Inverse
algorithm to compute the other

RSA Security

• possible approaches to attacking RSA are:
– brute force key search (infeasible given size of

numbers)
– mathematical attacks (based on difficulty of

computing ø(n), by factoring modulus n)
– timing attacks (on running of decryption)
– chosen ciphertext attacks (given properties of

RSA)

Factoring Problem

• mathematical approach takes 3 forms:
– factor n=p.q, hence compute ø(n) and then d
– determine ø(n) directly and compute d
– find d directly

• currently believe all equivalent to factoring
– have seen slow improvements over the years

• as of May-05 best is 200 decimal digits (663) bit with LS
– biggest improvement comes from improved algorithm

• cf QS to GHFS to LS
– currently assume 1024-2048 bit RSA is secure

• ensure p, q of similar size and matching other constraints

Timing Attacks

• developed by Paul Kocher in mid-1990’s
• exploit timing variations in operations

– eg. multiplying by small vs large number
– or IF's varying which instructions executed

• infer operand size based on time taken
• RSA exploits time taken in exponentiation
• countermeasures

– use constant exponentiation time
– add random delays
– blind values used in calculations

Chosen Ciphertext Attacks

• RSA is vulnerable to a Chosen Ciphertext
Attack (CCA)

• attackers chooses ciphertexts & gets
decrypted plaintext back

• choose ciphertext to exploit properties of
RSA to provide info to help cryptanalysis

• can counter with random pad of plaintext
• or use Optimal Asymmetric Encryption

Padding (OASP)

