[BMITZ3C - Network Security

Unit - [l

Advanced Encryption Standard

AES Requirements

e private key symmetric block cipher

e 128-bit data, 128/192/256-bit keys

e stronger & faster than Triple-DES

e active life of 20-30 years (+ archival use)
e provide full specification & design details
 both C & Java implementations

e NIST have released all submissions &
unclassified analyses

AES Evaluation Criteria

e initial criteria:
— security — effort for practical cryptanalysis
— cost — in terms of computational efficiency
— algorithm & implementation characteristics

e final criteria
— general security
— ease of software & hardware implementation
— implementation attacks
— flexibility (in en/decrypt, keying, other factors)

AES Shortlist

o after testing and evaluation, shortlist in Aug-99:
— MARS (IBM) - complex, fast, high security margin
— RC6 (USA) - v. simple, v. fast, low security margin
— Rijndael (Belgium) - clean, fast, good security margin
— Serpent (Euro) - slow, clean, v. high security margin
— Twofish (USA) - complex, v. fast, high security margin
e then subject to further analysis & comment

e saw contrast between algorithms with
— few complex rounds verses many simple rounds
— which refined existing ciphers verses new proposals

The AES Cipher - Rijndael

designed by Rijmen-Daemen in Belgium
has 128/192/256 bit keys, 128 bit data

an iterative rather than feistel cipher
— processes data as block of 4 columns of 4 bytes
— operates on entire data block in every round

designed to be:
— resistant against known attacks

— speed and code compactness on many CPUs
— design simplicity

Rijndael

data block of 4 columns of 4 bytes is state
key is expanded to array of words

has 9/11/13 rounds in which state undergoes:
— byte substitution (1 S-box used on every byte)

— shift rows (permute bytes between groups/columns)
— mix columns (subs using matrix multipy of groups)

— add round key (XOR state with key material)

— view as alternating XOR key & scramble data bytes

initial XOR key material & incomplete last round
with fast XOR & table lookup implementation

Round @

Round 10

Rijndael

Plaintext Ky Plaintext
— i

| Addround key |e w0, 3] » Addroundkey |

+ 4 s
I Suibstitiite bytes I I Expand key I I Irverse sub bytes I =
l Shift rows I l Inverse shift rows I
s il — [|

Mix columns fnverse mix cols

!
| Addround key |« wi4,7] » Addroundkey |

v o

¥ | Irwerse sub bytes | s

L

¥ | Irverse shiftrows |

| Substitute bytes | v
4 ¥
I Shift rows I ¥

r 1
| Mixcolumns | | Inverse mix cols |
+]' 1
[Addround key |é——rt- w(36,39] ——— Addroundkey |
- 7
| ‘Substlt!atﬂ bytes I I Irvverse sub bytes I -é
| Shift rows | —] | Imverse shiftrows | &
v 1
I Add round key Iﬂ— wido, 43] _hl Add round key I
i T
Ciphermext Ciphertaxt

{a) Emcryption (b} Decryption

Byte Substitution

a simple substitution of each byte

uses one table of 16x16 bytes containing a
permutation of all 256 8-bit values

each byte of state is replaced by byte indexed by row
(left 4-bits) & column (right 4-bits)

— eg. byte {95} is replaced by byte in row 9 column 5

— which has value {2A}

S-box constructed using defined transformation of
values in GF(22)

designed to be resistant to all known attacks

Byte Substitution

S-box

Shift Rows

e acircular byte shift in each each
— 1%t row is unchanged
— 2" row does 1 byte circular shift to left
— 3rd row does 2 byte circular shift to left
— 4th row does 3 byte circular shift to left

e decrypt inverts using shifts to right

e since state is processed by columns, this step
permutes bytes between the columns

S0,0 | So1 | 502 | S0
S0 S 52| S13
S20 | S21 | S22 | S22
S30 | 531] 532 | S32

Shift Rows

Mix Columns

each column is processed separately

each byte is replaced by a value dependent on
all 4 bytes in the column

effectively a matrix multiplication in GF(22)
using prime poly m(x) =x3+x*+x3+x+1

02 03 01 01 , 0.0 Y1 M2 Y3 \;I.H Sod Y2 Y3
01 02 03 {}1: 10 11 12 13 "'1_|: 1 12 13
0l 01 02 U.:': 0 2] 422 23) "":_u ‘Ij.t “.: 2 -"IZJ
03 01 01 02} (430 31 32 333 ‘-;'L_n ‘:3._1 "_;-.2 -‘ji_i

Mix Columns

Pl L = =

Yy Y vy v
W ot - b

Mix Columns

e can express each col as 4 equations

— to derive each new byte in col

e decryption requires use of inverse matrix

— with larger coefficients, hence a little harder

e have an alternate characterisation

— each column a 4-term polynomial
— with coefficients in GF(28)
— and polynomials multiplied modulo (x*+1)

Add Round Key

XOR state with 128-bits of the round key

again processed by column (though effectively
a series of byte operations)

inverse for decryption identical

— since XOR own inverse, with reversed keys

designed to be as simple as possible
— a form of Vernam cipher on expanded key
— requires other stages for complexity / security

Add Round Key

Sa0 | So1 | S02 | S0s
Siol 51| 512 | 53
S20 | 521 | S22 | S23
S30 | 531 | 532 | 832

Wit

wi+3

I

Son | 501 | %02 | 503
(] L]]]
Sio | S | 32| 23
T] L]]
S20 | 521 | S22 | S23
]] L] I
S30 | 531 | S3.2| Sa3

AES Round

State |

ShiftRows

¥ w
] ' 4

[y

'%%%ﬁ

|

S % % B

— =

}%%%%%

MixColumns

AES Key Expansion

takes 128-bit (16-byte) key and expands into
array of 44/52/60 32-bit words

start by copying key into first 4 words
then loop creating words that depend on
values in previous & 4 places back

— in 3 of 4 cases just XOR these together

— 1t word in 4 has rotate + S-box + XOR round
constant on previous, before XOR 4t back

AES Key Expansion

33333
-t | S | 2 | 2

YY)

Waq | Ws | Wg | W7

Key Expansion Rationale

e designed to resist known attacks

e design criteria included
— knowing part key insufficient to find many more
— invertible transformation
— fast on wide range of CPU’s
— use round constants to break symmetry
— diffuse key bits into round keys
— enough non-linearity to hinder analysis
— simplicity of description

AES Decryption

e AES decryption is not identical to encryption
since steps done in reverse

e but can define an equivalent inverse cipher
with steps as for encryption
— but using inverses of each step
— with a different key schedule
e works since result is unchanged when
— swap byte substitution & shift rows
— swap mix columns & add (tweaked) round key

AES Decryption

Ciphertext

w40, 43] | Addroundkey |

!
_T I Inverse sub bytes I

Inverse 5 F1i'T. rows
I I L

Rourd

I Invesrse mix cols I

:

[Inversemixcols |—% Addroundkey |
- 1

[35, 30] ——

"
¥
¥

| Irverse sub bytes |

i

I Inverse shift roves I

a
' E
| [riveerse mix cols I 2
| [rverse mix cols H Add round key I
—— w4, 7] —T I Irverse sub bytas I
' =
| Expandhey | [Thverseshiftrows | =
F E
wio, 3] o[Addroundkey |

4)

Hey Flaintext

Implementation Aspects

e can efficiently implement on 8-bit CPU

— byte substitution works on bytes using a table of
256 entries

— shift rows is simple byte shift
— add round key works on byte XOR’s

— mix columns requires matrix multiply in GF(28)
which works on byte values, can be simplified to
use table lookups & byte XOR’s

Implementation Aspects

e can efficiently implement on 32-bit CPU
— redefine steps to use 32-bit words
— can precompute 4 tables of 256-words

— then each column in each round can be computed
using 4 table lookups + 4 XORs

— at a cost of 4Kb to store tables
e designers believe this very efficient

implementation was a key factor in its
selection as the AES cipher

Multiple Encryption & DES

clear a replacement for DES was needed
— theoretical attacks that can break it
— demonstrated exhaustive key search attacks

AES is a new cipher alternative

prior to this alternative was to use multiple
encryption with DES implementations

Triple-DES is the chosen form

Double-DES?

e could use 2 DES encrypts on each block
- C = Bu(Ea(P))

* jssue of reduction to single stage

e and have “meet-in-the-middle” attack

— works whenever use a cipher twice
—since X = E4(P) = Dw(CO

— attack by encrypting P with all keys and store
— then decrypt C with keys and match X value
— can show takes Q(2°°) steps

Triple-DES with Two-Keys

hence must use 3 encryptions
— would seem to need 3 distinct keys

but can use 2 keys with E-D-E sequence

—C = Eq(De(Ea(P)))
— nb encrypt & decrypt equivalent in security
— if K1=K2 then can work with single DES

standardized in ANSI X9.17 & I1ISO8732
no current known practical attacks

Triple-DES with Three-Keys

e although are no practical attacks on two-key
Triple-DES have some indications

e can use Triple-DES with Three-Keys to avoid
even these

—C = Exs(D Exa(P)))
* has been adopted by some Internet
applications, eg PGP, S/MIME

Modes of Operation

block ciphers encrypt fixed size blocks
— eg. DES encrypts 64-bit blocks with 56-bit key

need some way to en/decrypt arbitrary
amounts of data in practise

ANSI X3.106-1983 Modes of Use (now FIPS
81) defines 4 possible modes

subsequently 5 defined for AES & DES
have block and stream modes

Electronic Codebook Book (ECB)

message is broken into independent blocks
which are encrypted

each b
a code

each b

ock is a value which is substituted, like
nook, hence name

ock is encoded independently of the

other blocks

Ci:

DES(Pi)

uses: secure transmission of single values

Electronic Codebook Book (ECB)

Advantages and Limitations of ECB

* message repetitions may show in ciphertext
— if aligned with message block
— particularly with data such graphics

— or with messages that change very little, which
become a code-book analysis problem

 weakness is due to the encrypted message
blocks being independent

* main use is sending a few blocks of data

Cipher Block Chaining (CBC)

message is broken into blocks
linked together in encryption operation

each previous cipher blocks is chained with
current plaintext block, hence name

use Initial Vector (IV) to start process

G = DESu(P XOR G y)

C, =1V

uses: bulk data encryption, authentication

Cipher Block Chaining (CBC)

drd
Plep o

Message Padding

e at end of message must handle a possible last
short block

— which is not as large as blocksize of cipher
— pad either with known non-data value (eg nulls)

— or pad last block along with count of pad size

e eg.[b1b2b300005]
 means have 3 data bytes, then 5 bytes pad+count

— this may require an extra entire block over those in
message

 there are other, more esoteric modes, which
avoid the need for an extra block

Advantages and Limitations of CBC

e a ciphertext block depends on all blocks before
it

e any change to a block affects all following
ciphertext blocks

* need Initialization Vector (IV)

— which must be known to sender & receiver

— if sent in clear, attacker can change bits of first block, and
change IV to compensate

— hence IV must either be a fixed value (as in EFTPOS)

— or must be sent encrypted in ECB mode before rest of
message

Cipher FeedBack (CFB)

message is treated as a stream of bits
added to the output of the block cipher
result is feed back for next stage (hence name)

standard allows any number of bit (1,8, 64 or 128
etc) to be feed back

— denoted CFB-1, CFB-8, CFB-64, CFB-128 etc

most efficient to use all bits in block (64 or 128)
G = P, XOR DESq(G.,)

C, =1V

uses: stream data encryption, authentication

Cipher FeedBack (CFB)

v

t rgister
bbsbits | sbits

K

B4

Encrypt

L6564
v

D scard

Selact
5 bits | b B 5 bits

Gy
IV
Shit raglster
BB BT T s bits

— 3

FT register
bEsbits | sbits

&4

64

Selact
5 bits |

Discard
b 5 bits

—

&
(a) Encryption

Selet Discard
5 bits | b £ % hits
5
3
Py

..

Shilfy reqistar
bBsbits | sbits

&4

&4

Selact Dascard
shits | b £ s bits

g
5
i Fa

Pz
(b} Decryption

™

P

¥

¥

¥

Cmon

—

Shﬁreghte-r
bPsbits | sbas

64

64

Selact
s bits |

Discard
bisbits

L,

5

Cm

Cmen

g

Shift register
stimsg | & bats

64

64

Salect
shits |

Discard
b shits

5

Cm

Advantages and Limitations of CFB

appropriate when data arrives in bits/bytes
most common stream mode

limitation is need to stall while do block
encryption after every n-bits

note that the block cipher is used in
encryption mode at both ends

errors propogate for several blocks after the
error

Output FeedBack (OFB)

message is treated as a stream of bits
output of cipher is added to message
output is then feed back (hence name)
feedback is independent of message
can be computed in advance

G =P XRQ
Q = DES,(Q.,)
O, =1V

uses: stream encryption on noisy channels

Output FeedBack (OFB)

v

SN regiatar

bEskits” | shins

Segct Discard

-—

] Ister
hD*:an:g | shbits

64

|_Encrypt |
64

Selact Discard
shits | bEsbis

&
(a) Encryption

ShaTT register

bEsbis” | sbits

Setoct Discard
s bits | b £ 5 bits
ks
5
G
P

D — v
b [5)1; El;ﬁlﬂi@r 5 bits

Select Diecar
shits | b B s bits
ks

5
Ca
P2

(b} Decryption

Y

Omen — 4
Shift register
b s bits 5 bits
A64
w
K Encrypt
&4
Select Discard
s bits | b B s bits
P & 5
| 3 ?
Cm
L1 —

Shift egister
bEs ll?}]' 5 bits

Sedect Discard
shbits | b 5 bits
5
5
Al {'.M

P

Advantages and Limitations of OFB

bit errors do not propagate
more vulnerable to message stream modification
a variation of a Vernam cipher

— hence must never reuse the same sequence
(key+1V)

sender & receiver must remain in sync
originally specified with m-bit feedback

subsequent research has shown that only full block
feedback (ie CFB-64 or CFB-128) should ever be used

Counter (CTR)

a “new” mode, though proposed early on

similar to OFB but encrypts counter value
rather than any feedback value

must have a different key & counter value for
every plaintext block (never reused)

G =P XRQ

Q = DES(1)

uses: high-speed network encryptions

198

k

Counter

.

Encrypi

H%

Counter 1

»

Encrypt

ﬁ%

Counter (CTR)

Counter + 1

:

Encrypt

ﬂ% ..

in) Encryption

Counter 2

.

Encrypt

‘_% .

(b} Dvcry ption

Counter + 5 = |1

39 —.[Encrypt

Py

Counter N

[8 —-’I Encrypt

Advantages and Limitations of CTR

efficiency
— can do parallel encryptions in h/w or s/w
— can preprocess in advance of need

— good for bursty high speed links
random access to encrypted data blocks
provable security (good as other modes)

but must ensure never reuse key/counter
values, otherwise could break (cf OFB)

Stream Ciphers

process message bit by bit (as a stream)
have a pseudo random keystream
combined (XOR) with plaintext bit by bit

randomness of stream key completely destroys

statistically properties in message
-G =M XOR StreanKey;

but must never reuse stream key
— otherwise can recover messages (cf book cipher)

Stream Cipher Structure

Key

Pseudorandom byte
generator
(key stream generator)

k

Plaintext
byte stream +

M ENCRYPTION

Key

Pseudorandom byte
generator
(key stream generator)

k
Ciphertext 1 Plaintext
byte stream L)Byte stream
C DECRYPTION M

Stream Cipher Properties

e some design considerations are:
— long period with no repetitions
— statistically random
— depends on large enough key
— large linear complexity

e properly designed, can be as secure as a block
cipher with same size key

e but usually simpler & faster

RC4

a proprietary cipher owned by RSA DSI

another Ron Rivest design, simple but effective
variable key size, byte-oriented stream cipher
widely used (web SSL/TLS, wireless WEP)

key forms random permutation of all 8-bit values

uses that permutation to scramble input info
processed a byte at a time

RC4 Key Schedule

e starts with an array S of numbers: 0..255
e use key to well and truly shuffle
e S forms internal state of the cipher

= 0 to 255 do
] = (] + S[i] + T[i]) (nod 256)
swap (S[i], S[]])

RC4 Encryption

e encryption continues shuffling array values

e sum of shuffled pair selects "stream key" value
from permutation

e XOR S[t] with next byte of message to

en/decrypt

I =] =0

for each nmessage byte M
I = (i + 1) (nod 256)
j = + 98[1]) (nod 256)
swap(S[i], S[]])
t = (S[i] + S[j]) (nmod 256)
G =M XOR S[t]

RC4 Overview

¥¥¥

¥H¥

25 EI 2551255

L 3
h\rL ¥¥y¥

(a) Initial state of Sand T

¥¥¥ T —1 ¥¥y¥
» j=j 4 S[i] + T} -
¥¥¥ =111 ¥¥¥ S[j]
G ” Swa
(b} Initial permutation of S
- j=j+Slil N
¥¥Y st ¥¥y¥ (i1 ¥¥¥

1

-

v

e, Bl

t=5[i1+ 5(j]

.

¥¥¥

51t

{c) Stream Generation

¥y

RC4 Security

claimed secure against known attacks

— have some analyses, none practical
result is very non-linear

since RC4 is a stream cipher, must never reuse
a key

have a concern with WEP, but due to key
handling rather than RC4 itself

The basics — and a few minor details

Modulo arithmetic

— Addition and additive inverse are easy

— Multiplicative inverse doesn’t always exist
Properties of primes

— A prime is divisible only by itself and one
— Determining primality is not all that easy

Multiword arithmetic
— Additional method — Chinese remainder theorem

Finding inverses in finite fields
— Modified Euclid’s algorithm applies here also

Useful results of number theory

Private key crypto

— RSA algorithm

— Elliptic curve cryptography
Diffie-Hellman algorithm

— Generates a shared secret key
Chinese remainder theorem

— Sometimes results in easier multiword arithmetic
algorithms

Generation and testing of large primes
— Useful in all the above

The prime factorization theorem

A prime is a number divisible only by itself and
one

 Any number can be factored uniquely into a
product of primes to some power

— Example 1100 = 2252111
e Relatively prime means (a,b)=1
— (a,b) means gcd(a,b)

— (a,b) is found using Euclid’s algorithm

Useful theorems involving a* mod n

Fermat’s
— aP1=1mod p, p doesn’t divide a
Euler’s phi function

— X'(n) = number of numbers <n and relatively prime to n
— Easily found if factorization is known

Euler’s theorem
— a (M =1 mod n-reduces to Fermat’s for n prime

Miller-Rabin test

— Based on inverse of Fermat’s theorem
nis not prime if an-1 k1 mod n

Fast exponentiation
— Convert x to binary — for example x8 is x squared three times

Prime Numbers

prime numbers only have divisors of 1 and self
— they cannot be written as a product of other numbers
— note: 1 is prime, but is generally not of interest

eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
prime numbers are central to number theory

list of prime number less than 200 is:

2 35 7 11 13 17 19 23 29 31 37 41 43 47 53 59
61 67 71 73 79 83 89 97 101 103 107 109 113 127
131 137 139 149 151 157 163 167 173 179 181 191

193 197 199

Prime Factorisation

e to factor a number n is to write it as a product
of other numbers:n=a X b X C

e note that factoring a number is relatively hard

compared to multiplying the factors together
to generate the number

e the prime factorisation of a number n is when
its written as a product of primes
—eg.91=7x13 ; 3600=24x32%x52

a = H pr

peP

Relatively Prime Numbers & GCD

e two numbers a, b are relatively prime if have no
common divisors apart from 1
— eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8
and of 15 are 1,3,5,15 and 1 is the only common factor
e conversely can determine the greatest common
divisor by comparing their prime factorizations and
using least powers
— eg. 300=21x31x52 18=21x32 hence
GCD(18, 300) =21x31x50=6

Prime Distribution

e prime number theorem states that primes
occur roughly every (I n n) integers

e but can immediately ignore evens

e soin practice need onlytest0. 5 | n(n)
numbers of size n to locate a prime
— note this is only the “average”
— sometimes primes are close together

— other times are quite far apart

Primitive Roots

from Euler’s theorem have a?(") npd n=1
considera™1 (nod n), GCD(a,n)=1
— must exist form = @(n) but may be smaller

— once powers reach m, cycle will repeat

if smallestism = @(n) then ais called a primitive
root

if p is prime, then successive powers of a "generate
the group nod p

these are useful but relatively hard to find

Private-Key Cryptography

traditional private/secret/single key
cryptography uses one key

shared by both sender and receiver

iIf this key is disclosed communications are
compromised

also is symmetric, parties are equal

hence does not protect sender from receiver
forging a message & claiming is sent by sender

Public-Key Cryptography

probably most significant advance in the 3000
vear history of cryptography

uses two keys — a public & a private key
asymmetric since parties are not equal

uses clever application of number theoretic
concepts to function

complements rather than replaces private key
crypto

Why Public-Key Cryptography?

 developed to address two key issues:

— key distribution — how to have secure
communications in general without having to trust
a KDC with your key

— digital signatures — how to verify a message
comes intact from the claimed sender

e public invention due to Whitfield Diffie &
Martin Hellman at Stanford Uni in 1976

— known earlier in classified community

Public-Key Cryptography

e public-key/two-key/asymmetric cryptography
involves the use of two keys:

— a public-key, which may be known by anybody, and can be
used to encrypt messages, and verify signatures

— a private-key, known only to the recipient, used to decrypt
messages, and sign (create) signatures

e isasymmetric because

— those who encrypt messages or verify signatures cannot
decrypt messages or create signatures

Public-Key Cryptography

J

Alice's public Alice 's private
Key Koy
Transmitted
ciphertext
> —»
Plaintext : : : . Plaintext
input Encryption algorithm Decryption algorithm output
(e.g. RSA) (reverse of encryption
algorithm)

(a) Encryption

Public-Key Characteristics

* Public-Key algorithms rely on two keys where:

— it is computationally infeasible to find decryption key
knowing only algorithm & encryption key

— it is computationally easy to en/decrypt messages when
the relevant (en/decrypt) key is known

— either of the two related keys can be used for encryption,
with the other used for decryption (for some algorithms)

Public-Key Cryptosystems

Source A Destination B

Encryption
Algorithm |

A

Encryption
Algorithm ||

t

PUp

Public-Key Applications

e can classify uses into 3 categories:
— encryption/decryption (provide secrecy)
— digital signatures (provide authentication)
— key exchange (of session keys)

e some algorithms are suitable for all uses,
others are specific to one

Security of Public Key Schemes

like private key schemes brute force exhaustive
search attack is always theoretically possible

but keys used are too large (>512bits)

security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

more generally the hard problem is known, but is
made hard enough to be impractical to break

requires the use of very large numbers
hence is slow compared to private key schemes

RSA

* by Rivest, Shamir & Adleman of MIT in 1977
* best known & widely used public-key scheme

* based on exponentiation in a finite (Galois) field over
integers modulo a prime

— nb. exponentiation takes O((log n)3) operations (easy)
e uses large integers (eg. 1024 bits)
e security due to cost of factoring large numbers

— nb. factorization takes O(e 'egnloglogn) gperations (hard)

RSA Key Setup

each user generates a public/private key pair by:
selecting two large primes at random -p, Q
computing their system modulus n=p.
—noteg(n)=(p-1)(g-1)

selecting at random the encryption key e
» where 1<e<@g(n), gcd(e, g(n))=1

solve following equation to find decryption key d
—e.d=1 nod g(n) and 0<d<n

publish their public encryption key: PU={e,n}
keep secret private decryption key: PR={d,n}

RSA Use

e to encrypt a message M the sender:
— obtains public key of recipient PU={ e, n}
— computes: C = M npbd n, where O<Mkn

e to decrypt the ciphertext C the owner:
— uses their private key PR={ d, n}
— computes: M = C4 nod n

* note that the message M must be smaller
than the modulus n (block if needed)

Why RSA Works

e because of Euler's Theorem:
—a?iNmpd n = 1 whereged(a, n) =1
* in RSA have:
— n=p. q
—-o(n)=(p-1)(q9-1)
— carefully chose e & d to be inverses nod @(n)
— hence e. d=1+k. @g(n) for someKkK

e hence:
Cd = Md = Mtk.a(n) = |\/]L_(|\/P(n))k

= M. (1)K = M = Mnmod n

Al S

o

RSA Example - Key Setup

Select primes: p=1/ & =11

Compute n = pgq =17 x 11=187

Compute @(n)=(p-1)(g-1)=16 x 10=160
Select e: gcd(e, 160) =1; choose e=7

Determine d: de=1 nod 160andd < 160
Value is d=23 since 23x7=161= 10x160+1

Publish public key PU={ 7, 187}
Keep secret private key PR={ 23, 187}

RSA Example - En/Decryption

sample RSA encryption/decryption is:
given message M = 88 (nb. 88<187)

encryption:
C = 887 nod 187

decryption:
M= 1125 npod 187

11

88

Exponentiation

can use the Square and Multiply Algorithm
a fast, efficient algorithm for exponentiation
concept is based on repeatedly squaring base

and multiplying in the ones that are needed to
compute the result

look at binary representation of exponent

only takes O(log, n) multiples for number n
—eg. 7> =747t =3.7 =10 nod 11
—eg. 3129 = 3128 31 = 5,3 = 4 nod 11

Exponentiation

c=0;f=1
fori1 =k downto O
doc=2XcC
f=(fxf)modn
If b, ==1 then
c=c+1
f=(fxa) modn
return f

Efficient Encryption

encryption uses exponentiation to power e

hence if e small, this will be faster

— often choose e=65537 (21°-1)

— also see choices of e=3 or e=17

but if e too small (eg e=3) can attack

— using Chinese remainder theorem & 3 messages
with different modulii

if e fixed must ensure gcd(e, g(n)) =1
— ie reject any p or g not relatively prime to e

Efficient Decryption

decryption uses exponentiation to power d
— this is likely large, insecure if not
can use the Chinese Remainder Theorem

(CRT) to compute mod p & g separately. then
combine to get desired answer

— approx 4 times faster than doing directly

only owner of private key who knows values
of p & g can use this technique

RSA Key Generation

users of RSA must:

— determine two primes at random - p, Q

— select either e or d and compute the other
primes P, g must not be easily derived from
modulus N=p. g

— means must be sufficiently large

— typically guess and use probabilistic test

exponents €, d are inverses, so use Inverse
algorithm to compute the other

RSA Security

e possible approaches to attacking RSA are:

— brute force key search (infeasible given size of
numbers)

— mathematical attacks (based on difficulty of
computing @(n), by factoring modulus n)

— timing attacks (on running of decryption)

— chosen ciphertext attacks (given properties of
RSA)

Factoring Problem

* mathematical approach takes 3 forms:
— factor n=p. q, hence compute @(n) andthend
— determine @(n) directly and compute d
— find d directly

e currently believe all equivalent to factoring

— have seen slow improvements over the years
e as of May-05 best is 200 decimal digits (663) bit with LS

— biggest improvement comes from improved algorithm
e cfQSto GHFS to LS

— currently assume 1024-2048 bit RSA is secure
e ensure p, q of similar size and matching other constraints

Timing Attacks

developed by Paul Kocher in mid-1990’s

exploit timing variations in operations
— eg. multiplying by small vs large number
— or IF's varying which instructions executed

infer operand size based on time taken
RSA exploits time taken in exponentiation

countermeasures

— use constant exponentiation time
— add random delays

— blind values used in calculations

Chosen Ciphertext Attacks

RSA Is vulnerable to a Chosen Ciphertext
Attack (CCA)

attackers chooses ciphertexts & gets
decrypted plaintext back

choose ciphertext to exploit properties of
RSA to provide info to help cryptanalysis
can counter with random pad of plaintext
or use Optimal Asymmetric Encryption
Padding (OASP)

