18MIT23C - Network Security

Unit - I

Services, Mechanisms, Attacks

- need systematic way to define requirements
- consider three aspects of information security:
 - security attack
 - security mechanism
 - security service
- consider in reverse order

Security Service

- is something that enhances the security of the data processing systems and the information transfers of an organization
- intended to counter security attacks
- make use of one or more security mechanisms to provide the service
- replicate functions normally associated with physical documents
 - eg have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

Security Mechanism

- a mechanism that is designed to detect, prevent, or recover from a security attack
- no single mechanism that will support all functions required
- however one particular element underlies many of the security mechanisms in use: cryptographic techniques
- hence our focus on this area

Security Attack

- any action that compromises the security of information owned by an organization
- information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems
- have a wide range of attacks
- can focus of generic types of attacks
- note: often *threat* & *attack* mean same

Security Services

- X.800 defines it as: a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers
- RFC 2828 defines it as: a processing or communication service provided by a system to give a specific kind of protection to system resources
- X.800 defines it in 5 major categories

Security Services (X.800)

- Authentication assurance that the communicating entity is the one claimed
- Access Control prevention of the unauthorized use of a resource
- Data Confidentiality protection of data from unauthorized disclosure
- **Data Integrity** assurance that data received is as sent by an authorized entity
- Non-Repudiation protection against denial by one of the parties in a communication

Security Mechanisms (X.800)

- specific security mechanisms:
 - encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding, routing control, notarization
- pervasive security mechanisms:
 - trusted functionality, security labels, event
 detection, security audit trails, security recovery

Classify Security Attacks as

- passive attacks eavesdropping on, or monitoring of, transmissions to:
 - obtain message contents, or
 - monitor traffic flows
- **active attacks** modification of data stream to:
 - masquerade of one entity as some other
 - replay previous messages
 - modify messages in transit
 - denial of service

Model for Network Security

Model for Network Security

- using this model requires us to:
 - design a suitable algorithm for the security transformation
 - generate the secret information (keys) used by the algorithm
 - develop methods to distribute and share the secret information
 - specify a protocol enabling the principals to use the transformation and secret information for a security service

Model for Network Access Security

Model for Network Access Security

- using this model requires us to:
 - select appropriate gatekeeper functions to identify users
 - implement security controls to ensure only authorised users access designated information or resources
- trusted computer systems can be used to implement this model

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are privatekey
- was only type prior to invention of public-key in 1970's
- and by far most widely used

Some Basic Terminology

- plaintext original message
- **ciphertext** coded message
- **cipher** algorithm for transforming plaintext to ciphertext
- **key** info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- **decipher (decrypt)** recovering ciphertext from plaintext
- **cryptography** study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- **cryptology** field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

$$Y = \mathsf{E}_{\kappa}(X)$$
$$X = \mathsf{D}_{\kappa}(Y)$$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- characterize cryptographic system by:
 - type of encryption operations used
 - substitution / transposition / product
 - number of keys used
 - single-key or private / two-key or public
 - way in which plaintext is processed
 - block / stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack

Cryptanalytic Attacks

• ciphertext only

 – only know algorithm & ciphertext, is statistical, know or can identify plaintext

• known plaintext

– know/suspect plaintext & ciphertext

chosen plaintext

- select plaintext and obtain ciphertext
- chosen ciphertext
 - select ciphertext and obtain plaintext

• chosen text

select plaintext or ciphertext to en/decrypt

More Definitions

- unconditional security
 - no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext
- computational security
 - given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \otimes 10^9$	$2^{31} \mu s = 35.8 \text{minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \otimes 10^{16}$	$2^{55} \mu s = 1142 years$	10.01 hours
128	$2^{128} = 3.4 \Leftrightarrow 10^{38}$	$2^{127} \mu s = 5.4 \text{(b)} 10^{24}$ years	$5.4 \Rightarrow 10^{18}$ years
168	$2^{168} = 3.7 \Leftrightarrow 10^{50}$	$2^{167} \mu s = 5.9 \text{(b)} 10^{36}$ years	$5.9 \Rightarrow 10^{30}$ years
26 characters (permutation)	$26! = 4 \Leftrightarrow 10^{26}$	$2 \Rightarrow 10^{26} \mu s = 6.4 \Rightarrow 10^{12}$ years	$6.4 \Leftrightarrow 10^6$ years

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

• can define transformation as:

abcdefghijklmnopqrstuvwxyz DEFGHIJKLMNOPQRSTUVWXYZABC

- mathematically give each letter a number abcdefghij k l m n o p q r s t u v w x y z 012345678910111213141516171819202122232425
- then have Caesar cipher as:

 $c = E(p) = (p + k) \mod (26)$

 $p = D(c) = (c - k) \mod (26)$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of 26! = 4 x 1026 keys
- with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are **redundant**
- eg "th lrd s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

• given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get: it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the **Playfair Cipher** is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

Μ	0	Ν	А	R
С	Н	Y	В	D
Е	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	Х	Z

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
 - eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached
Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as: mematrhtgpry etefeteoaat
- giving ciphertext MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

```
Key: 3421567
Plaintext: attackp
ostpone
duntilt
woamxyz
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks
 - high overhead to hide relatively few info bits

Modern Block Ciphers

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy /authentication services
- focus on DES (Data Encryption Standard)
- to illustrate block cipher design principles

Block vs Stream Ciphers

- block ciphers process messages in blocks, each of which is then en/decrypted
- like a substitution on very big characters
 - 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- broader range of applications

Block Cipher Principles

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

Ideal Block Cipher

Feistel Cipher Structure

- Horst Feistel devised the **feistel cipher**
 - based on concept of invertible product cipher
- partitions input block into two halves
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves
- implements Shannon's S-P net concept

Feistel Cipher Structure

Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis

Feistel Cipher Decryption

Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
 as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security

DES History

- IBM developed Lucifer cipher
 - by team led by Feistel in late 60's
 - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES

DES Design Controversy

- although DES standard is public
- was considerable controversy over design

 in choice of 56-bit key (vs Lucifer 128-bit)
 and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
 - especially in financial applications
 - still standardised for legacy application use

DES Encryption Overview

Initial Permutation IP

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

```
IP(675a6967 5e5a6b5a) = (ffb2194d
004df6fb)
```

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as: $L_i = R_{i-1}$ $R_i = L_{i-1} \Leftrightarrow F(R_{i-1}, K_i)$
- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P

DES Round Structure

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
 - outer bits 1 & 6 (**row** bits) select one row of 4
 - inner bits 2-5 (col bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
 - feature known as autoclaving (autokeying)
- example:
 - S(18 09 12 3d 11 17 38 39) = 5fd25e03

DES Key Schedule

- forms subkeys used in each round
 - initial permutation of the key (PC1) which selects
 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating **each half** separately either 1 or 2 places depending on the **key rotation schedule** K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- note practical use issues in h/w vs s/w

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 -
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value

Avalanche Effect

- key desirable property of encryption alg
- where a change of **one** input or key bit results in changing approx **half** output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

Strength of DES – Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

Strength of DES – Analytic Attacks

- now have several analytic attacks on DES
- these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- generally these are statistical attacks
- include
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks

Strength of DES – Timing Attacks

- attacks actual implementation of cipher
- use knowledge of consequences of implementation to derive information about some/all subkey bits
- specifically use fact that calculations can take varying times depending on the value of the inputs to it
- particularly problematic on smartcards

- one of the most significant recent (public) advances in cryptanalysis
- known by NSA in 70's cf DES design
- Murphy, Biham & Shamir published in 90's
- powerful method to analyse block ciphers
- used to analyse most current block ciphers with varying degrees of success
- DES reasonably resistant to it, cf Lucifer

- a statistical attack against Feistel ciphers
- uses cipher structure not previously used
- design of S-P networks has output of function
 f influenced by both input & key
- hence cannot trace values back through cipher without knowing value of the key
- differential cryptanalysis compares two related pairs of encryptions

Differential Cryptanalysis Compares Pairs of Encryptions

- with a known difference in the input
- searching for a known difference in output
- when same subkeys are used

$$\Delta m_{i+1} = m_{i+1} \bigoplus m'_{i+1}$$

= $[m_{i-1} \bigoplus f(m_i, K_i)] \bigoplus [m'_{i-1} \bigoplus f(m'_i, K_i)]$
= $\Delta m_{i-1} \bigoplus [f(m_i, K_i) \bigoplus f(m'_i, K_i)]$

- have some input difference giving some output difference with probability p
- if find instances of some higher probability input / output difference pairs occurring
- can infer subkey that was used in round
- then must iterate process over many rounds (with decreasing probabilities)

- perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR
- when found
 - if intermediate rounds match required XOR have a **right pair**
 - if not then have a **wrong pair**, relative ratio is S/N for attack
- can then deduce keys values for the rounds
 - right pairs suggest same key bits
 - wrong pairs give random values
- for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs
- Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES

Linear Cryptanalysis

- another recent development
- also a statistical method
- must be iterated over rounds, with decreasing probabilities
- developed by Matsui et al in early 90's
- based on finding linear approximations
- can attack DES with 2⁴³ known plaintexts, easier but still in practise infeasible
Linear Cryptanalysis

• find linear approximations with prob p != $\frac{1}{2}$ P[i₁, i₂, ..., i_a] R C[j₁, j₂, ..., j_b] = K[k₁, k₂, ..., k_c]

where i_a, j_b, k_c are bit locations in P,C,K

- gives linear equation for key bits
- get one key bit using max likelihood alg
- using a large number of trial encryptions
- effectiveness given by: $|p^{-1}/_2|$

DES Design Criteria

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
 - non-linearity
 - resistance to differential cryptanalysis
 - good confusion
- 3 criteria for permutation P provide for
 - increased diffusion

Block Cipher Design

- basic principles still like Feistel's in 1970's
- number of rounds
 - more is better, exhaustive search best attack
- function f:
 - provides "confusion", is nonlinear, avalanche
 - have issues of how S-boxes are selected
- key schedule
 - complex subkey creation, key avalanche