18MIT23C - Netwark Security

Unit - I

Services, Mechanisms, Attacks

- need systematic way to define requirements
- consider three aspects of information security:
- security attack
- security mechanism
- security service
- consider in reverse order

Security Service

- is something that enhances the security of the data processing systems and the information transfers of an organization
- intended to counter security attacks
- make use of one or more security mechanisms to provide the service
- replicate functions normally associated with physical documents
- eg have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

Security Mechanism

- a mechanism that is designed to detect, prevent, or recover from a security attack
- no single mechanism that will support all functions required
- however one particular element underlies many of the security mechanisms in use: cryptographic techniques
- hence our focus on this area

Security Attack

- any action that compromises the security of information owned by an organization
- information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems
- have a wide range of attacks
- can focus of generic types of attacks
- note: often threat \& attack mean same

Security Services

- X. 800 defines it as: a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers
- RFC 2828 defines it as: a processing or communication service provided by a system to give a specific kind of protection to system resources
- X. 800 defines it in 5 major categories

Security Services (X.800)

- Authentication - assurance that the communicating entity is the one claimed
- Access Control - prevention of the unauthorized use of a resource
- Data Confidentiality -protection of data from unauthorized disclosure
- Data Integrity - assurance that data received is as sent by an authorized entity
- Non-Repudiation - protection against denial by one of the parties in a communication

Security Mechanisms (X.800)

- specific security mechanisms:
- encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding, routing control, notarization
- pervasive security mechanisms:
- trusted functionality, security labels, event detection, security audit trails, security recovery

Classify Security Attacks as

- passive attacks - eavesdropping on, or monitoring of, transmissions to:
- obtain message contents, or
- monitor traffic flows
- active attacks - modification of data stream to:
- masquerade of one entity as some other
- replay previous messages
- modify messages in transit
- denial of service

Model for Network Security

Model for Network Security

- using this model requires us to:
- design a suitable algorithm for the security transformation
- generate the secret information (keys) used by the algorithm
- develop methods to distribute and share the secret information
- specify a protocol enabling the principals to use the transformation and secret information for a security service

Model for Network Access Security

Model for Network Access Security

- using this model requires us to:
- select appropriate gatekeeper functions to identify users
- implement security controls to ensure only authorised users access designated information or resources
- trusted computer systems can be used to implement this model

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are privatekey
- was only type prior to invention of public-key in 1970's
- and by far most widely used

Some Basic Terminology

- plaintext - original message
- ciphertext - coded message
- cipher - algorithm for transforming plaintext to ciphertext
- key - info used in cipher known only to sender/receiver
- encipher (encrypt) - converting plaintext to ciphertext
- decipher (decrypt) - recovering ciphertext from plaintext
- cryptography - study of encryption principles/methods
- cryptanalysis (codebreaking) - study of principles/ methods of deciphering ciphertext without knowing key
- cryptology - field of both cryptography and cryptanalysis

Symmetric Cipher Model

Secret key shared by sender and recipient

algorithm)

Requirements

- two requirements for secure use of symmetric encryption:
- a strong encryption algorithm
- a secret key known only to sender / receiver
- mathematically have:

$$
\begin{aligned}
& Y=\mathrm{E}_{K}(X) \\
& X=\mathrm{D}_{K}(Y)
\end{aligned}
$$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- characterize cryptographic system by:
- type of encryption operations used
- substitution / transposition / product
- number of keys used
- single-key or private / two-key or public
- way in which plaintext is processed
- block / stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
- cryptanalytic attack
- brute-force attack

Cryptanalytic Attacks

- ciphertext only
- only know algorithm \& ciphertext, is statistical, know or can identify plaintext
- known plaintext
- know/suspect plaintext \& ciphertext
- chosen plaintext
- select plaintext and obtain ciphertext
- chosen ciphertext
- select ciphertext and obtain plaintext
- chosen text
- select plaintext or ciphertext to en/decrypt

More Definitions

- unconditional security
- no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext
- computational security
- given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/ $\mu \mathrm{s}$	Time required at 10^{6} decryptions/ $\mu \mathrm{s}$
32	$2^{32}=4.3 \otimes 10^{9}$	$2^{31} \mu \mathrm{~s} \quad=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \diamond 10^{16}$	$2{ }^{55} \mu \mathrm{~s} \quad=1142$ years	10.01 hours
128	$2^{128}=3.4 \diamond 10^{38}$	$\begin{aligned} & 2^{127} \mu \mathrm{~s} \\ & \text { years } \end{aligned} \quad=5.4 \diamond 10^{24}$	$5.4 \diamond 10^{18}$ years
168	$2^{168}=3.7 \geqslant 10^{50}$	$2^{167} \mu \mathrm{~s} \quad=5.9 \diamond 10^{36}$ years	$5.9 \diamond 10^{30}$ years
26 characters (permutation)	$26!=4 \diamond 10^{26}$	$2 \diamond 10^{26} \mu \mathrm{~s}=6.4 \diamond 10^{12}$ years	$6.4 \diamond 10^{6}$ years

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:
meet me after the toga party
PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

- can define transformation as:
abcdefghijkImnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
- mathematically give each letter a number

```
abcdefghijk l m n o p q r st u v w x y z
012345678910111213141516171819202122232425
```

- then have Caesar cipher as:

$$
\begin{aligned}
& c=\mathrm{E}(p)=(p+k) \bmod (26) \\
& p=\mathrm{D}(\mathrm{c})=(\mathrm{c}-k) \bmod (26)
\end{aligned}
$$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
- A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz
Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN
Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of $26!=4 \times 1026$ keys
- with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th Ird s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
- followed by T,R,N,I,O,A,S
- other letters like $\mathrm{Z}, \mathrm{J}, \mathrm{K}, \mathrm{Q}, \mathrm{X}$ are fairly rare
- have tables of single, double \& triple letter frequencies for various languages

Use in Cryptanalysis

- key concept - monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in $9^{\text {th }}$ century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
- peaks at: A-E-I triple, NO pair, RST triple
- troughs at: JK, X-Z
- for monoalphabetic must identify each letter
- tables of common double/triple letters help

Example Cryptanalysis

- given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P \& Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:
it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

M	O	N	A	R
C	H	Y	B	D
E	F	G	I/J	K
L	P	Q	S	T
U	V	W	X	Z

Encrypting and Decrypting

- plaintext is encrypted two letters at a time

1. if a pair is a repeated letter, insert filler like ' X '
2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have $26 \times 26=676$ digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
- eg. by US \& British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

```
m emat r h t g p r y
    et e f et e o a a t
```

- giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows
Key: 3421567
Plaintext: attackp

$$
\begin{aligned}
& \text { ostpone } \\
& \text { duntilt } \\
& \text { woamxyz }
\end{aligned}
$$

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
- two substitutions make a more complex substitution
- two transpositions make more complex transposition
- but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
- German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have $26^{3}=17576$ alphabets

Hagelin Rotor Machine

Steganography

- an alternative to encryption
- hides existence of message
- using only a subset of letters/words in a longer message marked in some way
- using invisible ink
- hiding in LSB in graphic image or sound file
- has drawbacks
- high overhead to hide relatively few info bits

Modern Block Ciphers

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy /authentication services
- focus on DES (Data Encryption Standard)
- to illustrate block cipher design principles

Block vs Stream Ciphers

- block ciphers process messages in blocks, each of which is then en/decrypted
- like a substitution on very big characters
- 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- broader range of applications

Block Cipher Principles

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2^{64} entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

Ideal Block Cipher

Feistel Cipher Structure

- Horst Feistel devised the feistel cipher
- based on concept of invertible product cipher
- partitions input block into two halves
- process through multiple rounds which
- perform a substitution on left data half
- based on round function of right half \& subkey
- then have permutation swapping halves
- implements Shannon's S-P net concept

Feistel Cipher Structure

Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis

Feistel Cipher Decryption

Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
- as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security

DES History

- IBM developed Lucifer cipher
- by team led by Feistel in late 60's
- used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES

DES Design Controversy

- although DES standard is public
- was considerable controversy over design
- in choice of 56-bit key (vs Lucifer 128-bit)
- and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
- especially in financial applications
- still standardised for legacy application use

DES Encryption Overview

Initial Permutation IP

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

```
IP(675a6967 5e5a6b5a)=(ffb2194d
004df6fb)
```


DES Round Structure

- uses two 32-bit L \& R halves
- as for any Feistel cipher can describe as:
$L_{i}=R_{i-1}$
$R_{i}=L_{i-1}$ 公 $\mathrm{F}\left(R_{i-1}, K_{i}\right)$
- F takes 32-bit R half and 48-bit subkey:
- expands R to 48 -bits using perm E
- adds to subkey using XOR
- passes through 8 S-boxes to get 32-bit result
- finally permutes using 32-bit perm P

DES Round Structure

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
- outer bits $1 \& 6$ (row bits) select one row of 4
- inner bits 2-5 (col bits) are substituted
- result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data \& key
- feature known as autoclaving (autokeying)
- example:
- S (18 0912 3d 111738 39) $=5 f d 25 e 03$

DES Key Schedule

- forms subkeys used in each round
- initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
- 16 stages consisting of:
- rotating each half separately either 1 or 2 places depending on the key rotation schedule K
- selecting 24-bits from each half \& permuting them by PC2 for use in round function F
- note practical use issues in h/w vs s/w

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
- IP undoes final FP step of encryption
- 1st round with SK16 undoes 16th encrypt round
-
- 16th round with SK1 undoes 1st encrypt round
- then final FP undoes initial encryption IP
- thus recovering original data value

Avalanche Effect

- key desirable property of encryption alg
- where a change of one input or key bit results in changing approx half output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

Strength of DES - Key Size

- 56 -bit keys have $2^{56}=7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
- in 1997 on Internet in a few months
- in 1998 on dedicated h/w (EFF) in a few days
- in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

Strength of DES - Analytic Attacks

- now have several analytic attacks on DES
- these utilise some deep structure of the cipher
- by gathering information about encryptions
- can eventually recover some/all of the sub-key bits
- if necessary then exhaustively search for the rest
- generally these are statistical attacks
- include
- differential cryptanalysis
- linear cryptanalysis
- related key attacks

Strength of DES - Timing Attacks

- attacks actual implementation of cipher
- use knowledge of consequences of implementation to derive information about some/all subkey bits
- specifically use fact that calculations can take varying times depending on the value of the inputs to it
- particularly problematic on smartcards

Differential Cryptanalysis

- one of the most significant recent (public) advances in cryptanalysis
- known by NSA in 70's cf DES design
- Murphy, Biham \& Shamir published in 90’s
- powerful method to analyse block ciphers
- used to analyse most current block ciphers with varying degrees of success
- DES reasonably resistant to it, cf Lucifer

Differential Cryptanalysis

- a statistical attack against Feistel ciphers
- uses cipher structure not previously used
- design of S-P networks has output of function f influenced by both input \& key
- hence cannot trace values back through cipher without knowing value of the key
- differential cryptanalysis compares two related pairs of encryptions

Differential Cryptanalysis Compares Pairs of Encryptions

- with a known difference in the input
- searching for a known difference in output
- when same subkeys are used

$$
\begin{aligned}
\Delta m_{i+1} & =m_{i+1} \oplus m_{i+1}^{\prime} \\
& =\left[m_{i-1} \oplus \mathrm{f}\left(m_{i}, K_{i}\right)\right] \oplus\left[m_{i-1}^{\prime} \oplus \mathrm{f}\left(m_{i}^{\prime}, K_{i}\right)\right] \\
& =\Delta m_{i-1} \oplus\left[\mathrm{f}\left(m_{i}, K_{i}\right) \oplus \mathrm{f}\left(m_{i}^{\prime}, K_{i}\right)\right]
\end{aligned}
$$

Differential Cryptanalysis

- have some input difference giving some output difference with probability p
- if find instances of some higher probability input / output difference pairs occurring
- can infer subkey that was used in round
- then must iterate process over many rounds (with decreasing probabilities)

Differential Cryptanalysis

Differential Cryptanalysis

- perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR
- when found
- if intermediate rounds match required XOR have a right pair
- if not then have a wrong pair, relative ratio is S / N for attack
- can then deduce keys values for the rounds
- right pairs suggest same key bits
- wrong pairs give random values
- for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs
- Biham and Shamir have shown how a 13 -round iterated characteristic can break the full 16 -round DES

Linear Cryptanalysis

- another recent development
- also a statistical method
- must be iterated over rounds, with decreasing probabilities
- developed by Matsui et al in early 90's
- based on finding linear approximations
- can attack DES with 2^{43} known plaintexts, easier but still in practise infeasible

Linear Cryptanalysis

- find linear approximations with prob p $!=1 / 2$

$$
\begin{aligned}
& P\left[i_{1}, i_{2}, \ldots, i_{a}\right] \text { 分 } C\left[j_{1}, j_{2}, \ldots, j_{b}\right]= \\
& K\left[k_{1}, k_{2}, \ldots, k_{c}\right] \\
& \text { where } i_{a}, j_{b}, k_{c} \text { are bit locations in } P, C, K
\end{aligned}
$$

- gives linear equation for key bits
- get one key bit using max likelihood alg
- using a large number of trial encryptions
- effectiveness given by: $|\mathrm{p}-1 / 2|$

DES Design Criteria

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
- non-linearity
- resistance to differential cryptanalysis
- good confusion
- 3 criteria for permutation P provide for
- increased diffusion

Block Cipher Design

- basic principles still like Feistel's in 1970's
- number of rounds
- more is better, exhaustive search best attack
- function f:
- provides "confusion", is nonlinear, avalanche
- have issues of how S -boxes are selected
- key schedule
- complex subkey creation, key avalanche

