
 

DATA ANALYTICS AND R PROGRAMMING 

Subject code: 18MIT22C 
 

 

UNIT-V: Control Structures -Functions- Scoping Rules of R - Loop Functions- 

Debugging Tool in R- Profiling R Code- Simulation. 

 

 

Text book:  
1. Roger D. Peng, “R Programming for Data Science” Lean Publishing, 2014. (Unit IV & V)  

 

Prepared by Dr.P.Sumathi



 

Control Structures 

Control structures in R allow you to control the flow of execution of a series of R expressions. 

Basically, control structures allow you to put some “logic” into your R code, rather than just always 

executing the same R code every time. Control structures allow you to respond to inputs or to features 

of the data and execute different R expressions accordingly. 

Commonly used control structures are 

 
• if and else: testing a condition and acting on it 

• for: execute a loop a fixed number of times 

• while: execute a loop while a condition is true 

• repeat: execute an infinite loop (must break out of it to stop) 

• break: break the execution of a loop 

• next: skip an interation of a loop 

 

if-else 
The if-else combination is probably the most commonly used control structure in R (or perhaps 

any language). This structure allows you to test a condition and act on it depending on whether it’s 

true or false. 

For starters, you can just use the if statement. 

 

if(<condition>) { 

## do something 

} 

## Continue with rest of code 
 

The above code does nothing if the condition is false. If you have an action you want to execute 

when the condition is false, then you need an else clause. 

 
if(<condition>) { 

## do something 

} 

else { 
 

} 

 
 

## do something else 

 

You can have a series of tests by following the initial if with any number of else  ifs. 

 
if(<condition1>) { 

## do something 

} else if(<condition2>) { 

## do something different 

} else {  



 

}  

## do something different 

 

Here is an example of a valid if/else structure. 

 
## Generate a uniform random number 

x  <-  runif(1,  0,  10) 

if(x > 3) { 

y <- 10 

} else { 
 

} 
 

y <- 0 

 

y <- 
if(x > 
3) { 

1
0 

} else { 

0 

} 

 

 
if(<con
dition1
>) { 

 

} 
 

if(<con
dition2
>) { 

 

} 

 



 

for Loops 

For loops are pretty much the only looping construct that you will need in R. While you may 

occasionally find a need for other types of loops, in my experience doing data analysis, I’ve found 

very few situations where a for loop wasn’t sufficient. 

In R, for loops take an interator variable and assign it successive values from a sequence or vector. 

For loops are most commonly used for iterating over the elements of an object (list, vector, etc.) 

 
> for(i  in  1:10)  { 

+ print(i) 

+ } 
 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

[1] 6 

[1] 7 

 
 

[1] 8 

[1] 9 

[1] 10 

 

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3, …, 10, executes 

the code within the curly braces, and then the loop exits. 

The following three loops all have the same behavior. 

 
> x <- c("a", "b", "c", "d") 

> 

> for(i  in  1:4)  { 

+ ## Print out each element of 'x' 

+ print(x[i]) 

+ } 

[1]  "a" 

[1]  "b" 

[1]  "c" 

[1]  "d" 
 

The seq_along() function is commonly used in conjunction with for loops in order to generate an 

integer sequence based on the length of an object (in this case, the object x). 

 
> ## Generate a sequence based on length of 'x' 

> for(i in seq_along(x)) { 

+ print(x[i]) 

+ } 



 
[1]  "a" 

[1]  "b" 

[1]  "c" 

[1]  "d" 
 

It is not necessary to use an index-type variable. 

 

> for(letter in x) { 

+ print(letter) 

+ } 

[1]  "a" 

[1]  "b" 

[1]  "c" 

[1]  "d" 
 

For one line loops, the curly braces are not strictly necessary. 

 
> for(i  in  1:4)  print(x[i]) 

[1]  "a" 

[1]  "b" 

[1]  "c" 

[1]  "d" 
 

However, I like to use curly braces even for one-line loops, because that way if you decide to expand 

the loop to multiple lines, you won’t be burned because you forgot to add curly braces (and you will 
be burned by this). 

 

Nested for loops 

for loops can be nested inside of each other. 

 
x  <-  matrix(1:6,  2,  3) 

 

for(i in seq_len(nrow(x))) { 

for(j in seq_len(ncol(x))) { 

print(x[i, j]) 

} 

} 

 

Nested loops are commonly needed for multidimensional or hierarchical data structures (e.g. 

matrices, lists). Be careful with nesting though. Nesting beyond 2 to 3 levels often makes it difficult 

to read/understand the code. If you find yourself in need of a large number of nested loops, you may 

want to break up the loops by using functions (discussed later). 



 
 

while Loops 

While loops begin by testing a condition. If it is true, then they execute the loop body. Once the loop 

body is executed, the condition is tested again, and so forth, until the condition is false, after which 

the loop exits. 

 
> count <- 0 

> while(count < 10) { 

+ print(count) 

+ count <- count + 1 

+ } 
 

 

While loops can potentially result in infinite loops if not written properly. Use with care! 

Sometimes there will be more than one condition in the test. 

 

> z <- 5 

> set.seed(1) 

> 

> while(z >= 3 && z <= 10) { 

+ coin  <-  rbinom(1,  1,  0.5) 

+ 

+ if(coin  == 1) { ## random walk 

+ z <- z + 1 

+ } else { 

+ z <- z - 1 

+ } 

+ } 

> print(z) 

[1]  2 

 

repeat Loops 

repeat initiates an infinite loop right from the start. These are not commonly used in statistical or 

data analysis applications but they do have their uses. The only way to exit a repeat loop is to call 

break. 

One possible paradigm might be in an iterative algorith where you may be searching for a solution 

and you don’t want to stop until you’re close enough to the solution. In this kind of situation, you 

often don’t know in advance how many iterations it’s going to take to get “close enough” to the 

solution. 

 
x0 <- 1 

tol <- 1e-8 

 

repeat { 

x1 <- computeEstimate() 

 



 
if(abs(x1  -  x0)  < tol) { ## Close enough? 

break 

} else { 
 

} 

} 

 

x0 <- x1 

 

Note that the above code will not run if the computeEstimate() function is not defined (I just made 

it up for the purposes of this demonstration). 

The loop agove is a bit dangerous because there’s no guarantee it will stop. You could get in a 

situation where the values of x0 and x1 oscillate back and forth and never converge. Better to set a 

hard limit on the number of iterations by using a for loop and then report whether convergence was 

achieved or not. 

 

next, break 

next is used to skip an iteration of a loop. 
 



71 Functions 
 

 

for(i  in  1:100)  { 

if(i <= 20) { 

## Skip the first 20 iterations 

next 

} 

## Do something here 

} 

 

break is used to exit a loop immediately, regardless of what iteration the loop may be on. 

 
for(i  in  1:100)  { 

print(i) 
 

if(i > 20) { 

## Stop loop after 20 iterations 

break 

} 

} 

 
 

Functions 

Writing functions is a core activity of an R programmer. It represents the key step of the transition 

from a mere “user” to a developer who creates new functionality for R. Functions are often used 

to encapsulate a sequence of expressions that need to be executed numerous times, perhaps under 

slightly different conditions. Functions are also often written when code must be shared with others 

or the public. 

The writing of a function allows a developer to create an interface to the code, that is explicitly 

specified with a set of parameters. This interface provides an abstraction of the code to potential 

users. This abstraction simplifies the users’ lives because it relieves them from having to know every 

detail of how the code operates. In addition, the creation of an interface allows the developer to 

communicate to the user the aspects of the code that are important or are most relevant. 

 
Functions in R 

Functions in R are “first class objects”, which means that they can be treated much like any other R 

object. Importantly, 

 
• Functions can be passed as arguments to other functions. This is very handy for the various 

apply funtions, like lapply() and sapply(). 

• Functions can be nested, so that you can define a function inside of another function 

 
If you’re familiar with common language like C, these features might appear a bit strange. However, 



72 Functions 
 

they are really important in R and can be useful for data analysis. 

 
Your First Function 

 

> f <- function() { 

+ ## This is an empty function 

+ } 

> ## Functions have their own class 

> class(f) 

[1]  "function" 

> ## Execute this function 

> f() 

NULL 
 

Not very interesting, but it’s a start. The next thing we can do is create a function that actually has 

a non-trivial function body. 

 
> f <- function() { 

+ cat("Hello, world!\n") 

+ } 

> f() 

Hello, world! 
 

The last aspect of a basic function is the function arguments. These are the options that you can 

specify to the user that the user may explicity set. For this basic function, we can add an argument 

that determines how many times “Hello, world!” is printed to the console. 

 
> f <- function(num) { 

+ for(i in seq_len(num)) { 

+ cat("Hello, world!\n") 

+ } 

+ } 

> f(3) 

Hello, world! 

Hello, world! 

Hello, world! 

 
Obviously, we could have just cut-and-pasted the cat("Hello, world!\n") code three times to achieve 

the same effect, but then we wouldn’t be programming, would we? Also, it would be un- 

neighborly of you to give your code to someone else and force them to cut-and-paste the code 

however many times the need to see “Hello, world!”. 

 
In general, if you find yourself doing a lot of cutting and pasting, that’s usually a good 

sign that you might need to write a function. 



73 Functions 
 

 

Finally, the function above doesn’t return anything. It just prints “Hello, world!” to the console num 

number of times and then exits. But often it is useful if a function returns something that perhaps 

can be fed into another section of code. 

This next function returns the total number of characters printed to the console. 

 
> f <- function(num) { 

+ hello <- "Hello, world!\n" 

+ for(i in seq_len(num)) { 

+ cat(hello) 

+ } 

+ chars <- nchar(hello) * num 

+ chars 

+ } 

> meaningoflife <- f(3) 

Hello, world! 

Hello, world! 

Hello, world! 

> print(meaningoflife) 

[1]  42 

 
In the above function, we didn’t have to indicate anything special in order for the function to return 

the number of characters. In R, the return value of a function is always the very last expression that 

is evaluated. Because the chars variable is the last expression that is evaluated in this function, that 

becomes the return value of the function. 

Note that there is a return() function that can be used to return an explicity value from a function, 

but it is rarely used in R (we will discuss it a bit later in this chapter). 

Finally, in the above function, the user must specify the value of the argument num. If it is not 

specified by the user, R will throw an error. 

 
> f() 

Error in f(): argument "num" is missing, with no default 
 

We can modify this behavior by setting a default value for the argument num. Any function argument 

can have a default value, if you wish to specify it. Sometimes, argument values are rarely modified 

(except in special cases) and it makes sense to set a default value for that argument. This relieves the 

user from having to specify the value of that argument every single time the function is called. 

Here, for example, we could set the default value for num to be 1, so that if the function is called 

without the num argument being explicitly specified, then it will print “Hello, world!” to the console 

once. 



74 Functions 
 

 

> f <- function(num = 1) { 

+ hello <- "Hello, world!\n" 

+ for(i in seq_len(num)) { 

+ cat(hello) 

+ } 

+ chars <- nchar(hello) * num 

+ chars 

+ } 

> f() ## Use default value for 'num' 

Hello, world! 

[1]  14 

> f(2) ## Use user-specified value 

Hello, world! 

Hello, world! 

[1]  28 

 
Remember that the function still returns the number of characters printed to the console. 

At this point, we have written a function that 

 

• has one formal argument named num with a default value of 1. The formal arguments are the 

arguments included in the function definition. The formals() function returns a list of all the 

formal arguments of a function 

• prints the message “Hello, world!” to the console a number of times indicated by the argument 

num 

• returns the number of characters printed to the console 

 
Functions have named arguments which can optionally have default values. Because all function 

arguments have names, they can be specified using their name. 

 
> f(num = 2) 

Hello, world! 

Hello, world! 

[1]  28 

 
Specifying an argument by its name is sometimes useful if a function has many arguments and it may 

not always be clear which argument is being specified. Here, our function only has one argument 

so there’s no confusion. 



75 Functions 
 

 

Argument Matching 

Calling an R function with arguments can be done in a variety of ways. This may be confusing at first, 

but it’s really handing when doing interactive work at the command line. R functions arguments can 

be matched positionally or by name. Positional matching just means that R assigns the first value 

to the first argument, the second value to second argument, etc. So in the following call to rnorm() 

 
> str(rnorm) 

function  (n,  mean  =  0,  sd  =  1) 

> mydata  <-  rnorm(100,  2,  1) ##  Generate  some  data 
 

100 is assigned to the n argument, 2 is assigned to the mean argument, and 1 is assigned to the sd 

argument, all by positional matching. 

The following calls to the sd() function (which computes the empirical standard deviation of a 

vector of numbers) are all equivalent. Note that sd() has two arguments: x indicates the vector of 

numbers and na.rm is a logical indicating whether missing values should be removed or not. 

 
> ## Positional match first argument, default for 'na.rm' 

> sd(mydata) 

[1]  0.9033251 

> ## Specify 'x' argument by name, default for 'na.rm' 

> sd(x = mydata) 

[1]  0.9033251 

> ## Specify both arguments by name 

> sd(x = mydata, na.rm = FALSE) 

[1]  0.9033251 

 
When specifying the function arguments by name, it doesn’t matter in what order you specify them. 

In the example below, we specify the na.rm argument first, followed by x, even though x is the first 

argument defined in the function definition. 

 
> ## Specify both arguments by name 

> sd(na.rm  =  FALSE,  x  =  mydata) 

[1]  0.9033251 

 
You can mix positional matching with matching by name. When an argument is matched by name, 

it is “taken out” of the argument list and the remaining unnamed arguments are matched in the 

order that they are listed in the function definition. 



76 Functions 
 

 

> sd(na.rm  =  FALSE,  mydata) 

[1]  0.9033251 

 
Here, the mydata object is assigned to the x argument, because it’s the only argument not yet 

specified. 

Below is the argument list for the lm() function, which fits linear models to a dataset. 

 
> args(lm) 

function (formula, data, subset, weights, na.action, method = "qr", model  =  

TRUE,  x  =  FALSE,  y  =  FALSE,  qr  =  TRUE,  singular.ok  =  TRUE, 

contrasts  =  NULL,  offset,  ...) 

NULL 
 

The following two calls are equivalent. 

 
lm(data  =  mydata,  y  ~  x,  model  =  FALSE,  1:100) 

lm(y  ~  x,  mydata,  1:100,  model  =  FALSE) 

 
Even though it’s legal, I don’t recommend messing around with the order of the arguments too 

much, since it can lead to some confusion. 

Most of the time, named arguments are useful on the command line when you have a long argument 

list and you want to use the defaults for everything except for an argument near the end of the list. 

Named arguments also help if you can remember the name of the argument and not its position on 

the argument list. For example, plotting functions often have a lot of options to allow for 

customization, but this makes it difficult to remember exactly the position of every argument on 

the argument list. 

Function arguments can also be partially matched, which is useful for interactive work. The order 

of operations when given an argument is 

 
1. Check for exact match for a named argument 

2. Check for a partial match 

3. Check for a positional match 

 
Partial matching should be avoided when writing longer code or programs, because it may lead to 

confusion if someone is reading the code. However, partial matching is very useful when calling 

functions interactively that have very long argument names. 

In addition to not specifying a default value, you can also set an argument value to NULL. 



77 Functions 
 

 

f  <-  function(a,  b  =  1,  c  =  2,  d  =  NULL)  { 
 

} 
 

You can check to see whether an R object is NULL with the is.null() function. It is sometimes 

useful to allow an argument to take the NULL value, which might indicate that the function should 

take some specific action. 

 
Lazy Evaluation 

Arguments to functions are evaluated lazily, so they are evaluated only as needed in the body of the 

function. 

In this example, the function f() has two arguments: a and b. 

 
> f <- function(a, b) { 

+ a^2 

+ } 

> f(2) 

[1]  4 
 

This function never actually uses the argument b, so calling f(2) will not produce an error because 

the 2 gets positionally matched to a. This behavior can be good or bad. It’s common to write a 

function that doesn’t use an argument and not notice it simply because R never throws an error. 

This example also shows lazy evaluation at work, but does eventually result in an error. 

 
> f <- function(a, b) { 

+ print(a) 

+ print(b) 

+ } 

> f(45) 

[1]  45 

Error in print(b): argument "b" is missing, with no default 
 

Notice that “45” got printed first before the error was triggered. This is because b did not have to 

be evaluated until after print(a). Once the function tried to evaluate print(b) the function had to 

throw an error. 



78 Functions 
 

 

The ... Argument 

There is a special argument in R known as the ... argument, which indicate a variable number 

of arguments that are usually passed on to other functions. The ... argument is often used when 

extending another function and you don’t want to copy the entire argument list of the original 

function 

For example, a custom plotting function may want to make use of the default plot() function along 

with its entire argument list. The function below changes the default for the type argument to the 

value type = "l" (the original default was type = "p"). 

 
myplot <- function(x, y, type = "l", ...) { 

plot(x, y, type =   type, ...) ## Pass '...' to 'plot' function 

} 

 

Generic functions use ... so that extra arguments can be passed to methods. 

 
> mean 

function (x, ...) 

UseMethod("mean") 

<bytecode:  0x7fe7bc5cf988> 

<environment:  namespace:base> 

 

The ... argument is necessary when the number of arguments passed to the function cannot be 

known in advance. This is clear in functions like paste() and cat(). 

 
> args(paste) 

function  (...,  sep  =  "  ",  collapse  =  NULL) 

NULL 

> args(cat) 

function  (...,  file  =  "",  sep  =  "  ",  fill  =  FALSE,  labels  =  NULL, 

append = FALSE) 

NULL 

 

Because both paste() and cat() print out text to the console by combining multiple character 

vectors together, it is impossible for those functions to know in advance how many character vectors 

will be passed to the function by the user. So the first argument to either function is .... 

 

Arguments Coming After the Argument 

One catch with ... is that any arguments that appear after ........ on the argument list must be named 

explicitly and cannot be partially matched or matched positionally. 

Take a look at the arguments to the paste() function. 



80 Scoping Rules of R 
 

 

> args(paste) 

function  (...,  sep  =  "  ",  collapse  =  NULL) 

NULL 

 
With the paste() function, the arguments sep and collapse must be named explicitly and in full 

if the default values are not going to be used. 

Here I specify that I want “a” and “b” to be pasted together and separated by a colon. 

 
> paste("a", "b", sep = ":") 

[1]  "a:b" 
 

If I don’t specify the sep argument in full and attempt to rely on partial matching, I don’t get the 

expected result. 

 
> paste("a", "b", se = ":") 

[1]  "a  b  :" 
 
 

Scoping Rules of R 

 
> lm <- function(x) { x * x } 

> lm 

function(x) { x * x  } 

 

how does R know what value to assign to the symbol lm? Why doesn’t it give it the value of lm that 

is in the stats package? 

When R tries to bind a value to a symbol, it searches through a series of environments to find the 

appropriate value. When you are working on the command line and need to retrieve the value of an 

R object, the order in which things occur is roughly 
 

1. Search the global environment (i.e. your workspace) for a symbol name matching the one 

requested. 

2. Search the namespaces of each of the packages on the search list 

The search list can be found by using the search() function. 

> search() 

[1]  ".GlobalEnv" "package:knitr" "package:stats" 

[4]  "package:graphics" "package:grDevices"  "package:utils" 

[7]  "package:datasets" "Autoloads" "package:base" 

 

The global environment or the user’s workspace is always the first element of the search list and the 

base package is always the last. For better or for worse, the order of the packages on the search list 

matters, particularly if there are multiple objects with the same name in different packages. 

Users can configure which packages get loaded on startup so if you are writing a function (or a 



81 Scoping Rules of R 
 

package), you cannot assume that there will be a set list of packages available in a given order. 

When a user loads a package with library() the namespace of that package gets put in position 2 

of the search list (by default) and everything else gets shifted down the list. 

Note that R has separate namespaces for functions and non-functions so it’s possible to have an 

object named c and a function named c(). 

 

Scoping Rules 

The scoping rules for R are the main feature that make it different from the original S language (in 

case you care about that). This may seem like an esoteric aspect of R, but it’s one of its more 

interesting and useful features. 

The scoping rules of a language determine how a value is associated with a free variable in a function. 

R uses lexical scoping⁶⁰ or static scoping. An alternative to lexical scoping is dynamic scoping which 

is implemented by some languages. Lexical scoping turns out to be particularly useful for simplifying 

statistical computations 

Related to the scoping rules is how R uses the search list to bind a value to a symbol 

Consider the following function. 

 
> f <- function(x, y) { 

+ x^2 + y / z 

+ } 
 

This function has 2 formal arguments x and y. In the body of the function there is another symbol 

z. In this case z is called a free variable. 

The scoping rules of a language determine how values are assigned to free variables. Free variables 

are not formal arguments and are not local variables (assigned insided the function body). 

Lexical scoping in R means that 

 
the values of free variables are searched for in the environment in which the function 
was defined. 

 
Okay then, what is an environment? 

An environment is a collection of (symbol, value) pairs, i.e. x is a symbol and 3.14 might be its value. 

Every environment has a parent environment and it is possible for an environment to have multiple 

“children”. The only environment without a parent is the empty environment. 

A function, together with an environment, makes up what is called a closure or function closure. 

Most of the time we don’t need to think too much about a function and its associated environment 

(making up the closure), but occasionally, this setup can be very useful. The function closure model 

can be used to create functions that “carry around” data with them. 

How do we associate a value to a free variable? There is a search process that occurs that goes as 

follows: 

http://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope


90 Loop Functions 
 

 

• If the value of a symbol is not found in the environment in which a function was defined, 

then the search is continued in the parent environment. 

• The search continues down the sequence of parent environments until we hit the top-level 
environment; this usually the global environment (workspace) or the namespace of a package. 

• After the top-level environment, the search continues down the search list until we hit the 

empty environment. 

 
If a value for a given symbol cannot be found once the empty environment is arrived at, then an 

error is thrown. 

One implication of this search process is that it can be affected by the number of packages you have 

attached to the search list. The more packages you have attached, the more symbols R has to sort 

through in order to assign a value. That said, you’d have to have a pretty large number of packages 

attached in order to notice a real difference in performance. 

 

Looping on the Command Line 

Writing for and while loops is useful when programming but not particularly easy when working 

interactively on the command line. Multi-line expressions with curly braces are just not that easy to 

sort through when working on the command line. R has some functions which implement looping 

in a compact form to make your life easier. 

 
• lapply(): Loop over a list and evaluate a function on each element 

• sapply(): Same as lapply but try to simplify the result 

• apply(): Apply a function over the margins of an array 

• tapply(): Apply a function over subsets of a vector 

• mapply(): Multivariate version of lapply 

 
An auxiliary function split is also useful, particularly in conjunction with lapply. 

 

lapply() 
The lapply() function does the following simple series of operations: 

 
1. it loops over a list, iterating over each element in that list 

2. it applies a function to each element of the list (a function that you specify) 

3. and returns a list (the l is for “list”). 

 
This function takes three arguments: (1) a list X; (2) a function (or the name of a function) FUN; (3) 

other arguments via its ... argument. If X is not a list, it will be coerced to a list using as.list(). 

The body of the lapply() function can be seen here. 
 

> lapply 



91 Loop Functions 
 

function (X, FUN, ...) 

{ 

FUN <- match.fun(FUN) 

if (!is.vector(X) || is.object(X)) 

X <- as.list(X) 

.Internal(lapply(X, FUN)) 

} 

<bytecode:  0x7fa339937fc0> 

<environment:  namespace:base> 
 

Note that the actual looping is done internally in C code for efficiency reasons. 

It’s important to remember that lapply() always returns a list, regardless of the class of the input. 

Here’s an example of applying the mean() function to all elements of a list. If the original list has 

names, the the names will be preserved in the output. 

 
> x  <-  list(a  =  1:5,  b  =  rnorm(10)) 

> lapply(x, mean) 

$a 

[1]  3 
 

$b 

[1]  0.1322028 
 

Notice that here we are passing the mean() function as an argument to the lapply() function. 

Functions in R can be used this way and can be passed back and forth as arguments just like any 

other object. When you pass a function to another function, you do not need to include the open 

and closed parentheses () like you do when you are calling a function. 

Here is another example of using lapply(). 

 
> x  <-  list(a  =  1:4,  b  =  rnorm(10),  c  =  rnorm(20,  1),  d  =  rnorm(100,  5)) 

> lapply(x, mean) 

$a 
 

[1] 2.5 

$b 

[1] 

 
 
0.248845 

$c 

[1] 

 
 
0.9935285 



92 Loop Functions 
 

 
 

 
$d 

[1]  5.051388 
 

You can use lapply() to evaluate a function multiple times each with a different argument. Below, is 

an example where I call the runif() function (to generate uniformly distributed random variables) 

four times, each time generating a different number of random numbers. 

 
> x  <-  1:4 

> lapply(x, runif) 

[[1]] 

[1]  0.02778712 
 

[[2]] 

[1]  0.5273108  0.8803191 
 

[[3]] 

[1]  0.37306337  0.04795913  0.13862825 
 

[[4]] 

[1]  0.3214921  0.1548316  0.1322282  0.2213059 
 

When you pass a function to lapply(), lapply() takes elements of the list and passes them as the 

first argument of the function you are applying. In the above example, the first argument of runif() 

is n, and so the elements of the sequence 1:4 all got passed to the n argument of runif(). 

Functions that you pass to lapply() may have other arguments. For example, the runif() function 

has a min and max argument too. In the example above I used the default values for min and max. 

How would you be able to specify different values for that in the context of lapply()? 

Here is where the ... argument to lapply() comes into play. Any arguments that you place in the 

... argument will get passed down to the function being applied to the elements of the list. 

Here, the min = 0 and max = 10 arguments are passed down to runif() every time it gets called. 



93 Loop Functions 
 

 

> x  <-  1:4 

> lapply(x,  runif,  min  =  0,  max  =  10) 

[[1]] 

[1]  2.263808 
 

[[2]] 

[1]  1.314165  9.815635 
 

[[3]] 

[1]  3.270137  5.069395  6.814425 
 

[[4]] 

[1]  0.9916910  1.1890256  0.5043966  9.2925392 
 

So now, instead of the random numbers being between 0 and 1 (the default), the are all between 0 

and 10. 

The lapply() function and its friends make heavy use of anonymous functions. Anonymous 

functions are like members of Project Mayhem⁶⁵—they have no names. These are functions are 

generated “on the fly” as you are using lapply(). Once the call to lapply() is finished, the function 

disappears and does not appear in the workspace. 

Here I am creating a list that contains two matrices. 

 
> x  <-  list(a  =  matrix(1:4,  2,  2),  b  =  matrix(1:6,  3,  2)) 

> x 

$a 
 

 [,1] [,2] 

[1,] 1 3 

[2,] 2 4 

$b 
 
 
[,1] 

 
 
[,2] 

[1,] 1 4 

[2,] 2 5 

[3,] 3 6 

 
 

Suppose I wanted to extract the first column of each matrix in the list. I could write an anonymous 

function for extracting the first column of each matrix. 
 

 

 
 

http://en.wikipedia.org/wiki/Fight_Club


94 Loop Functions 
 

 

> lapply(x,  function(elt)  {  elt[,1]  }) 

$a 

[1]  1  2 
 

$b 

[1]  1  2  3 
 

Notice that I put the function() definition right in the call to lapply(). This is perfectly legal and 

acceptable. You can put an arbitrarily complicated function definition inside lapply(), but if it’s 

going to be more complicated, it’s probably a better idea to define the function separately. 

For example, I could have done the following. 

 
> f <- function(elt) { 

+ elt[,  1] 

+ } 

> lapply(x, f) 

$a 

[1]  1  2 
 

$b 

[1]  1  2  3 
 

Now the function is no longer anonymous; it’s name is f. Whether you use an anonymous function 

or you define a function first depends on your context. If you think the function f is something 

you’re going to need a lot in other parts of your code, you might want to define it separately. But if 

you’re just going to use it for this call to lapply(), then it’s probably simpler to use an anonymous 

function. 

 

sapply() 

The sapply() function behaves similarly to lapply(); the only real difference is in the return value. 

sapply() will try to simplify the result of lapply() if possible. Essentially, sapply() calls lapply() 

on its input and then applies the following algorithm: 

 
• If the result is a list where every element is length 1, then a vector is returned 

• If the result is a list where every element is a vector of the same length (> 1), a matrix is 

returned. 

• If it can’t figure things out, a list is returned 

Here’s the result of calling lapply(). 



95 Loop Functions 
 

 

> x  <-  list(a  =  1:4,  b  =  rnorm(10),  c  =  rnorm(20,  1),  d  =  rnorm(100,  5)) 

> lapply(x, mean) 

$a 
 

[1] 2.5 

$b 

[1] 

 
 
-0.251483 

$c 

[1] 

 
 
1.481246 

$d 

[1] 

 
 
4.968715 

 
 

Notice that lapply() returns a list (as usual), but that each element of the list has length 1. 

Here’s the result of calling sapply() on the same list. 

 
> sapply(x, mean) 

a b  c  d 

2.500000 -0.251483 1.481246 4.968715 

 
Because the result of lapply() was a list where each element had length 1, sapply() collapsed the 

output into a numeric vector, which is often more useful than a list. 

 

split() 
The split() function takes a vector or other objects and splits it into groups determined by a factor 

or list of factors. 

The arguments to split() are 

 
> str(split) 

function  (x,  f,  drop  =  FALSE,  ...) 
 

where 

 
• x is a vector (or list) or data frame 

 



96 Loop Functions 
 

 

• f is a factor (or coerced to one) or a list of factors 

• drop indicates whether empty factors levels should be dropped 

 
The combination of split() and a function like lapply() or sapply() is a common paradigm in R. 

The basic idea is that you can take a data structure, split it into subsets defined by another variable, 

and apply a function over those subsets. The results of applying tha function over the subsets are 

then collated and returned as an object. This sequence of operations is sometimes referred to as 

“map-reduce” in other contexts. 

Here we simulate some data and split it according to a factor variable. 

 
> x  <-  c(rnorm(10),  runif(10),  rnorm(10,  1)) 

> f  <-  gl(3,  10) 

> split(x, f) 
 

$`1` 

[1] 
 

0.3981302 

 
-0.4075286 

 
1.3242586 

 
-0.7012317 -0.5806143 -1.0010722 

[7] -0.6681786 0.9451850 0.4337021 1.0051592 

$`2` 

[1] 

 
 
0.34822440 

 
 
0.94893818 

 
 
0.64667919 

 
 
0.03527777 0.59644846 0.41531800 

[7] 0.07689704 0.52804888 0.96233331 0.70874005 

 

$`3` 

[1] 

 
 
 

1.13444766 1.76559900 1.95513668 0.94943430 

 
 
 

0.69418458 

[6] 1.89367370  -0.04729815 2.97133739 0.61636789 2.65414530 

 
 

A common idiom is split followed by an lapply. 

 
> lapply(split(x, f), mean) 

$`1` 

[1]  0.07478098 
 

$`2` 

[1]  0.5266905 
 

$`3` 

[1]  1.458703 
 

tapply 

tapply() is used to apply a function over subsets of a vector. It can be thought of as a combination 

of split() and sapply() for vectors only. I’ve been told that the “t” in tapply() refers to “table”, 

but that is unconfirmed. 

 
> str(tapply) 

function  (X,  INDEX,  FUN  =  NULL,  ...,  simplify  =  TRUE) 
 



97 Loop Functions 
 

The arguments to tapply() are as follows: 

 
• X is a vector 

 

• INDEX is a factor or a list of factors (or else they are coerced to factors) 

• FUN is a function to be applied 

• … contains other arguments to be passed FUN 

• simplify, should we simplify the result? 

 
Given a vector of numbers, one simple operation is to take group means. 

 
> ## Simulate some data 

> x  <-  c(rnorm(10),  runif(10),  rnorm(10,  1)) 

> ## Define some groups with a factor variable 

> f  <-  gl(3,  10) 

> f 

[1]  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3  3 

Levels: 1 2 3 

> tapply(x, f, mean) 

1 2 3 

0.1896235  0.5336667  0.9568236 
 

We can also take the group means without simplifying the result, which will give us a list. For 

functions that return a single value, usually, this is not what we want, but it can be done. 

 
> tapply(x, f, mean, simplify = FALSE) 

$`1` 

[1]  0.1896235 
 

$`2` 

[1]  0.5336667 
 

$`3` 

[1]  0.9568236 
 

We can also apply functions that return more than a single value. In this case, tapply() will not 

simplify the result and will return a list. Here’s an example of finding the range of each sub-group. 



98  
 

 
 

> tapply(x, f, range) 

$`1` 

[1]  -1.869789 

 
1.497041 

$`2` 

[1]  0.09515213 

 

 

0.86723879 

$`3` 

[1]  -0.5690822 

 

 

2.3644349 

apply() 
 

 

The apply() function is used to a evaluate a function (often an anonymous one) over the margins 

of an array. It is most often used to apply a function to the rows or columns of a matrix (which is 

just a 2-dimensional array). However, it can be used with general arrays, for example, to take the 

average of an array of matrices. Using apply() is not really faster than writing a loop, but it works 

in one line and is highly compact. 

 
> str(apply) 

function (X, MARGIN, FUN, ...) 
 

The arguments to apply() are 

 
• X is an array 

• MARGIN is an integer vector indicating which margins should be “retained”. 

• FUN is a function to be applied 

• ... is for other arguments to be passed to FUN 

 

> apply(x,  1,  sum) ##  Take  the  mean  of  each  row 
 

[1] -0.48483448 5.33222301 -3.33862932 -1.39998450 2.37859098 

[6] 0.01082604 -6.29457190 -0.26287700 0.71133578 -3.38125293 

[11] -4.67522818 3.01900232 -2.39466347 -2.16004389 5.33063755 

[16] -2.92024635 3.52026401 -1.84880901 -4.10213912 5.30667310 

 
Note that in both calls to apply(), the return value was a vector of numbers. 

You’ve probably noticed that the second argument is either a 1 or a 2, depending on whether we 

want row statistics or column statistics. What exactly is the second argument to apply()? 

The MARGIN argument essentially indicates to apply() which dimension of the array you want to 

preserve or retain. So when taking the mean of each column, I specify 

 
> apply(x,  2,  mean) 

 
because I want to collapse the first dimension (the rows) by taking the mean and I want to preserve 

the number of columns. Similarly, when I want the row sums, I run 



99  
 

 
> apply(x,  1,  mean) 

 
because I want to collapse the columns (the second dimension) and preserve the number of rows 

(the first dimension). 
> a  <-  array(rnorm(2  *  2  *  10),  c(2,  2,  10)) 

> apply(a,  c(1,  2),  mean) 
 

[,1] [,2] 

[1,]  0.1681387 -0.1039673 

[2,]  0.3519741 -0.4029737 

 
 

In the call to apply() here, I indicated via the MARGIN argument that I wanted to preserve the first 

and second dimensions and to collapse the third dimension by taking the mean. 

There is a faster way to do this specific operation via the colMeans() function. 

 
> rowMeans(a,  dims = 2) ## Faster 

 

[,1] [,2] 

[1,]  0.1681387 -0.1039673 

[2,]  0.3519741 -0.4029737 

 
 

In this situation, I might argue that the use of rowMeans() is less readable, but it is substantially 

faster with large arrays. 

 

Debugging 

 
• message: A generic notification/diagnostic message produced by the message() function; 

execution of the function continues 

• warning: An indication that something is wrong but not necessarily fatal; execution of the 

function continues. Warnings are generated by the warning() function 

• error: An indication that a fatal problem has occurred and execution of the function stops. 

Errors are produced by the stop() function. 

• condition: A generic concept for indicating that something unexpected has occurred; pro- 

grammers can create their own custom conditions if they want. 

 
Here is an example of a warning that you might receive in the course of using R. 

 
> log(-1) 

Warning in log(-1): NaNs produced 

[1]  NaN 
 

This warning lets you know that taking the log of a negative number results in a NaN value because 

you can’t take the log of negative numbers. Nevertheless, R doesn’t give an error, because it has a 

useful value that it can return, the NaN value. The warning is just there to let you know that something 

unexpected happen. Depending on what you are programming, you may have intentionally taken 

the log of a negative number in order to move on to another section of code. 



100  
 

Here is another function that is designed to print a message to the console depending on the nature 

of its input. 
 

> printmessage <- function(x) { 

+ if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

 
This function is simple—it prints a message telling you whether x is greater than zero or less than or 

equal to zero. It also returns its input invisibly, which is a common practice with “print” functions. 

Returning an object invisibly means that the return value does not get auto-printed when the 

function is called. 

Take a hard look at the function above and see if you can identify any bugs or problems. 

We can execute the function as follows. 

> printmessage(1) 

[1]  "x  is  greater  than  zero" 

 
The function seems to work fine at this point. No errors, warnings, or messages. 

 
> printmessage(NA) 

Error  in  if  (x  >  0)  print("x  is  greater  than  zero")  else  print("x  is  less  than  o\ 

r  equal  to  zero"):  missing  value  where  TRUE/FALSE  needed 

 

What happened? 

Well, the first thing the function does is test if x > 0. But you can’t do that test if x is a NA or NaN 

value. R doesn’t know what to do in this case so it stops with a fatal error. 

We can fix this problem by anticipating the possibility of NA values and checking to see if the input 

is NA with the is.na() function. 

 
> printmessage2 <- function(x) { 

+ if(is.na(x)) 

+ print("x is a missing value!") 

+ else if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

 

> printmessage2(NA) 

[1]  "x  is  a  missing  value!" 
 



101  
 

And all is fine. 

Now what about the following situation. 

 
> x <- log(c(-1, 2)) 

Warning  in  log(c(-1,  2)):  NaNs  produced 

> printmessage2(x) 

Warning in if (is.na(x)) print("x is a missing value!") else if (x > 0) 

print("x is greater than zero") else print("x is less than or equal to 

zero"): the condition has length > 1 and only the first element will be 

used 

[1]  "x  is  a  missing  value!" 
 

Now what?? Why are we getting this warning? The warning says “the condition has length > 1 and 

only the first element will be used”. 

The problem here is that I passed printmessage2() a vector x that was of length 2 rather then length 

1. Inside the body of printmessage2() the expression is.na(x) returns a vector that is tested in the 

if statement. However, if cannot take vector arguments so you get a warning. The fundamental 

problem here is that printmessage2() is not vectorized. 

We can solve this problem two ways. One is by simply not allowing vector arguments. The other 

way is to vectorize the printmessage2() function to allow it to take vector arguments. 

For the first way, we simply need to check the length of the input. 

 
> printmessage3 <- function(x) { 

+ if(length(x) > 1L) 

+ stop("'x' has length > 1") 

+ if(is.na(x)) 

+ print("x is a missing value!") 

+ else if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 
 

Now when we pass printmessage3() a vector we should get an error. 



102  

 

 

> printmessage3(1:2) 

Error  in  printmessage3(1:2):  'x'  has  length  >  1 
 

Vectorizing the function can be accomplished easily with the Vectorize() function. 

 
> printmessage4 <- Vectorize(printmessage2) 

> out <- printmessage4(c(-1, 2)) 

[1]  "x  is  less  than  or  equal  to  zero" 

[1] "x is greater than zero" 
 
 

 

Profiling R Code 

 
## Elapsed time > user time 

system.time(readLines("http://www.jhsph.edu")) 

user system elapsed 

0.004 0.002 0.431 
 

 

## Elapsed time < user time 

> hilbert <- function(n) { 

+ i  <-  1:n 

+ 1  /  outer(i  -  1,  i,  "+") 

+ } 

> x <- hilbert(1000) 

> system.time(svd(x)) 

user system elapsed 

1.035  0.255 0.462 

 
In this case I ran a singular value decomposition on the matrix in x, which is a common linear 

algebra procedure. Because my computer is able to split the work across multiple processors, the 

elapsed time is about half the user time. 

 

Timing Longer Expressions 

You can time longer expressions by wrapping them in curly braces within the call to system.time(). 

 
> system.time({ 

+ n <- 1000 

+ r <- numeric(n) 

+ for(i  in  1:n)  { 

+ x <- rnorm(n) 

http://www.jhsph.edu/


103  

 

+ r[i] <- mean(x) 

+ } 

+ }) 

user system elapsed 

0.086  0.001 0.088 

 
If your expression is getting pretty long (more than 2 or 3 lines), it might be better to either break it 

into smaller pieces or to use the profiler. The problem is that if the expression is too long, you won’t 

be able to identify which part of the code is causing the bottleneck. 

 
> Rprof() ## Turn on the profiler 

 

The profiler can be turned off by passing NULL to Rprof(). 

 
> Rprof(NULL) ##  Turn  off  the  profiler 

 

The raw output from the profiler looks something like this. Here I’m calling the lm() function on 

some data with the profiler running. 
 

The “by.self” output corrects for this discrepancy. 
 
 

Now you can see that only about 4% of the runtime is spent in the actual lm() function, whereas 

over 40% of the time is spent in lm.fit(). In this case, this is no surprise since the lm.fit() function 

is the function that actually fits the linear model. 

You can see that a reasonable amount of time is spent in functions not necessarily associated with 

linear modeling (i.e. as.list.data.frame, [.data.frame). This is because the lm() function does a 

bit of pre-processing and checking before it actually fits the model. This is common with modeling 

functions—the preprocessing and checking is useful to see if there are any errors. But those two 

functions take up over 1.5 seconds of runtime. What if you want to fit this model 10,000 times? 

You’re going to be spending a lot of time in preprocessing and checking. 

The final bit of output that summaryRprof() provides is the sampling interval and the total runtime. 

 
$sample.interval 

[1]  0.02 

 
$sampling.time 

[1]  7.41 

 

Simulation 

Simulation is an important (and big) topic for both statistics and for a variety of other areas where 

there is a need to introduce randomness. Sometimes you want to implement a statistical procedure 

that requires random number generation or samplie (i.e. Markov chain Monte Carlo, the bootstrap, 

random forests, bagging) and sometimes you want to simulate a system and random number 



104  

 

generators can be used to model random inputs. 

R comes with a set of pseuodo-random number generators that allow you to simulate from well- 

known probability distributions like the Normal, Poisson, and binomial. Some example functions 

for probability distributions in R 

 
• rnorm: generate random Normal variates with a given mean and standard deviation 

• dnorm: evaluate the Normal probability density (with a given mean/SD) at a point (or vector 

of points) 

• pnorm: evaluate the cumulative distribution function for a Normal distribution 

• rpois: generate random Poisson variates with a given rate 

 
For each probability distribution there are typically four functions available that start with a “r”, 

“d”, “p”, and “q”. The “r” function is the one that actually simulates randon numbers from that 

distribution. The other functions are prefixed with a 

 
• d for density 

• r for random number generation 

• p for cumulative distribution 

• q for quantile function (inverse cumulative distribution) 

 
If you’re only interested in simulating random numbers, then you will likely only need the        “r” 

functions and not the others. However, if you intend to simulate from arbitrary probability 

distributions using something like rejection sampling, then you will need the other functions too. 

Probably the most common probability distribution to work with the is the Normal distribution (also 

known as the Gaussian). Working with the Normal distributions requires using these four functions 
 

 

dnorm(x,  mean  =  0,  sd  =  1,  log  =  FALSE) 

pnorm(q,  mean  =  0,  sd  =  1,  lower.tail  =  TRUE,  log.p  =  FALSE) 

qnorm(p,  mean  =  0,  sd  =  1,  lower.tail  =  TRUE,  log.p  =  FALSE) 

rnorm(n,  mean  =  0,  sd  =  1) 

 
Here we simulate standard Normal random numbers with mean 0 and standard deviation 1. 

 
> ## Simulate standard Normal random numbers 

> x <- rnorm(10) 

> x 

[1] 0.01874617  -0.18425254  -1.37133055  -0.59916772 0.29454513 

[6] 0.38979430  -1.20807618  -0.36367602  -1.62667268  -0.25647839 
 

We can modify the default parameters to simulate numbers with mean 20 and standard deviation 2. 

 
> x  <-  rnorm(10,  20,  2) 

> x 

[1]  22.20356  21.51156  19.52353  21.97489  21.48278  20.17869  18.09011 



105  

 

[8]  19.60970  21.85104  20.96596 

> summary(x) 
 

Min.  1st  Qu. Median Mean 3rd Qu. Max. 

18.09 19.75 21.22 20.74 21.77 22.20 

 
 

If you wanted to know what was the probability of a random Normal variable of being less than, 

say, 2, you could use the pnorm() function to do that calculation. 

 
> pnorm(2) 

[1]  0.9772499 

 
You never know when that calculation will come in handy. 

 
Setting the random number seed 

When simulating any random numbers it is essential to set the random number seed. Setting the 

random number seed with set.seed() ensures reproducibility of the sequence of random numbers. 

 

> set.seed(1) 

> rnorm(5) 

[1]  -0.6264538 0.1836433  -0.8356286 1.5952808 0.3295078 

 
Note that if I call rnorm() again I will of course get a different set of 5 random numbers. 

 
> rnorm(5) 

[1]  -0.8204684 0.4874291 0.7383247 0.5757814  -0.3053884 

 
If I want to reproduce the original set of random numbers, I can just reset the seed with set.seed(). 

 
> set.seed(1) 

> rnorm(5) ## Same as before 

[1]  -0.6264538 0.1836433  -0.8356286 1.5952808 0.3295078 

 
In general, you should always set the random number seed when conducting a simulation! 

Otherwise, you will not be able to reconstruct the exact numbers that you produced in an analysis. 

It is possible to generate random numbers from other probability distributions like the Poisson. The 

Poisson distribution is commonly used to model data that come in the form of counts. 
 
 

> rpois(10,  1) ## Counts with a mean of 1 

[1]  0  0  1  1  2  1 1 4 1 2      

> rpois(10,  2) ## Counts with a mean of 2 

[1]  4  1  2  0  1  1 0 1 4 1      

> rpois(10,  20) ## Counts with a mean of 20 

[1]  19  19  24  23  22  24  23  20  11  22 
 



106  

 

Simulating a Linear Model 

> ## Always set your seed! 

> set.seed(20) 

> 

> ## Simulate predictor variable 

> x <- rnorm(100) 

> 

> ## Simulate the error term 

> e  <-  rnorm(100,  0,  2) 

> 

> ## Compute the outcome via the model 

> y <- 0.5 + 2 * x + e 

> summary(y) 

Min.  1st  Qu. Median Mean 3rd Qu. Max. 

-6.4080  -1.5400 0.6789 0.6893 2.9300 6.5050 

 

What if we wanted to simulate a predictor variable x that is binary instead of having a Normal 

distribution. We can use the rbinom() function to simulate binary random variables. 

 
> set.seed(10) 

> x  <-  rbinom(100,  1,  0.5) 

> str(x) ## 'x' is now 0s and 1s 

int  [1:100]  1  0  0  1  0  0  0  0  1  0  ... 

 
> set.seed(1) 

> 

> ## Simulate the predictor variable as before 

> x <- rnorm(100) 

 
Now we need to compute the log mean of the model and then exponentiate it to get the mean to 

pass to rpois(). 

 
> log.mu <- 0.5 + 0.3 * x 

> y  <-  rpois(100,  exp(log.mu)) 

> summary(y) 

Min.  1st  Qu. Median Mean 3rd Qu. Max. 

0.00 1.00  1.00 1.55 2.00 6.00 

> plot(x, y) 
 
 

We can build arbitrarily complex models like this by simulating more predictors or making 

transformations of those predictors (e.g. squaring, log transformations, etc.). 

Random Sampling 

The sample() function draws randomly from a specified set of (scalar) objects allowing you to 

sample from arbitrary distributions of numbers. 

 



107  

 

> set.seed(1) 

> sample(1:10,  4) 

[1]  3  4  5  7 

> sample(1:10,  4) 

[1]  3  9  8  5 

> 

> ## Doesn't have to be numbers 

> sample(letters, 5) 

[1]  "q"  "b"  "e"  "x"  "p" 

> 

> ## Do a random permutation 

> sample(1:10) 

[1] 4 7  10 6 9 2 8 3 1 5 

> sample(1:10) 

[1] 2 3 4 1 9 5  10 8 6 7 

> 

> ## Sample w/replacement 

>sample(1:10,  replace  =  TRUE) 

[1]  2  9  7  8  2  8  5  9  7  8 

 
To sample more complicated things, such as rows from a data frame or a list, you can sample the 

indices into an object rather than the elements of the object itself. 

Here’s how you can sample rows from a data frame. 

> library(datasets) 

> data(airquality) 

> head(airquality) 
 

 
 

Now we just need to create the index vector indexing the rows of the data frame and sample directly 

from that index vector. 

 
> set.seed(20) 

> 

> ## Create index vector 

> idx <- seq_len(nrow(airquality)) 

> 

> ## Sample from the index vector 

> samp <- sample(idx, 6) 

> airquality[samp, ] 
 

 
 

Other more complex objects can be sampled in this way, as long as there’s a way to index the sub- 

elements of the object. 
 

------------------------ 


