
Prepared by
B.Loganathan

C# PROGRAMMING
 UNIT-V: Managing Errors and Exceptions:

Debugging – Types of errors - Exceptions-Syntax
of exception-Handling code -Multiple catch
statements -Exception hierarchy-General catch
handler- Using finally statement- Nested try
blocks- Throwing our own exceptions- Checked
and unchecked operators-Using exceptions for
debugging - Window forms and Web-Based
Application on .NET: Creating window Forms -
Customizing a form - Overview of design patterns-
Web-based application on .NET.

Managing Errors and
Exceptions
 Rarely does a program run successfully in the very first

attempt. It is common to make mistakes while developing
as well as typing a program. A mistake might lead to an
error causing the program to produce unexpected results.
Errors are mistakes that can make a program go wrong.

 An error may produce an incorrect output or may terminate
the execution of the program abruptly or even may cause
the system to crash. It is therefore important to detect and
manage properly al l the possible errors and error
conditions in the program so that they do not terminate or
cause the system to crash during execution.

 DEBUGGING
 Debugging is the process of identifying and fixing

errors in a software program so as to ensure that it
behaves in the intended manner. In the software
development domain, such errors are com111only
referred as bugs.

 There are a number of debugging tools or debuggers
that can be used for tracing the exact piece of code
that is making the software behave in an inappropriate
manner. Most of the IDEs are equipped with such in-
built debuggers that help the programmers fix the
bugs during development.

TYPES OF ERROR
 Errors may be broadly classified into two categories:

 Compile-time errors
 Run-time errors

 1. Compile -Time Errors
 All syntax errors will be detected and displayed by the

C# compiler and therefore these errors are known as
compile-time errors. Whenever the co1npiler displays
an error, it will not create the .cs file. It is therefore
necessary that we fix all the errors before we can
success fu l ly compi le and run the progra m .

2. Run- time Errors
 Sometimes , a program may compile successfully

creating the .exe file but may not run properly.
Such progra1ns may produce wrong results due to
wrong logic or may terminate due to errors such as
stack overflow. Most common run-time errors are:

 Dividing an integer by zero.
 Accessing an element that is out of the

bounds of an array.
 Trying to store a value into an array of an

incompatible class or type.

EXCEPTIONS
 An exception is a condition that is caused by a run-time

error in the program. When the C# compiler encounters an
error such as dividing an integer by zero, it creates an
exception object and throws it (i.e., informs us that an error
has occurred).

 If the exception object is not caught and handled properly,
the compiler will display an error message and will
terminate the program. If we want the program to continue
with the execution of the remaining code, then we should
try to catch the exception object thrown by the error
condition and then display an appropriate message for
taking corrective actions. This task is known as exception
handling.

 When writing programs, we must always be on the lookout
for places in the program where an exception could be
generated. Some common exceptions that we must catch are
listed:

 SystemException : A foiled run-time check; used as a base class
for other exceptions

 AccessExcep1ion : Failure to access a type member, such as a
method or field

 ArgumentException :An argument to a method was invalid
 Argumen1NullException :A null argument was passed to a

method that does not accept it
 ArgumentOutofRangeException :Argument value is out of range
 Ari1hmc1icException :Arithmetic over-or underflow has

occurred
 ArrayType MismatchException :Attempt to store the wrong type

of object in an array
 BadlmageFormatException :Image is in the wrong format
 CoreException :Base class for exceptions thrown by the runtime

 DivideByZeroExcepiton : An attempt was made to divide by zero
 FonnatExccption : The format of an argument is wrong
 lndexOu1ofRangeException :An array index is out of bounds
 lnva lidCastExccption :An attempt was made 10 cast 10 an invalid

class
 lnvalidOperationException :A method was called at an invalid

time
 Missing MemerExccption :An invalid version of a DLL was

accessed
 NotFiniteNumberExceprio n :A number is not valid
 No1Suppor1edException :Indicates that a method is not

implemented by a class
 NullReferenceExcpetion :Attempt to use an unassigned reference
 OutofMemoryException :Not enough memory 10 continue

execution
 StackOverflow Exception :A s tack has overflowed

SYNTAX OF EXCEPTION HANDLING CODE
 The basic concepts of exception handling are throwing

an exception and catching it.
 C# uses a keyword try to preface a block of code

that is likely to cause an error condition and' throw' an
exception. A catch block defined by the keyword
catch 'catches' the exception ' thrown' by the try block
and bandies it appropriately.

 The catch block is added immediately after the try
block. The following example illustrates the use of
simple try and catch statements.

 try
 {
 statement; / / generates an exception
 }
 catch (Exception e)
 {
 statement; / / processes the exception
 }
 The try block can have one or more statements that

could generate an exception. If any one statement
generates an exception, the remaining statements in
the block are skipped and execution jumps to the
catch block that is placed next to the try block.

MULTIPLE CATCH STATEMENT
 It is possible to have more than one catch statement in the catch block as illustrated

below:
 try
 {
 statement // generates an exception
 }
 catch (Exception-Type-1 e)
 {
 statement; // processes exception type 1
 }
 catch (Exception-Type-2 e)
 {
 statement; // processes exception type 2
 }
 ……
 catch (Exception-type-N e)
 {
 statement ; // processes exception type N
 }

 When an exception in a try block is generated, the C#
treats the multiple catch statements like cases in a
switch statement. The f irst statement whose
parameter matches with the exception object will be
executed, and the remaining statements will be
skipped.

 Note that C# does not require any processing of the
exception at all. We can simply have a catch statement
with an empty block to avoid program abortion.

 Example:
 cat ch (Excep tion e){ }
 This statement will catch an exception and then ignore

it.

THE EXCEPTION HIERARCHY
 All C# exceptions are derived from the class Exception.

When an exception occurs, the proper catch handler is
determined by matching the type of exception to the name
of the exception mentioned. If we are going to catch
exceptions at different levels in the hierarchy, we need to
put them in the right order.

 The rule is that we must always put the handlers for the
most derived exception class first. Consider the following
code snippet:

 try
 {
 .. . //throw Divide by Zero Except ion

 {
 catch(Exception e)
 {
 …
 }
 catch (DivideByZeroExcept ion e)
 {
 ….
 }
 This code will generate a compiler error, because the

exception is caught by the first catch (which is a more
general one) and the second catch is therefore unreachable.

 In C#, having unreachable code is always an error. The code
must be rewritten as follows:

 try
 {
 //throw Divide By Zero Except ion
 }
 catch(DivideByZeroException e)
 {
 ….
 }
 catch(Exception e)
 {
 ….
 }

GENERAL CATCH HANDLE
 A catch block which will catch any exception is called a general

catch handler. A general catch handler does not specify any
parameter and can be written as:

 try
 {
 ….. // causes an exception
 }
 catch // no parameters
 [
 …. // handles error

 Note that catch (Exception e) can handle all the exceptions

thrown by the C# code and therefore can be used as a general
catch handler. However, if the program uses libraries written in
other languages, then there may be an exception that is not
derived from the class Exception.

 Such exceptions can be bandied by the parameter-less
catch statement. This handler is always placed at the
end. Since there is no parameter, it does not catch any
information about the exception and the re fore we do
n o t k n o w w h a t w e n t w r o n g .

 USING FINALLY STATEMENT
 C# another statement known as a finally statement

that can be used to handle an exception that is not
caught by any of the previous catch statements. A
finally block can be used to handle any exception
generated within a try block.

 It may be added immediately after the try block or after the
last catch block shown as follows:

 try
 {
 ….
 }
 catch(…)
 {
 ….
 }
 finally
 {

 }

 When a finally block is defined, the program is
guaranteed to execute, regardless of how control
l e ave s t h e t r y , wh e t h e r i t i s d u e to n o r m a l
termination, due to an exception occurring or due to a
jump statement. As a result, we can use it to perform
certain house-keeping operations such as closing files
and releasing system resources.

 we may include the last two statements inside a finally
block as shown below:

 finally
 {
 int y = a[1]/a[0J;
 Console .WriteLine("y = "+y);
 }

NESTED TRY BLOCKS
 C# permits us to nest try blocks inside each other. Example:
 try
 {
(Point P1)
 try
 {
 (Point P2)
 }
 catch
 {
(Point P3) //Inner try block
 }
 finally
 {

 }
 …..(Point P4)
 }
 catch
 {
 ….
 }
 finally
 {
 …..
 }

 For simplicity, we have shown only one catch bandier
in each try block. However, we can string several
catch handlers together in each place.

 When nested try blocks are executed, the
exceptions that are thrown at various points are
handled as follows:

 The points P1 and P4 are outside the inner try block
and therefore any exceptions thrown at these points
will be bandied by the catch in the outer block. The
inner block is simply ignored.

 Any exception thrown at point P2 will be handled by
the inner catch handler and the inner finally will be
executed. The execution will continue at point P4 in
the program.

 If there is no suitable catch handler to catch an
exception thrown at P2, the control will leave the inner
block (after executing the inner finally) and look for a
suitable catch handler in the outer block. If a suitable
one is found, then that handler is executed followed
by the outer finally code. Remember, the code at point
P4 will be skipped.

 If an exception is thrown at point P3, it is treated as if
it had been thrown by the outer try block and,
therefore, the control will immediately leave the inner
block (of course, after executing the inner finally) and
search for a suitable catch handler in the outer block.

 In case, a suitable catch handler is not found, then the
system will terminate program execution with an
appropriate message.

THROWING OUR OWN EXCEPTIONS
 There may be times when we would like to throw our own

exceptions. We can do this by using the keyword throw as
follows:

 throw new Throwable_subclass;
 Examples:
 throw new ArithmeticException();
 throw new FormatException();
 The object e which contains the error message "Number is

too small" is caught by the catch block which then displays
the message using the Message property.

 A rule of thumb when creating our own exceptional classes
is that we must implement a l l the three System.
Exception constructors .

CHECKED AND UNCHECKED OPERATORS

 Stack overflows are usual problems during arithmetic
operations and conversion of integer types. C#
supports two operators, checked and unchecked,
which can be used for checking (or unchecking) stack
overflows during program execution.

 If an operation is checked, then an exception will be
thrown if overf low occurs. If it is not checked, no
exception will be raised but we will lose data. For
example, consider the code:

 int a = 200000
 int b = 300000

 try
 {
 int m = checked (a*b);
 }
 ca tch (OverflowException e)
 {
 Console.WriteLine (e);
 }
 Since a*b produces a value that will easily exceed the

maximum value for an int, an overflow occurs. As the
operation is checked with operator checked, an
overflow exception will be thrown.

 In this case, we will get output like this:
 System.OverflowException : An exception
 Of type System.OverflowExecpt ion was thrown at
 If we want to suppress the overflow checking, we can mark

the code as unchecked
 int n = unchecked (a* b);
 In this case, no exception will be raised, but we will lose

data.
 USING EXCEPTIONS FOR DEBUGGING
 The exception-handling mechanism can be used to hide

errors from rest of the program. It is possible that the
programmers may misuse this technique for hiding errors
rather than debugging the code. Exception handling
mechanism may be effectively used to locate the type and
place of errors. Once we identify the errors, we must try to
find out why these errors occur before we cover them up
with exception handlers.

WindowForms and Web-based
Application Development on .NET
 .NET is a soft ware programming architecture provided by

Microsoft for developing applications, which can be run on
the Web through a network connection such as Internet
or Intranet. The applications, which are developed for the
Web using .NET are called Web based applications.

 NET supports the ASP. NET technolog y with C#
programming for allowing software developers to create
Web based applications, which can be used to perform
tasks such as validating data received by the server from
client computers and doing business on the Internet. The
Web-based application can be created for allowing users
who are surfing the Internet to do online shopping..

CREATING WINDOWFORMS
 Form is the very first entity typically included in a

Windows-based application. It hosts a number of
other controls for performing desired functions. At
runtime, a form continuously waits for an event to
occur, such as the clicking of the mouse or pressing of
a key.

 A s s o o n a s a n e ve n t o cc u r s , i t t r i g ge r s t h e
corresponding event-handling code. In C#, a form can
be created by inheriting the Form class contained in
the System.Windows .Forms namespace.

 The Form class already supports a number of properties
and methods, which make the job of the programmer a
lot easier. Let us now create a simple blank form by making
use of the Form class:

 // Program - SampleForm.cs
 using System.Windows.Forms;
 public class SampleForm : Form
 {
 public static void Main ()
 {
 SampleForm F1 = new Sampleform();
 Application. Run(F1);
 }
 }
 In the above code, a Windows form named SampleForm

has been created by inheriting the Form base class.

CUSTOMIZING A FORM
 We can customize a form's look and feel by making use of

the various properties and methods of the Form class.
Here, we'll modify the SampleForm.cs program that we
created earlier to customize the form's caption bar, size,
color and border.

 1.Customizing the Caption Bar
 The Form class supports a number of prope1ties to

enable the programmer to customize the form's
caption as per his require ments. Some of these
properties are:
 ControlBox: Enables or disables the control box.
 Maximize Box: Enables or disables the Maximize button.
 MinimizeBox: Enables or disables the Minimize button.
 Text: Helps add a caption for the form.

2. Customizing the Size
 The Form class supports a number of properties to enable

the programmer to specify the size related settings of a
form. Some of these prope1ties are:

 DefaultSize: Sets the default size of a form
 Height: Sets the height of a form
 Width: Sets the width of a form
 MaximumSize: Sets the maxim um size of a form
 Mi nimumSize: Sets the minimu111 size of a form
 StartPosition: Helps specify the initial position of the

form
3. Customizing the Colors

 The BackColor property of the Form class enables us to
modify the background color of a form. The choice of the
colors can be made from the Color structure contained in
the System.Drawing namespace.

4. Customizing the Borders
 We can customize the border of a form by making

use of the FormBorderStyle property of the Form
class. The FormBorderStyle property allows us to
not only change the border style but it also enables
us to configure the resizing capability of a form.
Some of the values that FormBorderStyle
property can assume are following :

 None: Removes the form's border
 Sizeable: Makes the form resizable
 Fixcd3D: Makes the form non resizable with a 3D

border
 FixedSingle: Makes the form non resizable with a

single line border

OVERVIEW OF DESIGN PATTERNS
 D e s i g n p a t te r n s fo r m t h e b a s i s o f s o f t wa re

d e v e l o p m e n t b y s p e c i f y i n g d e s i g n a n d
implementat ion strategies to be used during
development. Each design pattern has its own set of
advantages and limitations. Thus, the choice of a
particular design pattern depends primarily on the
requirements to be fulfilled by the application as well
its target environment. Some of the key design
patterns suppo1ied in .NET are :

 Factory
 Singleton
 Chain of responsibility

 1.Factory Design Pattern
 The Factory design pattern makes use of abstract classes

and interfaces to enable the programmer to choose the type
of objects to instantiate. As the name suggests, the factory
interface allows the creation of different product objects,
the functionality for which is specif ied during the
implementation of interface methods.

2.Singleton Design Pattern
 In this design pattern, a class is instantiated only once; that

is, only a single unique object is created for the class. This
object is then shared among different client applications
through a static method call.

 The usability of such a design pattern can be seen in
scenarios where some locking or synchronization
m e c h a n i s m s a r e r e q u i r e d t o b e i m p l e m e n t e d .

3. Chain of Responsibility Design Pattern
 As the name suggests, the chain of responsibility

design pattern links a series of objects together,
each possessing the capability to handle the
incoming request. The request is passed along the
chain until one of the chained objects receives and
handles the request.

 WEB-BASED APPLICATION ON .NET
 In Microsoft Visual Studio, we can use ASP.NET technology

and a programming language such as C# to create a Web
based application. The controls available in the Toolbox of
the Microsoft Visual Studio IDE help us to create the user
interface of a Web based application.

 For example, we can create a Web based application to
accept name and city from the user and when the user
clicks a button, the entered nan1e and city can be displayed.

 1. Creating and Running a Website1 Web-based
Application

 Website1 Web based application allows users to enter their
information, such as name and address. When the user
clicks a button on the Default.aspx page of the Website1
Web-based application, another page appears displaying
the entered information.

 We can run the Website l Wcb-based application by
pressing the F5 key or the Start Debugging button of the
toolbar, which is present in the Microsoft Visual Studio IDE.

2. Creating a Website1 Web-based Application
 A Website1 Web based application is an ASP.NET website

containing pages such as Default.aspx and show.aspx.
This is a web application in C# using ASP.NET.

 This website makes uses of label, textbox, check box,
radio button, dropdownlist, button and hyperlink
controls. The form checks that all the values are inserted
and displays the data in another page. To create the
Website1 Web-based application, we must:

 Create the Default.aspx page
 Create the show.aspx page
 Add code to the show.aspx page
 Add code for the Default.aspx page
 Create the tcrms.aspx page

 Creating the Default.aspx Page
 The Default.aspx page of the Website1 Web-based

application allows a user to enter details such as name
and address and click a button to submit the details.
To create the Default.asp x page:

 I . Open Microsoft Visual Studio IDE.
 2. Select File-> New-> Web Site to display the New

Web Site dialog box.
 3 . Accept the default settings and click OK to close the

New Web Site dialog box. The Microsoft Visual Studio
IDE appears with the Source view of the Dcfault.aspx
page, which is the default page of the Web Site1 Web
based application.

 Change the value of the title element that appears in
the Source View to Using Controls in ASP.NET and C#.

 Click the Design tab that appears at the bottom to
display the Design view of the Default.aspx page.

 Drag a Label Control from Toolbox on to the
Dcfault.aspx page to add the control to the page.

 Change the value of the Tex t property for the Label
co ntrol to Using Controls in ASP.NET and

 C# using the Properties window.
 Change the BackColor prope1ty of the Label control

using the Properties window as required.

 Similarly, add four more Label controls to the Dcfault.aspx
page.

 Change the Text Property of the first Label control that we
have added to Name using the Proper ties dialog box.

 Change the Text Property of the second Label control that
we have added to Address using the Properties dialog
box .

 Change the Text Property of the third Label control that
you have added to City using the Properties dialog box.

 Change the Text Property of the first Label control that
we have added to Gender using the Properties dialog box.

 Drag a TextBox contro l f rom the Toolbox on to
Default.aspx page to add the control to the page.

