
Prepared by
B.Loganathan

C# PROGRAMMING
 UNIT-IV: Interfaces: Defining an interface –

Extending an interface – Implementing interface –
I n t e r f a c e s a n d i n h e r i t a n c e - O p e r a t o r
overloading: Overloadable operators – Need for
operator overloading – Def ining operator
overloading – Overloading unary operators –
Overloading binary operators – Overloading
comparison operators - Delegates and events :
Delegates-Delegate dec larat ion-Delegate
methods-Delegate instant iat ion-delegate
invocation-using delegates-multicast delegates-
events.

Interface
 A large number of real-life applications require the use of

multiple inheritance whereby we inherit methods and
properties from several distinct classes. Since ‘C++ - like'
implementation of multiple inheritance proves difficult
and adds complexity to the language, C# provides an
alternate approach known as interface to support the
concept of multiple inheritance.

 An interface in C# is a reference type. It is basically a
kind of class with some differences. Major differences
include:

 All the members of an interface are implicitly public and
abstract.

 An interface cannot contain constant fields, constructors
and destructors.

 Its members cannot be declared static.
 Since the methods in an interface are abstract,

they do not include implementation code.
 An interf ace can inherit multiple interfaces.

 DEFINING AN INTERFACE
 An interface can contain one or more methods,

properties, indexers and events but none of them
are implemented in the interface itself. It is the
responsibility of the class that implements the
interface to define the code for implementation of
these members.

 The syntax for defining an interface is very similar to
that use d for defining a class. The general form of an
interface definition is:

 interface lnterfaceName
 {
 Member declaration;
 }

Here, interface is the keyword and lnterfaceName is a
valid C# identifier (just like class names). Member
declarations will contain only a list of members with
out implementation code. Given below is a simple
interface that defines a single method:

 interface Show
 {
 void Display (); // Note semicolon here
 }
 In addition to methods, interfaces can declare properties,

indexers and events. Example:
 inter face Example
 {
 int Aproperty
 {
 get ;
 }
 event someEvent Changed;
 void Display ();
 }

 The accessibility of an interface can be controlled by using
the modifiers public, protected, internal and private.
The use of a particular modifier depends on the contact in
which the interface declaration occurs.

 EXTENDING AN INTERFACE
 Like classes, interfaces can also be extended. That is, an

interface can be sub-interfaced from other interfaces. The
new sub-interface will inherit all the members of the super-
interface in the manner similar to subclasses. This is
achieved as follows:

 interface name2 : name1
 {
 Members of name2
 }

 For example, we can put all members of particular
behavior category in one interface and the members of
another category in the other. Consider the code
below:

 interface Addition
 {
 int Add (int x, int y) ;
 }
 Interface Compute : Addition
 {
 int Sub (int x, int y);
 }

 The interface Con1pute will have both the methods and
any class implementing the interface Con1pute should
implement both of them; otherwise, it is an error. We can also
combine several inte1faces together into a s ingle inte1face.
Following declarations are valid:

 interface I1
 {
 ……
 }
 interface I2
 {
 …..
 }
 interface I3 : I1, I2 // multiple inheritance
 {
 …..
 }

 While interfaces are allowed to extend other interfaces,
sub-interfaces cannot define the methods declared in
the super-interfaces. After all, sub interfaces are still
interfaces, not classes. It is the responsibility of the
class that implements the derived inter face to define
all the methods. Note that when an interface extends
two or more interfaces, they are separated by commas.

 IMPLEMENTING INTERFACES
 Interfaces are used as ' superclasses' whose properties

are inherited by classes. It is therefore necessary to
create a class that inherits the given interface.

 This is done as follows:
 class classname : interfacename
 {
 body of classname
 }
 Here the class classname ' implements' the interface

i n t e r f a c e n a m e . A m o r e g e n e r a l f o r m o f
implementation may look like this:

 class classname : superclass, interface1, interface2....
 {
 body of classname
 }

 ln C#, we can derive from a single class and, in
addition, implement as many interfaces as the class
needs. When a class inherits from a superclass, the
name of each interface to be implemented must
appear after the superclass name. Example:

 class A: B, I1, I2,
 {
 ….
 }
 where B is a base class and I1, I2, are interfaces .

The base class and interfaces are separated by commas.

INTERFACES AND INHERITANCE
 Most often we have situations where the base class of a

derived class implements an interface. In such
situations, when an object of the de rived class is
converted to the interface type, the inheritance
hierarchy is searched until it finds a class that directly
implements the interface.

 dis.Print ();
 calls the method Print () in base class B but not the

one available in the derived class itself. This is because
the derived class does not implement the interface.

Operator Overloading
 Operator overloading is one of the many exciting

features of object-oriented programming. C# supports
the idea of operator overloading. It means that C#
operators can be defined to work with the user-
defined data types such as structs and classes in
much the same way as the built -in types.

 OVERLOADABLE OPERATORS
 There are quite a number of operators in C# that can

be overloaded. There are also many others that cannot
be overloaded. They are listed below:

 Overloadable operators :
 Binary arithmetic : + , * ,/ , - , %
 Unary arithmetic : +, ~, ++, --
 Binary bitwise : &, !, ^, <<, >>
 Unary bitwise : !,~ , true , false
 Logical operators : = = ,! =, > = , <, < = , >
 Operators that cannot be overloaded
 Conditional operators : && ,||
 Compound assignment : +=, -=,*=,/=,%=
 Other operators : [], (), =,?: , - > , new, sizeof, typeof, is,

as
 When we overload a binary operator, its compound

assignment equivalent is implicitly over- loaded.

NEED FOR OPERATOR OVERLOADING
 Although operator overloading gives us syntactical

convenience, it also help us greatly to generate more
readable and intuitive code in a number of situations.
These include:
 Mathematical or physical modeling where we use

classes to represent objects such as co- ordinates,
vectors, matrices, tensors, complex numbers and so
on.

 Graphical programs where co-ordinate-related objects
are used to represent positions on the screen.

 Financial programs where a class represents an
amount of money.

 Text manipulations where classes are used to
represent strings and sentences.

DEFINING OPERATOR OVERLOADING
 To define an additional task to an operator, we must

specify what it means in relation to the class (or struct)
to which the operator is applied. This is done with the
help of a special method called operator method,
which describes the task.

 The general form of an operator method is:
 public static retval operator ap (arglist)
 {
 Method body //task defined
 }

 The operator is defined in much the same way as a
method, except that we tell the compiler it is
actually an operator we are def ining by the
operator keyword, followed by the operator
symbol op. The key features of operator methods
are:

 They must be defined as public and static.
 The retval (return value) type is the type that we get

when we use this operator. But, technically, it can be of
any type.

 The arglist is the list of arguments passed. The
number of arguments will be one for the unary
operators and two for the binary operators.

 In the case of una1y operators, the argument must be
the same type as that of the enclosing class or struct.

 In the case of binary operators, the first argument
must be of the same type as that of the enclosing class
or struct and the second may be of any type.

 Examples of overloaded operators are:
 // vector addition
 public static Vector operator + (Vector a, Vecto r b)
 // unary minus
 public static Vector operator -(Vecto r a)
 // comparison
 public static boot operator ==(Vector a, Vector b)

OVERLOADING UNARY OPERATORS
 Let us consider the unary minus operator. A minus operator,

when used as unary, takes just one argument. We know
that this operator changes the sign of an operand when
applied to a basic data item.

 We shall see here how to overload this operator so that it
can be applied to an object in much the same way as is
applied to an int or float variable. The unary minus when
applied to an object should change the sign of each of its
data items.

 The method operator -() takes one argument of type
Space and changes the sign of data members of the object
s. Since it is a member method of the same class, it can
directly access the members of the object which activated it.

OVERLOADING BINARY OPERATORS
 We have just seen how to overload a unary operator.

The same mechanism can be used to overload a binary
operator. We can always use methods to add two
objects. A statement like

 C = sum (A, B); //functional notation
 is possible. The functional notation can be replaced by

a natural looking expression
 C = A + B; // arithmetic notation.
 by overloading the + operator using an operator + ()

method. Here is the syntax used to define the operator
+ () method.

 public static Vector operator + (Vector u1, Vector u2)
 {
 //Create a new Vector object
 //Add the contents of u1 and u2
 // to the new Vector object
 // Return the new vector object
 }
 In this program overloads the binary plus operator to

add two complex numbers of type:
 x =a + jb

OVERLOADING COMPARISON OPERATORS
 C# supports six comparison operators that can be

considered in three pairs:
 = = and ! =

 > and > =
 < and < =

 The significance of pairing is two-fold.
 1.Within each pair, the second operator should always give

exactly the opposite result to the first. That is, whenever
the first returns true, the second returns false and vice
versa.

 2.C# always requires us to overload the comparison
operators in pairs. That is, if we overload ==, then we must
overload ! = also, otherwise it is an error.

 There is one fundamental dif ference between
overloading comparison operators and overloading
arithmetic operators. Comparison operators must
return a bool type value. Apart from these differences,
overloading comparison operators follows the same
principles as overloading the arithmetic operators.

 The overloading of == operator can also be done by
using the method Equal () as shown below:

 Public static boot operator == (Vector u1, Vector u2)
 {
 return (u1, Equals (u2));
 }

 In this case, we must override the method Equals ()
defined in System namespace as given below:

 public override bool Equals (object value)
 {
 Vector u = (Vector) value;
 return ((this.x == u.x) && (this.y == u.y) && (this.z ==

u.z));
 }
 Overloads the == Boolean operator and displays the

value on the basis of the division done and the value of
the output is compared with another value to check
whether they are equal. Another method Equal() uses
the same functionality of the == operator to display
the data.

Delegates and Events
 In object oriented programming, it is the usual

practice for one object to send messages to other
objects.

 However in real-life applications, it is quite common
for an object to report back to the object that was
responsible for sending a message. This, in effect,
results in a two-way conversation between objects. The
methods used to call back messages are known as
callback methods.

 C# implements the callback technique in a much safer
and more object-oriented manner, using a kind of
object called delegate object.

 A delegate object is a special type of object that
contains the details of a method rather than data.

 Delegates in C# are used for two purposes:
 Callback
 Event handling

 DELEGATES
 The dictionary meaning of delegate is "a person

acting for another person". In C#, it really means a
method acting for another method. As pointed out
earlier, a delegate in C# is a class type object and is
used to invoke a method that has been encapsulated
into it at the time of its creation.

 Creating and using delegates involve four steps. They
include:

 Delegate declaration
 Delegate methods definition
 Delegate instantiation
 Delegate invocation
 A delegate declaration defines a class using the class

System.Delegate as a base class. Delegate methods
are any functions (defined in a class) whose signature
matches the delegate signature exactly.

 The delegate instance holds the reference to delegate
methods. The instance is used to invoke the methods
indirectly.

DELEGATE DECLARATION
 A delegate declaration is a type declaration and takes

the following general form:
 modifier delegate return-type delegate-name

(parameters);
 delegate is the keyword that signif ies that the

declaration re presents a class type derived from
System.Delegate. The return-type indicates the
return type of the delegate. Parameters identifies the
signature of the delegate. The delegate-name is any
valid C# identifier and is the name of the delegate that
will be used to instantiate delegate objects.

 The modifier controls the accessibility of the delegate.
It is optional. Depending upon the context in which
they are declared, delegates may take any of the
following modifiers:

 new • public
 protected • internal
 private
 The new 1nodifier is only permitted on delegates

declared within another type. It signifies that the
delegate hides an inherited member by the same name.

 Some examples of delegates are:
 delegate void SimpleDelegate ();
 delegate int MathOperation(int x, int y);
 public delegate int Compareltems(object 01, object

o2);
 private delegate string GetAString();
 delegate double Doubl eOperation(double x);
 Although the syntax is similar to that of a method

definition (without method body), the use of keyword
delegate tells the compiler that it is the definition of a
new class using the System.Delegate as the base class.

 Since it is a class type, it can be defined in any place
where a class definition is permitted. That is, a
delegate may be defined in the following places:

 Inside a class
 Outside all classes
 As the top level object in a namespace
 Depending on how visible we want the delegate to be,

we can apply any of the visibility modifiers to the
delegate definition.

 Delegate types are implicitly sealed and therefore it is
not possible to derive any type from a delegate type. It
is also not permissible to derive a non-delegate class
type from System.Delegate.

DELEGATE METHODS

 The methods whose references are encapsulated into a
delegate instance are known as delegate methods or
callable entities. The signature and return type of
delegate methods must exactly match the signature
and return type of the delegate.

 One feature of delegates, as pointed out earlier, is that
they are type-safe to the extent that they ensure the
matching of signatures of the delegate methods.
However, they do not care :

 what type of object the method is being called against
 whether the method is a static or an instance method.

 For instance, the delegate
 delegate string Get AString()
 can be made to refer to the method ToString() using

an int object N as follows:
 ….
 int N = 100
 GetAString s1 = new GetAString(N.ToString);
 The delegate
 delegate void Delegate1();
 can encapsulate references to the following methods:

 public void F1() / /instance method
 {
 Console.WriteLine(" F1");
 }
 static public void F2() //static method
 {
 Console.WriteLine("F2");
 }
 In the above code, the signature and return type of

methods match the signature and type of the delegate.

DELEGATE INSTANTIATION

 Although delegates are of class types and behave like
classes, C# provides a special syntax for instantiating
their instances. A delegate-creation-expression is used
to create a new instance of a delegate.

 new delegate-type (expression)
 The delegate-type is the name of the delegate declared

whose object is to be created. The expression must be a
method name or a value of a delegate-type. If it is a
method name its signature and return type must be
the same as those of the delegate.

 If no matching method exists, or more than one
matching method exists, an error occurs. The
matching method may be either an instance
method or a static method.

 The method and the object to which a delegate
refers are determined when the delegate is
instantiated and then remain constant for the
entire lifetime of the delegate. It is, therefore, not
possible to change them, once the delegate is
created.

 It is also not possible to create a delegate that would
refer to a constn1ctor, indexer, or user defined operator.

 Consider the following code:
 // delegate declaration
 delegate int ProductDelegate (int x, int y);
 class Delegate
 {
 static float Product (float a, float b) // signature does
 // not match
 {
 return(a*b);
 }
 static int Product (int a, int b) / / signature

matches
 {
 return (a * b);
 }

 // delegate instantiation
 ProductDelegate p = new Product Delegate(Product);
 }
 Here, we have two methods with the same name but with

different signatures. The delegate p is initialized with the
reference to the second Product method because that
method exactly matches the signature and return type of
ProductDelegate.

 The code defines two delegate methods in two different
classes. Since class A defines an instance method, an A type
object is created and used with the method name to
initialize the delegate object d1. The delegate method
defined in class B is static and therefore the class name is
used directly with the method name in creating the
delegate object d2.

DELEGATE INVOCATION
 C# uses a special syntax for invoking a delegate. When a

delegate is invoked, it in n1rn invokes the method whose
reference has been encapsulated into the delegate, (only if
their signatures match). Invocation takes the following
form:

 delegate_object (parameters list)
 The optional parameters list provides values for the

parameters of the method to be used.
 If the invocation invokes a method that returns void, the

result is nothing and therefore it cannot be used as an
o p e r a n d o f a n y o p e r a t o r. I t c a n b e s i m p l y a
statement_expression. Example:

 delegate1(x, y); // void delegate
 This delegate invokes a method that does not return any

value.

 If the method returns a value, then it can be used as an
operand of any operator. Usually, we assign the return
value to an appropriate variable for further processing.
Example:

 double result = delegat e2(2.56, 45.73);
 This statement invokes a method (that takes two

double values as parameters and returns double type
value) and then assigns the returned value to the
variable result.

 USING DELEGATES
 If we need to implement more delegate methods, we

have to create more delegate objects. In such cases, we
may create an array of delegate objects and then use
them in a for loop to invoke the methods.

 Example:
 ArithOp [] operation =
 {new ArithOp(MathOperation.Add),
 new ArithOp(MathOperation.Sub)
 };
 This creates two delegates, operation[0] to invoke

Add method and operation [1] to invoke Sub method.
 It is also allowed to use delegate objects as method

parameters. For instance:
 ProcessMethod(operation[0], 200, 100);
 is valid.

MULTICAST DELEGATE
 A delegate can invoke only one method (whose

reference has been encapsulated into the delegate).
However, it is possible for certain delegates to bold and
invoke 1nultiple methods.

 Such delegates arc called multicast delegates.
Multicast delegates, also known as combinable
delegates, must satisfy the following co11ditions:

 The return type of the delegate must be void.
 None of the parameters of the delegate type can be

declared as output parameters, using out keyword.

 If D is a delegate that satisfies the above conditions
and d1 , d2, d3 and d4 are the instances of D, then the
statements :

 d3 = d1 + d2; // d3 refers to two methods
 d4 = d3 - d2; // d4 refers to only d1 method
 are valid provided that the delegate instances d1 and

d2 have already been init ial ized with method
references and d3 and d4 contain null reference.

 For a multicast delegate instance that was created by
combining two delegates, the invocation list is
formed by concatenating the invocation list of the two
operands of the addition operation. Delegates are
invoked in the order they are added.

EVENTS
 An event is a delegate type class member that is used by the

object or class 10 provide a notification to other objects that
an event has occurred. The client object can act on an event
by adding an event handler to the event.

 Events are declared using the simple event declaration
format as follows:

 modifier event type event-name;
 The modifier may be new, a valid combination of the four

access modifiers, and a valid combination of static, virtual,
override, abstract and sealed. The type of an event
declaration must be a delegate type and the delegate must
be as accessible as the event itself.

 The event-name is any valid C# variable name. event is
a keyword that signifies that the event-name is an
event.

 Examples of event declaration are:
 public event EventHandler Click;
 public event RateChange Rate;
 EventHandler and RateChange are delegates and

Click and Rate are events. Since events are based on
delegates, we must first declare a delegate and then
declare an instance of the delegate using the keyword
event.

