
Prepared by
B.Loganathan

 UNIT-III: Classes and objects: Basic principles of
OOP – Defining a class – Adding variables – Adding
Methods – Member access modifiers – Creating
objects – Accessing class members – Constructors
– Overloaded constructors – Static members –
Static constructors – Private constructors – copy
constructors – Destructors - Advanced Features of
C # : I n h e r i t a n c e : C l a s s i c a l I n h e r i t a n c e –
Containment Inheritance – Defining a subclass –
Visibility control – Defining sub-class constructors –
Multilevel inheritance – Hierarchical inheritance –
Overriding methods: Hiding methods - Abstract
classes- Abstract methods – Sealed classes -
Prevent ing inher i tance – Sealed Methods –
Polymorphism.

 C# is a true object -oriented language and
therefore the underlying structure of all C#
programs is classes. Anything we wish to
r e p r e s e n t i n a C # p r o g r a m m u s t b e
encapsulated in a class that defines the state
and behav iou r o f t he bas i c p rog ram
components known as objects. Classes create
ob j e c t s and ob j e c t s u se me thods t o
communicate between them.

 Classes provide a convenient approach for
packing together a group of logically related
data items and functions that work on them.

 All object-oriented languages employ three
core principles, namely,
 encapsulation,
 inheritance,
 polymorphism.

 These are often referred to as three 'pillars' of
OOP.

 Encapsulation provides the ability to hide the
internal details of an object from its users. The
outside user may not be able to change the
state of an object directly. However, the state
of an object may be altered indirectly using
what are known accessor and mutator methods.

 Inheritance is the concept we use to build new
classes using the existing class definitions.
Through inheritance we can modify a class the
way we want to create new objects. The original
class is known as base or parent class and the
modified one is known as derived class or
subclass or child class.

 Polymorphism is the third concept of OOP. It is
the ability to take more than one form. For
example, an operation may exhibit different
behaviour in different situations. The behaviour
depends upon the types of data used in the
operation. For example, an addition operation
involving two numeric values will produce a sum
and the same addition operation will produce a
string if the operands are string values instead of
numbers.

 A class is a user-defined data type with a
template that serves to define its properties.
Once the class type has been defined, we can
create ‘variables' of that type using declarations
that are similar to the basic type declarations. In
C#, these variables are represented as instances
of classes, which are the actual objects. The basic
form of a class definition is:

 class classname
 {
 [variables declaration;]
 [methods declaration;]
 }

 class is a keyword and classname is any valid
C# identifier. Everything inside the square
brackets is optional. This means that the
following would be a valid class definition:

 class Empty // class name is Empty
 {
 }
 Because the body is empty, this class does

not contain any properties and therefore
cannot do anything.

 We can, however, compile it and even create
objects using it. C++ programmers may note
that there is no semicolon after the closing
brace.

 ADDING VARIABLES
 Data is encapsulated in a class by placing

data fields inside the body of the class
definition. These variables are called instance
variables because they are created whenever
an object of the class is instantiated.

 Example:
 class Rectangle
 {
 int length; / / instance variable
 int width; / / instance variable
 }
 The class Rectangle contains two integer

type instance variables.

 ADDING METHODS
 A class with only data fields and without methods

that operate on that data has no life.
 We must therefore add methods that are

necessary for manipulating the data contained in
the class. Methods are declared inside the body
of the class. The general form of a method
declaration is:

 type methodname (parameter-list)
 {
 method-body;
 }
 The body actually describes the operations to be

performed on the data.

 Let us consider the Rectangle class again and
add a method GetData () to it.

 class Rectangle
 {
 int length; int width;
 public void GetData (i nt x , in t y)
 {
 length = x ;
 width = y;
 }
 }
 Note that the method has a return type void

because it does not return any value.

 We pass two integer values to the method which
are then assigned to the instance variables length
and width.

 Notice that we are able to use directly length and
width inside the method. We have used the
keyword public in defining the method.

 MEMBER ACCESS MODIFIERS
 O n e o f t h e g o a l s o f o b j e c t - o r i e n t e d

programming is 'data hiding' . That is, a class
may be designed to hide its members from
outside accessibility. C# provides a set of 'access
modifiers' that can be used with the members of
a class to control their visibility to outside users.
The following table lists various access modifiers
provided by C# and their visibility control. These
modifiers are a part of C# keywords

 Private :Member is accessible only with in
the class containing the member.

 Public : Member is
accessible from anywhere outside the class as we
ll. It is also accessible in derived classes.

 protected :Member is visible only to its own class
and its derived classes.

 Internal :Member is available within the
assembly or component that is being created but
not to the clients of that component.

 Protected internal :Available in the containing
program or assembly and in the derived classes.

 Objects in C# are created using the new operator.
The new operator creates an object of the specified
class and returns a reference to that object.

Here is an example of creating an object of type
Rectangle.

 Rectangle rect1 ; / / declare
 rect1 = new Rectangle(); I I instantiate
 The first statement declares a variable to hold the

object reference and the second one actually assigns
the object reference to the variable. The variable rectl
is now an object of the Rectangle class .

 Now that we have c rea ted ob jec ts , each
containing its own set of variables, we should
assign values to these variables in order to use
them in our program. Remember, all variables
must be assigned values before they are used.
Since we are outside the class, we cannot access
the instance variables and the methods directly.

 we must use the concerned object and the dot
operator as shown below:

 objectname.variable name;
 objectname.methodname(parameter -list);

 We know that all objects that are created must
be given initial values. The first approach uses
the dot operator to access the instance variables
and then assigns values to them individually. It
can be a tedious approach to initialize all the
variables of all the objects.

 C# supports a special type of method, called a
constructor, that enables an object to initialize
itself when it is created.

 Constructors have the same name as the class
itself. Secondly, they do not specify a return
type, not even void. This is because they do not
return any value.

 Method overloading is used when objects
are required to perform similar tasks but
using different input parameters. When we
call a method in an object, C# matches up
the method name first and then the number
and type of parameters to decide which one
of the definitions to execute. This process is
known as polymorphism. We can extend the
concept of method overloading to provide
more than one constructor to a class.

 To create an overloaded constructor method,
al l we have to do is to provide several
d i f ferent constructor def in i t ions with
different parameter lists. The difference may
be in either the number or type of arguments.
That is, each parameter list should be unique.

 STATIC MEMBERS
 One declares variables and the other declares

methods. These variables and methods are
cal led instance variables and instance
methods. This is because every time the class
is instantiated, a new copy of each is created.
They are accessed using the objects (with dot
operator).

 Let us assume that we want to define a
member that is common to all the objects
and accessed without using a particular
object. That is, the member belongs to the
class as a whole rather than the objects
created from the class. Such members can be
defined as follows:

 static int count ;
 static int max(int x, int y);
 The members that are declared static as

shown in the above are called static members.

 Like any other static members, we can also have static
constructors. A static constructor is called before any
object of the class is created. This is useful to do any
housekeeping work that needs to be done once. It is
usually used to assign initial values to static data members.

 A static constructor is declared by prefixing a static
keyword to the constructor definition. It cannot have any
parameters. Example:

 Class Abc
 {
 static Abc() / /No parameters
 {
 …… // set values for static members here
 }
 ……
 }

 C# does not have global variables or constants.
All declarations must be contained in a class. In
many situations, we may wish to define some
utility classes that contain only static members.
Such classes are never required to instantiate
objects. Creating objects using such classes may
be prevented by adding a private constructor to
the class.

 COPY CONSTRUCTORS
 A copy constructor creates an object by copying

variables from another object. For example, we
may wish to pass an Item object to the Item
constructor so that the new Item object has the
same values as the old one.

 Since C# does not provide a copy constructor, we
must provide it ourselves if we wish to add this
feature to the class. A copy constructor is defined
as follows:

 public Item (Item item)
 {
 code = item.code;
 price = item.price;
 }
 The copy constructor is invoked by instantiating

an object of type Item and passing it the object
to be copied. Example:

 Item item2 = new Item (item1);
 Now, item2 is a copy of item1.

 A destructor is opposite to a constructor. It is a
method called when an object is no more required.
The name of the destructor is the same as the class
name and is preceded by a tilde (~). Like constructors,
a destructor has no return type. Example:

 class Fun
 {
 …
 …
 ~Fun (J / /No arguments
 {
 …
 }
 }
 Note that the destructor takes no arguments.

 Inheritance represents a kind of relationship
between two classes. Let us consider two classes
A and B. We can create a class hierarchy such
that B is derived from A.

 Class A, the initial class that is used as the
basis for the derived class is referred to as the
base class, parent class or super class.

 Class B, the derived class, is referred to as
derived class child class or sub class. A derived
class is a completely new class that incorporates
all the data and methods of its base class. It can
also have its own data and method members that
are unique to itself.

 We can now create objects of classes A and B
independently.

 Example:
 A a; // a is object of A
 B b; // b is object of B
 In such cases, we say that the object b is a type

of a. Such relationship between a and b is
referred to as ' is-a' relationship.

 The classical inheritance may be implemented
in different combinations :

 Single inheritance (only one base class)
 Multiple inheritance (several base classes)
 Hierarchical inheritance (one base class, many

subclasses)
 Multilevel inheritance (derived from a derived

class)

 We can a l so de f ine ano the r f o rm o f
i n h e r i t a n c e r e l a t i o n s h i p k n o w n a s
containership between class A and B.
Example:

 class A
 {
 ….
 }
 c lass B
 {

 ….
 A a; // a is contained in b
 }
 B b;
 …
 In such cases, we say that the object a is

contained in the object b. This relationship
between a and b is referred to as ‘hasa '
relationship. The outer class B which contains the
inner class A is termed the ' parent' class and
the contained class A is termed a ' child' class.

 Examples are:
◦ Car has-a radio
◦ House has-a store room
◦ City has-a road

 A subclass is defined as follows:
 Class subclass-name : baseclass-name
 {
 variables declaration ;
 methods declaration ;
 }
 The definition is very similar to a normal class

definition except for the use of colon: and base-
class name. The colon signif ies that the
properties of the base-class are extended to the
subclass-name. When implemented the subclass
will contain its own members as well those of the
base-class.

 1. Class Visibility
 Each class needs to specify its level of visibility.

Class visibility is used to decide which parts of
the system can create class objects.

 A C# class can have one of the two visibility
modifiers: public or internal. If we do not
explicitly mark the visibility modifier of a class, it
is implicitly set to ' internal' ; that is, by default
all classes are internal. Internal classes are
accessible within the same program assembly
and are not access ib le f ro m outs ide the
assembly.

 2. Class Members Visibility
 A class member can have any one of the five

visibility modifiers:
 public •protected
 private•internal
 protected internal

 3. Accessibility of Baseclass Members
 When a class inherits from a baseclass, all

members of the base class, except constructor
and destructors, are inherited and become
members of the derived class. The declared
accessibility of a base class member has no
control over its inheritability. However, an
inherited member may not be accessible in a
derived class, either because of its declared
accessibi l i ty or because i t is hidden by a
declaration in the class itself.

4. Accessibility Constraints
 C# imposes certain constraints on the

accessibility of members and classes when
they are used in the process of inheritance.

 The direct base class of a derived class must
be at least as accessible as the derived class
itself.

 Accessibility domain of a member is never
larger than that of the class containing it.

 The return type of method must be at least as
accessible as the method itself.

 We have seen that an object is created when
constructor is called. The same principle may be
applied for constructing the derived class objects
as well.

 We can define an appropriate constructor for the
derived class that may be invoked when a derived
class object is created. Remember, the purpose
of a constructor is to provide values to the data
fields of the class.

 BedRoom room1 = new Bed Roo m (14,12,10);
 calls first the BedRoom constructor method

which in turn calls the room constructor method
by using the base keyword.

 A common requirement in object-oriented
programming is the use of a derived class as
a super-class. C# supports this concept and
uses it extensively in building its class library.
This concept allows us to build a chain of
classes.

 The class A serves as a base class for the
derived class B which in turn serves as a
base class for the derived class C. The
chain ABC is known as inheritance path.

 A derived class with multilevel base classes is
declared as follows:

 class A
 {
 ….
 }
 class B : A// First level derivation
 {
 …
 }
 class C : B / / Second level derivation
 {
 ….
 }

 This process may be extended to any number
of levels. The class C can inherit the members
of both A and B.

 The constructors are executed from the top
downwards, with the bottom most class
constructor being executed last.

 HIERARCHICAL INHERITANCE
 Another interesting application of inheritance

is to use it as a support to the hierarchical
design of a program. Many programming
problems can be cast into a hierarchy where
certain features of one level are shared by
many others below the level.

 We have seen that a method defined in a super-class
is inherited by its subclass and is used by the objects
created by the subclass. Method inheritance enables
us to define and use methods re repeatedly in
subclasses.

 However, there may be occasions when we want an
object to respond to the same method but behave
differently when that method is called. That means,
we should override the method defined in the super-
class.

 This is possible by defining a method in the
subclass that has the same name, same arguments
and same return type as a method in the superclass.
Then, when that method is called, the method
defined in the subclass is invoked and executed
instead of the one in the superclass,

 We declared the base class method as virtual and
the subclass method with the keyword override.
This resulted in ‘hiding' the base class method
from the subclass.

 Now, let us assume that we wish to derive from a
class provided by someone else and we also want
to redefine some method contained in it. Here,
we cannot declare the base class methods as
virtual. Then, how do we override a method
without declaring it virtual? This is possible in C#.
We can use the modifier new to tell the compiler
that the derived class method "hides" the base
class method.

 In a number of hierarchical applications, we
would have one base class and a number of
different derive d classes. The top-most
base class simply acts as a base for others
and is not useful on its own. In such
situations, we might not want any one to
create its objects. We can do this by making
the base class abstract.

 The abstract is a modifier and when used to
declare a class indicates that the class cannot
be instantiated. Only its derived classes (that
are not marked abstract) can be instantiated.

 Similar to abstract classes, we can also create
abstract methods. When an instance method
declaration includes the modifier abstract,
the method is said to be an abstract method.

 An abstract method is implicitly a virtual
m e t h o d a n d d o e s n o t p r o v i d e a n y
implementation. Therefore, an abstract
method does not have method body .
Example:

 public abstract void Draw(int x, int y);

 Sometimes, we may like to prevent a class being
further subclassed for security reasons. A class
that cannot be subclassed is called a sealed class.
This is achieved in C# using the modifier sealed
as follows:

 sealed class Aclass
 {
 …
 }
 sealed class Bclass: Someclass
 {
 …
 }

 Any attempt to inherit these classes will
cause an error and the compiler will not allow
it.

 SEALED METHODS
 When an instance method dec larat ion

includes the sealed modifier, the method is
said to be a sealed method. It means a
derived class cannot override this method.

 A sealed method is used to override an
inherited virtual method with the same
signature. That means, the scaled modifier is
always used in combination with the override
modifier.

 Example:
 cla ss A
 {
 public virtual void Fun()
 {
 …
 }
 }
 class B : A
 {
 public sealed override void Fun ()
 {
 ….
 }
 }

 The sealed method Fun() overrides the virtual method
Fun() defined in Class A. Any derived class of B cannot
further override the method Fun().

 Operation polymorphism is implemented using
overloaded methods and operators.

 The overloaded methods are 'selected' for
invoking by matching arguments, in terms of
number, type and order. This information is
known to the compiler at the time of compilation
and , therefore, the compiler is able to select and
bind the appropriate method to the object for a
particular call at compile time itself. This process
is called early binding, or static binding, or static
finding. It is also known as compile time
polymorphism.

 Inclusion polymorphism is achieved through the
use of virtual functions. Assume that the class
A implements a virtual method M and classes B
and C that are derived from A override the
virtual method M.

 When B is cast to A, a call to the method M from
A is dispatched to B. Similarly, when C is cast to
A, a call to M is dispatched to C. The decision
on exactly which method to call is delayed until
runtime and, therefore, it is also known as
runtime polymo1phism.

 Since the method is linked with a particular class
much later after compilation, this process is
termed late binding. It is also known as dynamic
binding because the selection of the appropriate
method is done dynamically at runtime.

