
Prepared by
B.Loganathan

 UNIT-II: Object Oriented Programming In C#:
Methods- Declaring Methods – Main Methods –
Invoking Methods – Nesting of Methods – Method
Parameters – Pass by value – Pass by Reference –
Output Parameters - Handling Arrays in C# :
One-dimensional arrays – Creating an arrays –
Two-dimensional arrays – Variable size arrays –
System. Array class - Manipulating strings:
Creating strings – String methods – Inserting
string – Comparing strings – Finding substrings –
Mutable strings- Arrays of strings -Structures
and enumerations: Structures – Structs with
methods – Nested Structs – Enumerations –
Initialization – Base type – Enumerator type
conversion.

 In object-oriented programming, objects are
used as building blocks in developing a program.
They are t he runt ime ent i t ies. They may
represent a person, a pl ace, a bank account, a
table of data or any item that the program
handles.

 Methods in C#
 Ob je c t s e ncap s u l a t e d a t a , a n d c o d e t o

manipulate that data. The code designed to work
on the data is known as methods in C#. Methods
give objects their behavioral characteristics. They
are used not only to access and process data
contained in the object but also to provide
responses to any messages received from other
objects.

 DECLARING METHODS
 Methods are declared inside the body of a class,

normally after the declaration of data fields. The
general form of a method declaration is:

 Modifiers type method-name (formal-parameter-
list)

{
method _ body
}
 Method declaration has five parts:
§ Name of the method (method-name)
§ Type of value the method returns (type)
§ List of parameters (formal-parameter-list)
§ Body of the method
§ Method modifiers (modifier)

 The method-name is a valid C# identifier. The
type specifies the type of value the method will
return.

 This can be a simple data type such as int as well
as any class type. If the method does not return
anything, we specify a return type of void.

 The formal-parameter-list is always enclosed in
parentheses. This list contains variable names
and types of all the values we want to give to the
method as input.

 Examples are:
 int Fun (int m, float x, float y) //three parameters
 void Display () //no parameters

 The modifiers specify keywords that decide the
na ture o f access ib i l i t y and the mode o f
application of the method. A method can take
one or more of the modifiers list are :

 new :The method bides an inherited method with
the same signature

 public : The method can be accessed from
anywhere, including outside the class

 protected :The method can be accessed from
within the class to which it be longs, or a type
derived from that class

 internal : The method can be accessed from
within the same program

 private : The method can only be accessed from
inside the class to which it belongs

 static : The method does not operate on a
specific instance of the class

 virtual : The method can be overridden by a
derived class

 abstract : A virtual method which defines the
signature of the method, but doesn't provide an
implementation

 override : The method overrides an inherited
virtual or abstract method

 sealed : The method overrides an inherited
virtual method, but cannot be overridden by
any classes which inherit from this class. Must
be used in conjunction with override

 extern : The method is implemented externally,
in a different language

 C# programs start execution at a method named
Main(). This method must be the static method
of a class and must have either int or void as
return type.

 public static int Main()
 Or
 public static void Main()
 The modifier public is used as this method must

be called from outside the program. The Main
can also have parameters which may receive
values from the command line at the time of
execution.

 public static int Main (string [) args)
 public static void Main (string[] args)

 INVOKING METHODS
 Once methods have been defined, they must be

act ivated for operat ions. The process of
activating a method is known as invoking or
calling. The invoking is done using the dot
operator as shown below:

 objectname.methodname(actual -paramet er-li
st);

 Here, objectctname is the name of the object
o n w h i c h w e a r e c a l l i n g t h e m e t h o d
methodname. T he actual-parameter-list is a
comma separated list of ‘actual values' (or
expressions) that must match in type, order and
number with the formal parameter list of the
methodname declared in the class.

 using System;
 class Method / / class containing the method
 {
 I I Define the Cube method
 int Cube (int x) {
 return (x • x • x);
 } }
 I I Client class to invoke the cube method
 class MethodTest {
 public static void Main() {
 I I Create object for invoking cube
 Method M = new Method ();
 int y = M.Cube (5); //Method call
 Console. Writeli ne(y); I I Write the result
 }
 }

 A method named cube and is used to
compute the cube of a number passed in as a
parameter. This above program will display
an output of 125.

 NESTING OF METHODS
 A method can be called using only its name

by another method of the same class. This is
known as nesting of methods.

 For example below program contain class
Nesting defines two methods, namely
Largest () and Max (). The method Largest ()
calls the method Max () to determine the
largest of the two numbers and then displays
the result.

 using System;
 class Nesting {
 void Largest (int m, int n) {
 int large = Max (m , n); / / Nesting
 Console.Writeline(large);
 }
 int Max (int a, int b) {
 int x = (a >b) ? a:b;
 return(x);
 } }
 class NestTesting {
 Public static Main() {
 Nesting next = new Nesting();
 Next.Largest(100,200); //Method call
 } }

 A method can call any number of methods. It is
also possible for a called method to call another
method. That is, Method1 may call Method2,
which in turn may call Method3. Here, the
method Main calls Largest which in turn calls
Max. This program will produce an output of 200
that is the largest of two values.

 METHOD PARAMETERS
 A method invocation creates a copy, specific to

that invocation, of the formal parameters and
local variables of that method. The actual
argument list of the invocation assigns values or
variable references to the newly created formal
parameters. Within the body of a method, formal
parameters can be used like any other variables.

 The invocation involves not only passing the
values into the method but also getting back
the results from the method. For managing the
process of passing values and getting back the
results, C# employs four kinds of parameters.
◦ Value parameters • Output parameters
◦ Reference parameters • Parameter arrays
Value parameters are used for passing parameters

into methods by value. On the other hand,
r e f e r en c e p a r a m e t e r s a r e u s e d t o p a s s
parameters into methods by reference. Output
parameters, as the name implies, arc used to
pass results back from a method. Parameter
arrays are used in a method definition to enable it
to receive variable number of arguments when
called.

 By default, method parameters are passed by
value. That is, a parameter declared with no
modifier is passed by value and is called a value
parameter.

 When a method is invoked, the values of actual
parameters are assigned to the corresponding
formal parameters. The values of the value
parameters can be changed within the method.

 The below program will produce the output
 x = 100
 When the method change() is invoked, the value

of x is assigned to m and a new location for m is
created in the memory. Therefore, any change in
m does not affect the value stored in the location
x.

 Illustration of Passing by Value:
 using System;
 class PassByValue
 { static void Change(int m)

{ m=m+1; // value of m is changed
}

public static void Main()
{ int x = 100;

Change(x);
 Console.WriteLine(“x=“+x);
} }
PASS BY REFERENCE
We can force the value parameters to be

passed by reference. To do this, we use the
ref key word. A parameter declared with
the ref modifier is a reference parameter.

 For Example:
 void Modify (ref int x)
 Here, x is declared as a reference parameter.

Unlike a value parameter, a reference parameter
does not create a new storage location. Instead,
it represents the same storage location as the
actual parameter used in the method invocation.

 Remember, when a formal parameter is declared
as ref , the corresponding argument in the
method invocation must also be declared as ref.
Example:

 void Modify (ref int x)
 {

X += 10; // value of m will be changed
 }
 int m = 5; // m is initialized
 Modify (ref m); // pass by reference

 Note the use of ref int as the parameter type
in the definition and the use of ref keyword in
the method call to tell the compiler to pass by
reference rather than by value.

 Reference parameters a re used in situations
where we would like to change the values of
variable s in the calling method.

 THE OUTPUT PARAMETERS
 The output parameters are used to pass

results back to the calling method. This is
achieved by declaring the parameters with an
out keyword. Similar to a reference parameter,
an output parameter does not create a new
storage location.

 When a formal parameter is declared as out, the
corresponding actual parameter in the calling method
must also be declared as out. For example,

 void Output (out int x)
 {
 x= 100;
 }
 int m; //m is uninitialized
 Output (out m); // value of m is set
 Note that the actual parameter m is not assigned any

values before it is passed as output parameter. Since
the parameters x and m refer to the same storage
location, m takes the value that is assigned to x.

 Note that every formal output parameter of a method
must be definitely assigned a value before the
method returns. The following illustration is a simple
a p p l i c a t i o n o f o u t p a r a m e t e r s .

 using System;
 class Output
 { static void Square (int x, out int y)
 { y = x * x;

 }
 public static void Main() {

int m; // need not be initialized
Square(10, out m);
Console.WritLine(“m=“+m);
} }

Output of this Program would be: m = 100

 An array is a group of contiguous or related
data items that share a common name. For
instance, we can define an array name marks
to represent a set of marks of a class of
students. A particular value is indicated by
writing a number called index number or
subscript in brackets after t he array name.
For example,

 marks[10]
 represents the marks obtained by the 10

student.

 ONE-DIMENSIONAL ARRAYS
 A list of items can be given one variable name

using only one subscript and such a variable
is called a single-subscripted variable or a
one-dimensional array.

 The subscripted variable xi, refers to the i-th
element of x. In C#, a single-subscripted
variable x, can be expressed as

 x[1], x[2], x[3]…x[n]
 The subscript can begin with number 0.
 CREATING AN ARRAY
 Like other variables, arrays must be declared

and created in the compute r memory before
they are used.

Creation of an array involves three steps:
• Declaring the array

• Creating memory locations
• Putting values into the memory locations.

 Declaration of Arrays
 Arrays in C# are declared as follows:
 Type[] arrayname;
 Examples:
 int[] counter; I I declare int array reference
 float[] marks; //declare float array reference
 int[] x,y; //declare two int array reference
 Remember, we do not enter the size of the arrays in the

declaration.
 Creation of Arrays
 After declaring an array, we need to create it in the memory. C#

allows us to create arrays using new operator only, as shown
below:

 arrayname • new type(size];

 Examples:
 number • new int[5];
 //create a 5 element int array
 average • new float[10];
 //create a 10 element float array
 These lines create the necessary memory

locations for the arrays number and average
a n d d e s i g n a t e t h e m a s i n t a n d f l o a t
respectively.

 Initialization of Arrays
 The final step is to put values into the an ay

created. This process is known as initialization.
This is done using the array subscripts as
shown below.

 arrayname[subscript] = value ;

 Example:
 number[0] = 35; number (1) = 40;
 … number [4] = 19;
 Note that C# creates arrays starting with a

subscript of 0 and ends with a value one less
than the size specified.

 TWO-DIMENSIONAL ARRAYS
 There will be situations where a table of values

will have to be stored.
 In mathematics, we represent a particular value

in a matrix by using two subscripts such as Vij.
Here, V denotes the entire matrix and ij refers to
the value in the i-th row and j-th column.

 C# allows us to define such tables of items by
using two dimensional arrays. The table can be re
presented in C# as

 v[4,3]

 For creating two-dimensional arrays, we must
follow the same steps as that of simple arrays.
We may create a two-dimensional array like
this:

 int[] myArray;
 myArray = new int[3,4];
 This creates a table that can store twelve

integer values, four across and three down.
 Like the one-dimensional arrays, two-

dimensional arrays may be initialized by
following their declaration with a list of initial
values enclosed in braces. For example,

 int[,] table ={{0,0 ,0},{1,1,1}};

 C# treats multidimensional arrays as 'arrays
of arrays’. It is possible to declare a two-
dimensional array as follows:

 int[][] x= new int[3][]; // three rows array
 X[0] = new int[2];
 // first row has two elements
 x[1] = new int[4];
 // second row has four elements
 x[2] = new int[3];
 // third row has three elements
 These statements create a two-dimensional

array having different lengths for each row.

 Variable-size arrays are called jagged arrays .
 The elements can be accessed as follows :
 X [1] [1] = 10 ;
 Int y = x[2[[2];
 Note the difference in the way we access the

two types of arrays. With rectangular arrays,
all indices are within one set of square brackets,
while for jagged arrays each element is within its
own square brackets.

 THE SYSTEM ARRAY CLASS
 In C#, every array we create is automatically

derived from the Systm.Array class. This class
defines a number of methods and properties that
can be used to manipulate arrays more
efficiently.

 Some of the commonly used System Array Class
methods and their purpose are :

 Clear () :Sets a range of elements to empty values
 CopyTo () :Copies elements from the source array

into the destination array
 GetLength () : Gives the number of elements in a

given dimension of the array
 GetValue() : Gets the value for a given index in the

array
 Length :Gives the length of an array
 SetValue () :Sets the value for a given index in the

array
 Reverse () :Reverses the contents of a one-

dimensional array
 Sort () : Sorts the elements in a one-dimensional

array

 String manipulation is the most common part
of many C# programs. Strings represent a
sequence of characters.

 C# supports two types of strings, namely,
immutable strings and mutable.

 C# also supports a feature known as regular
expressions that can be used for complex
string manipulations and pattern matching.

 CREATING STRINGS
 C# supports a predefined reference type

known as string. We can use string to declare
string type objects.

 We can create immutable strings using string
or String objects in a number of ways.

 Assigning string literals
 Copying from one object to another
 Concatenating two objects
 Reading from the keyboard
 Using ToString method
 Assigning String Literals
 The most common way to create a string is to

assign a quoted string of characters known as
string literal to a string object. For example:

 string s1; //declaring a string object
 s1 = "abc“; //assigning string literal

Copying Strings
 We can also create new copies of existing

strings. This can be accomplished in two
ways:

 Using the overloaded = operator
 Using the static Copy method

 Example:
 string s2 = s1; // assigning
 string s2 = string.Copy(s1); //copying
 Both these statements would accomplish

the same thing, namely, copying the
contents of s1 into s2.

Concatenating Strings
 W e m a y a l s o c r e a t e n e w s t r i n g s b y

concatenating existing strings. There are a
couple of ways to accomplish this.

 Using the overloaded + operator
 Using the static Concat method

 Examples:
 string s3 = s1+ s2; //s1 & s2 exist already

string s3 = string.Concat(s1, s2)
 Reading from the Keyboard
 It is possible to read a string value

interactively from the keyboard and assign it
to a string object.

 string s= Console. ReadLine();

 On reaching this statement, the computer will
wait for a string of characters to be entered
from the keyboard. When the 'return key' is
pressed, the string will be read and assigned
to the string objects.

 The ToString Method
 Another way of creating a string is to call the

ToString method on an object and assign the
result 10 a string variable.

 int number = 123;
 string numStr = number.ToString();
 This statement converts the number 123 to a

string ‘123' and then assigns the string value to
the string variable numStr.

 String objects are immutable, meaning that we
cannot modify the characters contained in them.
However, since the string is an alias for the
predefined System.String class in the Common
Language Runtime (CLR).

 There are many built-in operations available that
work with strings. The following list of various
methods tha t cou ld be used fo r va r ious
operations.

 Compare() :Compares two strings
 CompareTo() :Compares the current instance

with another instance
 ConCat () :Concatenates two or more strings
 Copy() :Creates a new String by copying

another.

 CopyTo() :Copies a specified number of
characters to an array of Unicode characters

 EndsWith () :Determines whether a substring
exists at the end of the string

 Equals() :Determines if two strings are equal
 lndexOf() :Returns the position of the first

occurrence of a substring
 Insert () :Returns a new string with a substring

inserted at a specified location
 Join () :Joins an array of strings together
 LastlndexOf () :Returns the position of the last

occurrence of a substring
 PadLeft () :Left-aligns the strings in a field
 PadRight() :Right-aligns the string in a field
 Remove () :Deletes characters from the string

 Replace () : Replaces all instances of a character
with a new character

 Split() :Creates an array of strings by splitting the
string a1any occurrence of one

 StartsWith () : Determines whether a substring
exists at the beginning of the string

 Substring() : Extratcs a substring
 ToLower () : Returns a lower-case version of

the string
 ToUpper () : Returns an upper-case version of

the string
 Trim () : Removes white space from the string
 TrimEnd () :Removes a string of characters

from the end of the string
 TrimStart () :Removes a string of characters from

the beginning of the string

 INSERTING STRINGS
 String methods are called using the string

object on which we want to work. The
following program illustrates the use of the
Insert () method and the indexer property
supported by the Systm.String class.

 using system;
 class StringMethod
 {

 public static void Main()
 {

 string s1 = “Lean”;
 string s2 = s1.Insert (3,”r”);
 string s3 = s2.Insert (5,”er”);

 for (int I = 0; I <s3.Length;i++)
 Console.Write(s3[i]);
 Console.Write();
 }
 When the statement
 string s2 = s1.lnsert (3, "r");
 is executed, the string variable s2 contains

the string "Learn". The string "r" is inserted
in s1 after 3 characters. Similarly, the string
"er" is inserted at the end of the string. Finally,
the variable s3 contains the value "Learner".

 Note that, we are not modifying the contents
of a given string variable. Rather, we are
assigning the modified value to a new string
variable.

 COMPARING STRINGS
 String class supports overloaded methods

and operators to compare whether two
strings are equal or not. They are:
 Overloaded Compare() method
 Overloaded Equals() method
 Overloaded == operator

 i) Compare() Method
 There are two versions of overloaded static

Compare method. The first one takes two
strings as parameters and compares them.
Example:

 int n string.Compare (s1,s2);

 This performs a case-sensitive comparison and
returns different integer values for different
conditions as under:
 Zero integer, if s1 is equal to s2
 A positive integer (1), if s1 is greater than s2
 A negative integer (-1), if s1 is less than s2

For example, if s1 = "abc" and s2 = "ABC", then
n will be assigned a value of - 1. Remember, a
lowercase letter has a smaller ASCII value than
an uppercase letter.

 We can use such comparison statements in if
statements like:

 if (string.Compare (s1, s2) == 0)
 Console. WriteLine("They are equal");

ii) Equals() Method
 The string class supports an overloaded Equals

method for testing the equality of strings.
There are again two versions of Equals method.
They are implemented as follows:

 bool b1 = s2.Equals(s1);
 booI b2 = string.Equals (s2, s1);
 These methods return a Boolean value true if

s1 and s2 are equal, otherwise false.
 iii) The == Operator
 A simple and natural way of testing the equality

of strings is by using the overloaded = =
operator.

 For Example:
 bool b3 = (s1 == s2); //b3 is true if they are

equal
 We very often use such statements in decision

statements, like:
 if (s1 == s2)
 Console.WriteLine("They are qual");
 FINDING SUBSTRINGS
 It is possible to extract substrings from a given

string using the overloaded Substring method
available in String class. There are two version
of Substring:
 s.Substring(n)
 s.Substring(n1, n2)

 The first one extracts a substring starting from
the nth position lo the last character of the string
contained in s. The second one extracts a
substring from s beginning at n1 position and
ending at n2 position.

 Examples:
 string s1 = "NEW YORK”;
 string s2 = s1.Substring(5);
 string s3 = s1.Substring(0,3);
 string s4 = s1.Substring(5,8);
 When executed, the string variables will contain

the following substrings:
 s2: YORK
 s3: NEW
 s4: YORK

 MUTABLE STRINGS
 Mutable strings that are modifiable can be

created using the Str ingBui lder c lass.
Examples:

 StringBuilder str1 = new StringBuilder("abc");
StringBuilder str2 = new StringBuilder ();

 The string object str1 is created with an
initial size of three characters and str2 is
created as an empty string. They can grow
dynamically as more characters are added to
them. They can grow either unbounded or up
to a configurable maximum. Mutable strings
are also known as dynamic strings.

 The StringBuilder class supports many
methods that are useful for manipulating
dynamic strings.

 Append () :Appends a string
 AppendFormat () :Append strings using a

specific format
 EnsureCapacity() :Ensures sufficient size
 Insert () :Insert a string at a specified

position
 Remove () :Removes the specified characters
 Replace () :Replaces all instances of a

character with a specified one.

 C# also supports some special functions
known as properties . They are :

 Capacity :To retrieve or set the number of
characters the object can hold

 Length :To retrieve or set the length
 MaxCapacity : To retrieve the maximum

capacity of the object
 [] : To get or set a character at a specified

position
 The System.Text namespace contains the

StringBuilder class and therefore we must
include the using System.Text directive for
creating and manipulating mutable strings.

 using System.Text; / / For using StringBuilder
 using System;
 class StringBuilderMethod
 {
 public static void Main() {
 StringBuilder s = new StringBuilder (“Object ”);
 Console.WriteLine("Original string :“+s);
 Console.WriteLi ne(" Length :”+s.Length);
 / / Appending a string
 s.Append("language ");
 Console.Writeline("String now :”+s);
 / /Inserting a string
 s.lnsert (7, "oriented ");
 Console.WriteLine("Modified string :”+s);
 } }

 Look at the output produced by Program :
 Original string Object
 Length 7
 String now Object language
 Modified stringObject oriented language
 The above program accepts two string inputs

from users and appends the first string to a
predefined value. Using StringBuilder class, a
string value is inserted in the string.

 ARRAYS OF STRINGS
 We can also create and use arrays that contain

strings. The statement
 string [] itemArray = new string [3];
 will create an itemArray of size 3 to hold three

strings.

 We can assign the strings to the itemArray
element by element using three dif ferent
statements, or mo re efficiently using a for loop.
We could also provide an array with a list of
initial values in curly braces:

 string [] itemArra y = {"Java", "C++", "Csharp“};
 The size of the array is determined by the

number of elements in the initialization list. The
size of the array, once created, cannot be
changed.

 If we want an array whose length is determined
dynamically or an array which can be extended at
run time, we have to use the ArrayList class to
create a list.

 using System;
 class Strings
 {

 public static void Main()
 {
 string []countries -=

{ “India“, ”Germany”, ”America”, “France” };
Int n = countries.Length;
//Sort alphabetically
Array.Sort(countries);
for(int i=0; i <n; i++) {
 Console.WriteLine(countries[i]);
} } }
Once an array of strings is created, we can sort them

into ascending order or reverse their order using
the methods of Array class.

 C# allows us to define our own complex value
types (known as user­ defined value types)
based on these simple data types. There are
two sorts of value types we can define in C#:

 Structures
 Enumerations
 As we know, value type variables store their

da ta on the s tack and there fo re the
structures and enumerations are stored on
the stack.

 STRUCTURES
 Structures (often referred to as structs) are

similar to classes in C#. Although classes will be
used to implement most objects, it is desirable to
use structs where simple composite data types
are required.

 Because they are value types stored on the stack,
they have the following advantages compared to
class objects stored on the heap:

 They are created much more quickly than heap-
allocated types.

 They are instantly and automatically deallocated
once they go out of scope.

 It is easy to copy value type variables on the
stack.

 Defining a Struct
 A struct in C# provides a unique way of

packing together data of different types. It is
a convenient tool for handling a group of
logically related data items. It creates a
template that may be used to define its data
properties.

 Once the structure type bas been defined, we
can create variables of that type using
declarations that are similar to the built-in
type declarations.

 Structs are declared using the struct keyword.
 The simple form of a struct definition is as

follows:

 struct struct-name
 {
 data member1;
 data member2;
 }
 For Example:
 struct Student {
 public string Name;
 public int RollNumber;
 public double TotalMarks;
 }
 The keyword struct declares Student as a new

data type that can bold three variables of
different data Types.

 These variables are known as members or
fields or elements. The identifier Student can
now be used to create variables of type
Student. For Example:

 Student s1 ; //declare a student
 s1 is a variable of type Student and has three

member variables as defined by the template.
 Assigning Values to Members

 Member variables can be accessed using the
simple dot notation as follows:

 s1.Name ="John";
 s1.RollNumber = 999;
 s1.TotalMarks = 575.50;

Copying Structs
 We can also copy values from one struct to

another. For example:
 Student s2; I I s2 is declared
 s2 = s1 ;
 This will copy all those values from s1 to s2.
 We can also use the operator new to create struct

variables.
 Student s3 = new Student ();
 A struct variable is initialized to the default

values of its members as soon as it is declared.
 Note that struct's data members are ‘private' by

default and there fore cannot be accessed
outside the struct definition.

 STRUCTS WITH METHODS
 We have seen that values may be assigned to the data

members using struct objects and the dot operator.
We can also assign values to the data members using
what are known as constructors.

 A constructor is a method which is used to set values
of data members at the time of declaration.

 Consider the code below:
 sruct Number
 {
 int number; II data member
 public Number (int value) II constructor
 {
 number = value;
 }
 }

 The constructor method has the same name as
struct and declared as public. The constructor is
invoked as follows:

 Number n1 = new Number(100);
 This statement creates a struct object n1and

assigns the value I00 to its only data member
number.

 Structs can also have other methods as members.
These methods may be designed to perform
certain operations on the data stored in struct
objects. Note that a struct is not permitted to
declare a destructor.

 The following program shows how constructors
and methods are used in a struct implementation.

 using System;
 struct Rectangle
 {

int a,b;
public Rectangle (int x, int y) //Constructor
{

a = x;
b = y;
}
public void Area() //a method
{
 return(a * b);
}
public void Display () //another method
{
 Console.WritLine(“Area =“+Area());
}
}

 Class TestRectangle
 {
 public static void Main()
 {
 Rectangle rect = new Rectangle (10,20);
 rect.Display(); // invoking Display
 }
 }
 Program is produces the following output:
 Area= 200
 This code contains one constructor method to

give values to the data members, another
method Area () to compute the area of the
rectangle and the third method Display () to
display the area computed.

 NESTED STRUCTS
 C# permits declaration of structs nested inside

other structs. The following code is valid:
 struct Employee
 {
 public string name;
 public int code;
 public struct Salary
 {
 public double basic;
 public double allowance;
 }
 }

 The following program is an example of nesting of
strutctures in C#, one structure teacher is declared within
structure student and their values are displayed using
functions show (), show details(), etc. The values of
structure and method overriding is done using getvalues()
method.

 using System;
 using System.Collections.Generic;
 using System.Text;
 namespace NestedStructures
 {
 struct student
 {
 public string studentname;
 public string rollno;
 public static string grade;
 //Setting the property with struct student
 public string RollNo
 {

 set
 {
 rollno = "5000018_ClassV"
 }
 get
 {
 return rollno;
 }
 }
 /* Declaring a class school with in the structure

student public class school
 {
 public string schoolname;
 public string classname;
 …
 …

 An enumeration is a user-defined integer type
which provides a way for attaching names to
numbers, thereby increasing the comprehensibility of
the code.

 The enum keyword automatically enumerates a list
of words by assigning them values 0,1, 2 and so on.

 The syntax of an enum statement is illustrated below:
 enum Shape
 {
 Circle, I I ends with comma
 Square, //ends with comma
 Triangle // no comma
 }
 This can be written in one line as follows:
 enum Shape{Circle, Square, Triangle}

 Here, Circle has the value 0, Square has the
value 1 and Triangle has the value 2. Other
examples of enum are:

 enum Colour { Red, Blue, Green, Yellow }
 enum Position { Off, On }
 enum Day { Mon, Tue, Wed, Thu, Fri, Sat, Sun}
 ENUMERATOR INITIALIZAT ION
 As mentioned earlier, bydefault, the value of

the first enum member is set to 0, and that of
each subsequent member is incremented by
one. However, we may assign specific values
for different members, if we so desire.

 For Example:
 enum Colour
 {
 Red = 1,
 Blue =3,
 Green = 7,
 Yellow = 5
 }
 If the declaration of an enum member has

no initializer, then its value is set implicitly
as follows:
◦ If it is the first member, its value is zero.
◦ Otherwise, its value is obtained by adding

one to the value of the previous member
Consider the following enum declaration:

 enum Alphabet
 {
 A,
 B=5
 C,
 D = 20,
 E
 }
 The member A is set to zero. Since the

member B is explicitly given the value 5, the
value of C is set to 6 (i.e, 5 + 1). Similarly, E
is set to 21.

 ENUMERATOR BASETYPES
 By default, the type of an enum is int. However ,

we can declare explicitly a base type for each
enum . The valid base types are:

 byte, sbyte , short, ushort, int, uint, long and
ulong

 Examples:
 enum Position : byte
 {
 off,
 on
 }
 The values assigned to the members must be

w i t h i n t h e r a n g e o f v a l u e s t h a t c a n b e
represented by the base type. For example, if the
base type is byte, assigning a value 300 is illegal.

 ENUMERATOR TYPE CONVERSION
 Enum types can be converted to their base type

and back again with an explicit conversion using
a cast.

 Example:
 enum Values
 {
 Value0,
 Value1 ,
 Value2,
 Value3
 }
 … …
 Values u1 = (Values) 1;
 int a = (int) u1;
 … …

 The exception to this is that the literal 0 can
be converted to an enum type without a cast.
That is,

 Values u0 = 0;
 i s permit ted. The fo l lowing program

i l lus t ra tes how enumerator types are
converted.

 using System;
 class Enumtype
 {
 enum Direction
 {

 North,
 East = 10;
 West,
 South
 }
 public static void Main ()
 {
 Direction d1 = 0; //implicit conversion
 Direction d2 = Direction.East;
 Direction d3 = Direction.West;
 Direction d4 = (Direction) 12; //explicit
 Console.WriteLine(“d1=“+d1);

 Console.WriteLine(“d2=“+(int) d2)
 Console.WriteLine(“d3=“+d3);
 Console.WriteLine(“d4=“+d4);
 }
 }
 Program output will be as :
 d1 = 0
 d2 = 10
 d3 = 11
 d4 = 12

