
Prepared by
B.Loganathan

 UNIT-I: Introduction to C#: Evolution of C# -
Characteristics of C# - How does C# differ from C++
and Java - Literals - Variables - Data types - Boxing
and Un-boxing - Operators and Expressions-
Arithmetic - Relational – Logical – Assignment –
Increment and Decrement – Conditional – Bitwise and
special operators - Type conversions - Mathematical
functions - Decision making and branching : Decision
making with if statement-Simple if statement-The
if… else statement –Nesting of if…else statements-
else…if Ladder- Switch statement- ?: Operator –
Looping: While statement – do statement – for
statement – for each statement – jumps in loops.

 C# (pronounced as 'C sharp') is a new
computer-programming language developed
by Microsoft Corporation, USA.

 It has been designed to support the key
features o f .NET Framework , the new
development platform of Microsoft for
bu i ld ing component-based so f twa re
solutions. It is a simple, efficient, productive
and type-safe language.

 It is a purely objected-oriented, modern
language suitable for developing Web based
applications.

 We have a number of limitations in using
the WWW over the Internet.
 We can see only one site at a time
 The site has to be authored to our hardware

environment.
 The information we get is basically read-only
 we cannot compare dynamically similar

information stored in different sites
 The Internet is a collection of many

information islands that do not co-operate with
each other. lt continues to be a browsing and
presentation network rather than an intelligent
knowledge management network.

 Microsoft Chairman Bill Gates, the architect of
many innovative and path-breaking software
products during the past two decades, wanted to
develop a software platform which will overcome
these limitations.

 He wanted to make the Web both programmable
and intelligent. T he outcome is a new generation
p la t fo rm ca l l ed .NET and i s s imp ly the
Microsoft's vision of software as a service.

 The research and developn1ent work of .NET
platform began in the mid-90s, only during the
Microsoft Professional Developers Conference
i n Sep tember 2000 ,was .NET o f f i c i a l l y
announced to the developer community.

 At the same conference, Microsoft introduced
C# as a de facto language of the .NET
platform.

 Like Java, C# is a descendant of C++, which
in turn is a descendant of C.

 C# both Java's features such as grouping of
classes, interfaces and implementation
together in one files that programmers can
edit the code more easily.

 C# uses VB's approach to form design,
namely, dragging controls from a tool box,
dropping on to forms, and writing event
handlers for them.

 The main design goal of C# was simplicity
rather than pure power. C# fulfills the need
for a language that is easy to write, read and
maintain and also provides the power and
flexibility of C++.

 Main key features are :
 Simple Object-oriented
 Type-safe Versionable
 Compatible Interoperable
 Consistent Flexible and
 Modern

 i) Simple
 C# simplifies C++ by eliminating some

operators such as ->,:: and pointers. C#
treats integer and Boolean data types as two
entirely different types. This means that the
use of= in place of == in if statements will
be caught by the compiler.

 ii) Consistent
 C# supports an unified type system which

eliminates the problem of varying ranges of
integer types. All types are treated as objects
and developers can extend the type system
simply and easily.

iii) Modern
 C# is called a modem language due to a

number of features it supports. It supports
 Automatic garbage collection
 Modern approach to debugging and
 Rich intrinsic model for error handling
 Robust security model
 Decimal data type for financial

applications
iv) Object-Oriented

 C# is truly object-oriented. It supports all the
three tenets of object-oriented systems,
namely,

• Encapsulation • Inheritance
•Polymorphism

v) Type-safe
 Type-safety promotes robust programs. C#

incorporates a number of type-safe measures.
 All dynamically allocated objects and arrays

are initialized to zero
 Use of any uninitialized variables produces an

error 1nessage by tile compile r
 Access to arrays are range-checked and

warned if it goes out-of-bounds
 C# does not permit unsafe casts

◦ C# enforces overflow checking in arithmetic
operations

◦ Reference parameters that are passed are type-
safe

◦ C# supports automatic garbage collection

vi) Versionable
 Making new versions of software modules work

with the existing applications is known as
versioning. C# provides support for versioning
with the help of new and override keywords.

vii) Compatible
 C# enforces the .NET common language

specifications and therefore allows inter-
operation with other .NET languages.

viii) Flexible
 Although C# does not support pointers, we

may declare certain classes and methods as
'unsafe‘ and then use pointers to manipulate
them. However, these codes will not be type-
safe.

ix) Inter-operability
 C# provides support for using COM objects, no

matter what language was used to author them.
C# also supports a special feature that enables
a program to call out any native API.

 How does C# differ from C++
 The C# designers introduced a few changes in

the syntax of C++ and removed a few features
primarily to reduce the common pitfalls that
occurred in C++ program development. They
also added a number of additional features to
make C# a type-safe and web-enabled language.

 Changes Introduced
 C# compiles straight from source code to

executable code, with no object files.
 C# does not separate class definition from

implementation. Classes are defined and
implemented in the same place and there is no
need for header files.

 In C#, class definition does not use a semicolon
at the end.

 The first character of the Main() function is
capitalized. The Main must return either int or
void type value.

 C# does not support #include statement. (Note
that using is not the same as #include).

 All data types in C# are inherited from the
object super class and there fore they are
objects.

 All the basic value types will have the same size
on any system. This is not the case in C or C++.
Thus, C# is more suitable for writing
distributed applications.

 In C#, data types belong to either value types
(which are created in a stack) or reference
types (which are created in a heap).

 C# checks for uninitialized variables and gives
error messages at compile time. In C++, an
uninitialized variable goes undetected thus
resulting in unpredictable output.

◦ In C#, structs are value types.

 C++ features dropped
 The followingC++ features are mi ssing from

C#:
 Macros
 Multiple inheritance
 Templates
 Pointers
 Global variables
 Typedef statement
 Default arguments
 Constant member functions or paramete rs
 Forward declaration of classes

 Like C#, Java was also derived from C++ and
therefore they have similar roots. Moreover,
C# was deve loped by Microsof t as an
alternative to Java for web programming. C#
has borrowed many good features from Java,
which has already become a popular Internet
language.

 Number of differences between C# and Java
are:

§ Although C# uses .NET runtime that is similar
to Java runtime, the C# compiler produces an
executable code.

◦ C# has more primitive data types.
◦ Unlike Java, all C# data types are objects.
◦ Arrays are declared differently in C#.
◦ Although C# classes are quite similar to Java

classes, there are a few important differences
re l a t i ng to cons tan t s , base c l a sses and
constructors, static constructors, versioning,
accessibility of members etc.

◦ Java uses static final to declare a class constant
while C# uses canst.

◦ The convention for Java is to put one public class
in each file and in fact , some compilers require
this. C# allows any source file arrangement.

◦ C# supports the struct type and Java does not.
◦ Java does not provide for operator overloading.

 Literals
 Literals are value constants assigned to

variables (or results of expressions) in a
program. C# supports several types of literals

 Integer Literals :
 An integer literal refers to a sequence of

digits. There are two types of integers,
namely, decimal integers and hexadecimal
integers.

 Decimal integers consist of a set of digits, 0
through 9, preceded by an optional minus
sign. Valid examples of decimal integer
literals are:

 123 -321 0 654321

 A sequence of digits preceded by Ox or OX is
considered as a hexadecimal integer (hex
integer). It may also include alphabets A through
F or 'a ' through 'f‘.

 Real Literals
 Integer literals are inadequate to represent

quantities that vary continuously, such as
distances, heights, temperatures, prices and so
on. These quantities are represented by numbers
containing fractional parts like 17.548. Such
numbers are called real (or floating point)
number.

 A rea l l i t e r a l may a l so be exp ressed i n
exponential (or scientific) notation. For example,
the value 215.65 may be written as 2.I 565e2.

 Boolean Literals
 There are two Boolean literal values : True ,

False.
 They are used as va lues of re la t iona l

expressions.
 Single Character Literals
 A single-character literal (or simply character

constant) conta ins a s ing le character
enclosed within a pair of single quote marks.
Example of character in the examples above
constants are:

 '5' 'X‘

 String Literals
 A string literal is a sequence of characters

enclosed between double quotes.
 The characters may be alphabets, dig its,

spec ia l characters and blank spaces .
Examples are:

 "Hello C# “ “2001" "WELLDONE" "?... !" "5+3"
"X“

 Backslash Character Literal
 C# supports some spec ia l backs lash

character constants that are used in output
methods. For example, the symbol ‘\n'
stands for a new-line character.

 Variables
 A variable is an identifier that denotes a

storage location used to store a data value.
Unlike constants that remain unchanged
during the execution of a program, a variable
may take different values at different times
during the execution of the program. Every
variable has a type that determines what
values can be stored in the variable.

 Some examples of variable names are:
◦ average • total_height
◦ height • classStreugth

 Data type
Every variable in C# is associated with a data type.

Data types specify the size and type of values that
can be stored. C# is a language rich in its data types.

 The types in C# are primarily divided into two
categories:
 Value types
 Reference types

 Value types and reference types differ in two
characteristics:
 Where they are stored in the memory
 How they behave in the context of assignment statements

 Value types (which are of fixed length) are stored on
the stack. Reference types (which are of variable
length) are stored on the heap.

 The value types of C# can be grouped into
two categories), namely,
◦ User-defined types (or complex types) and
◦ Predefined types (or simple types)

 We can define our own complex types
known as user-defined value types which
include struct types and enumerations.

 Predefined value types which are also
known as simple types (or primitive types)
are further subdivided into:
◦ Numeric types,
◦ Boolean types, and
◦ Character types.

 In object-oriented progra1nming, methods
are invoked using objects. Since value types
such as int and long are not objects, we
cannot use them to call methods.

 C# enables us to achieve this through a
technique known as boxing . Boxing means
the conversion of a value type on the stack to
a object type on the heap. Conversely, the
conversion from an object type back to a
value type is known as unboxing.

 Consider the following code:
 int m = 10:
 object om = m;
 m = 20;
 Console.Writeline(m); I Im= 20

Console.Writeline(om); // om = 10
 When a code changes the value of m, the value of

om is not affected.
 Unboxing is the process of converting the object

type back to the value type.
 Int m=10;
 object om = m; //box m
 int n = (int)om; //unbox om back to an int

 An operator is a symbol that tells the computer
to perform certain mathematical or logical
manipulations.

 C# supports a rich set of operators. C# operators
can be c lass i f ied into a number of re lated
categories as below:
◦ Arithmetic operators
◦ Relational operators
◦ Logical operators
◦ Assignment operators
◦ Increment and decrement operators
◦ Conditional operators
◦ Bitwise operators
◦ Special operators

 Arithmetic Operators
 C # provides all the basic arithmetic operators.

They are:
 + Add it ion or unary plus
 - Subtraction or unary minus
 * Multiplication
 I Division
 % Modulo division
 Relational Operators
 We often compare two quantities and depending

on their relation, take certain decisions. For
example, we may compare the age of two
persons or the price of two items and so on.
These comparisons can be done with the help of
relational operators.

 C# supports six relational operators:
 < is less than
 <= is less than or equal to
 > is greater than
 >= is greater than or equal to
 == is equal to
 != is not equal to
 LOGICAL OPERATORS
 C# has six logical operators :
 && logical AND
 II logical OR
 ! logical NOT
 & bitwise logical AND
 | bitwise logical OR
 ^ bitwise logical exclusive OR

 Assignment Operator
 Assignment operators are used to assign the

value of an expression to a variable.
 C# has a set of ‘shorthand' assignment operators

which a re used in the form:
 v op = exp
 where v is a variable, exp is an expression and

op is a C# binary operator. The operator op = is
known as the shorthand assignment operator.

 Consider an example
 X += y+1;
 This is same as the statement
 X = X+(y+1);

 Increment and Decrement Operators
 These are the increment and decrement operators:
 ++ and - -
 The operator ++ adds 1 to the operand while --

subtracts 1.
 ++m; is equivalent to m = m + 1; (or m + = 1;)
 - -m; is equivalent to m = m - 1; (or m - =1;)
 Consider the following:
 m = 5;
 y = ++m;
 In this case, the value of y and m would be 6.

Suppose, if we rewrite the above statement as
 m = 5;
 y = m++;
 then, the value of y would be 5 and m would be 6

 Conditional Operator
 The character pair ? : is a ternary opera tor

available in C#. This operator is used to construct
conditional expressions of the form

 exp1 ? exp2 : exp3
 where exp1, exp2 and exp3 are expressions.
 Exp1 is evaluated first. If it is true, then the

expression exp2 is evaluated and becomes the
value of the conditional expression. If exp1 is
false , exp3 is evaluated and its value becomes
the value of the conditional expression.

 For example, consider the following statements:
 a= 10;
 b = 15;
 x = (a>b)? a : b;
 In this example, x will be assigned the value of b.

 Bitwise and special operators
 The bitwise logical and shift operators are :
 & bitwise logical AND
 | bitwise logical OR
 ^ bitwise logical XOR
 ~ one's complement
 << shift left
 >> shift right
 SPECIAL OPERATORS
 C# supports the following special operators.
 is (relational operator)
 as (relational operator)
 typeof (type operator)
 sizeo f (size operator)
 new(object creator)
 .(dot) (member-access operator)
 checked (overflow checking)
 unchecked(prevention of overflow checking)

 We often encounter situations where there is a
need to convert a data of one type to another
before it is used in arithmetic operations or to
store a value of one type into a variable of
another type. For example, consider the code
below:

 byte b1 = 50;
 byte b2 = 60;
 byte b3 = b1 + b2;
 This code attempts to add two byte values and to

store the result into a third byte variable. But this
will not work. The compiler will give an error
message:

 "cannot implicitly convert type int to type byte."

 When we add two byte values, the compiler
automatically converts then, into int types
and the result of addition is an int value, not
another byte.

 This is because the sum of two byte values
may very easily result in a value that is much
larger than the range of a byte.

 we may assign the result to an int type
variable:

 int b3 = b1 + b2; / / no error
 Here, the compiler does the conversion for us,

without out explicit request to do so.

 In C#, type conversions take place in two ways:
 Implicit conversions
 Explicit conversions

 Implicit Conversions
 Implicit conversions are those that will always

succeed. That is, the conversion can always be
performed without any loss of data.

 For example , a short can be converted
implicitly to an int, because the short range is
a subset of the int range. Therefore,

 short b = 75;
 int a = b, / / implicit conversion.
 are valid statements.

 Implicit conversions are possible in the following
cases:
 From byte to decimal
 From uint to double
 From ushort to long

Explicit Conversions
 There are many conversions that cannot be

implicitly made between types. If we attempt
such conversions, the compiler will give an error
message. For example, the following conversions
cannot be made implicitly:
 int to short
 int to uint
 uint to int
 float to int
 decimal to any numeric type
 any numeric type to char

 However, we can explicitly carry out such
conversions using the 'cast' operator. The
process is known as casting and is done as
follows:

 type variable1 = (type) variable2;
 The destination type is placed in parentheses

before the source variable.
 Examples:
 int m = 50;
 byte n = (byte) m;
 long x = 1234L;
 int y = (int) x;

 The System namespace defines a class known
as Math class with a rich set of static
methods that makes math-oriented
programming easy and efficient.

 Some of the mathematical methods contained
in the Math class:

 Sin () sine of an angle in radians
 Cos() cosine of an angle in radians
 Tan() tangent of an angle in radians
 Asin () inverse of sine
 Acos () inverse of cosine
 Sign () sign of the number

 Atan () inverse of tangent
 Atan2 () inverse tangent
 Sinh () hyperbolic sine
 Cosh () hyperbolic cosine
 Tanh () hyperbolic tangent
 Sqrt () square root
 Pow() number raised to a given power
 Exp() exponential
 Log () natural logarithm (base e)
 Log10() base 10 logarithm
 Abs() absolute value of a number
 Min () lower of two numbers
 Max() higher of two numbers

 Decision Making and Branching
 A C# program is a set of statements that are

normally executed sequentially in the order in which
they appear . Th is happens when opt ions or
repetitions of certain calculations are not necessary.
However, in practice , we have a number of situations,
where we may have to change the order of execution
of statements based on certain conditions, or repeat
a group of statements unti l certain specif ied
conditions are met.

 When a program breaks the sequential flow and Jump
s to another part of the code, it is called branching.
When the branching is based on a particular condition,
it is known as conditional branching. If branching
takes place without any decision, it is known as
unconditional branching.

 C# language possesses such decision-ma king
capabilities and supports the following statements
known as control or decision making statements.

 DECISION MAKING WITH IF STATEMENT
 The if statement is a powerful decision-

making statement and is used to control the
flow of execution of statements. It is a two-
way decision statement and is used in
conjunction with an expression. It takes the
following form:

 lf(expression)
 I t a l lows the computer to evaluate the

expression first and then, depending on
whether the value of the expression(relation
or condition) is 'true' or ' false' , it transfers
the control to a particular statement.

 Some examples of decision making, usiJ1g the if
statement are:

 if (bank balance is zero) borrow money
 if (room is dark) put on lights
 The if statement may be implemented in different

forms depending on the complexity of the
conditions to be tested.

 1. Simple if statement 2.if..else statement
 3. Nested if..else statement 4.else if ladder
 SIMPL E IF STATEMENT
 The general form of a simple if statement is

if(boolean-expression)
 {
 statement-block;
 }
 statement-x;

 The 'statement-block' may be a single
statement or a group of statements. If the
boolean-expression is true, the statement -
block wi l l be executed; otherwise the
statement-block will be skipped and the
execution will jump to the statement-x.

 Cons ider the fo l low ing segment o f a
program:

 if(category == SPORTS)
 {
 marks = marks + bonus_marks;
 }
 System.Console.WriteLine(marks);

 The program tests the type of category of the
student. If the student belongs to the SPORTS
category, then additional bonus_marks are added
to his marks before they are printed. For others,
bonus_marks are not added.

 THE IF... ELSE STATEMENT
 The ifelse statement is an extension of the

simple if statement. The general form is :
 lf(boolean_expression) {
 True-block statement(s)
 }
 else {
 False-block statement(s)
 }
 Statement –x;

 If the boolean_expression is true, then the
t rue-block statement (s) , immediate ly
following the if statement, are executed;
otherwise, the false-block statement{(s) are
executed. In either case, either true-block or
false block will be executed, not both. In
both the cases, the control is transferred
subsequently to the statement-x.

 Let us consider an example of counting the
number of boys and girls in a class. We use
code 1 for a boy and 2 for a g ir l . The
program statements to do this maybe written
as follows:

 if(code == 1)
boy = boy +1;

 else
girl= girl + 1;

 xxx;
 Here, if the code is equal to 1 , the statement

boy = boy + 1 ; is executed and the control is
transferred to the statement xxx, after
skipping the else part. If the code is not equal
to 1, the statement boy= boy + 1; is skipped
and the statement in the else part girl =
girl+1; is executed before the control reaches
the statement xxx.

 NESTING OF IF. .. .ELSE STATEMENTS
 When a series of decisions are involved, we may have

to use more than one if....else statement in nested
form as follows:

 If (test condition1) {
 if(test condition2) {

 statement1;
 else {
 statement2;
 }
 else {
 satement3;
 }
 statement-x;
 condition-1 is false, the statement-3 will be executed;

otherwise it continues to perform the second test. If
the condition-2 is true, then statement-1 will be
evaluated; otherwise statement-2 will be evaluated and
the control transferred to statement-x.

 A commercia l bank has introduced an
incentive policy of giving a bonus to all its
deposit holders. The policy is as follows: A
bonus of 2 percent of the balance held on
31st December is g iven to every one,
irrespective of their balances, and 5 percent
is given to female account holders if their
balance is more than Rs 5000. This logic can
be coded as follows:

 if(sex is female)
 {

if (balance > 5000)
 bonus = 0.05 * balance ;

else
 bonus = 0.02 * balance;

 }
 else
 {
 bonus = 0.02 * balance ;
 }
 balance = balance + bonus;
 When nesting, care should be exercised to match

every if with an else.
 THE ELSE..IF LADDER
 There is another way of putting if-else together

when multipath decisions are involved. A multipath
decision is a chain of if-else in which the statement
associated with each else is an if. It takes the
following general form:

 if (condition-1)
 statement-1;
else if (condition-2)

 statement-2;
 else if (condition-3)
 statement-3;
 …
 else if (condition-n)
 statement-n;

 else
default-statement;

statement-x;
 This construct is known as the else if ladder. The

conditions are evaluated from the top (of the
ladder), to downwards.

 As soon as the true condition is found, the
statement associated with it is executed and the
control is transferred to the statement-x
(skipping the rest of the ladder). When all the n
conditions become false, then the final else
containing the default-statement wi l l be
executed.

 Let us consider an example of grading the
students in an academic institution. The grading
is done according to the following rules:

 80 to 100 Honours
 6010 79 First Division
 5010 59 Second Division
 40 to 49 Third Division
 0 to 39 Fail

 This grading can be done using the else if
ladder as follows:

 if(marks > 79)
 grade = “Honours";

 else if(marks > 59)
 grade = "First Division";
 else if(marks > 49)
 grade = "Second Di vision";
 else if(marks > 39)
 grade ="Third Division";
 else
 grade= "Fail";
 Console .WriteLine("Grade : "+ grade);

 THE SWITCH STATEMENT
 When one of many alternatives has to be

selected, we can design a program using if
state1nents to control the selection. However,
the complexity of such a program increases
dramatically when the alter natives increase .

 C# has a bu i l t- in mul t i-way dec is ion
statement known as a switch. The switch
statement tests the value of a given variable
(or expression) against a list of case values
and when a match is found, a block of
statements associated with that case is
executed.

 The general form of the switch statement is as
shown below:

 switch(expression)
 {
 case value-1:
 block-1
 break;
 case value-2:
 block-2
 break;
 default:
 default-block
 break;
 }
 statement-x;

 The expression must be an integer type or
char or string type. value-1, value-2 are
constants or constant expressions and are
known as case labels. Each of these values
should be unique within a switch statement.

 block-1, block-2 are statement lists and
may contain zero or more statements. There
is no need to put braces around these blocks
but it is important to note that case labels
end with a colon (:).

 The switch statement is executed in the
following order:

• The expression is evaluated first.
• The value of the expression is successively

compared against the values, value-1,value-2,… If
a case is found whose value matches the value of
the expression, then the block of statements that
follows the case are executed.
 The break statement at the end of each block

signals the end of a pa1ticular case and causes
an exit from the switch statement, transferring
the control to the statement-x following the
switch.

 The default is an optional case. When present, it
will be executed if the value of the expression
does not match any of the case values. If not
present, no action takes place when all matches
fail and the control goes to the statement-x.

 The switch statement can be used to grade the
students as :

 index = marks/10;
 switch(index)
 {
 case 10:
 case 9:
 case 8:
 grade = "Honours";
 break;
 case 7:
 case 6:
 grade = "First Division";
 break;
 case 5:
 grade = "Second Di vision" ;
 break;

 case 4:
 grade = "Third Division";
 break;
 default:
 grade= "Fail";
 break;
 }
 Console.Writeline(grade);
 Note that we have used a conversion statement

index = marks / 10; where, index is defined as an
i n t e g e r . T h i s s e g m e n t o f t h e p r o g r a m
illustrates two important features.

 First, it uses empty cases. The first three cases
wi l l execute the same statements grade =
"Honours"; Second, the default condition is used
for all other cases where marks are less than 40.

 THE ? : OPERATOR
 C # has an unusual operator, useful for making

two-way decisions; it is a combination of ? and :
and takes three operands. This operator is
popularly known as the conditional operator. The
general form of use of the conditional operator
is as follows:

 conditional -expression? expression1 :
expression2

 The conditional-expression is evaluated first. If
the result is true, expression1 is evaluated and
is returned as the value of the conditional
expression. Otherwise, expression2 is evaluated
and its value is returnted.

 For example, the segment
 if (x < 0)
 flag = 0;
 else
 flag = 1;
 can be written as
 flag = (x<0) ? 0 : 1;
 Looping
 A computer is well suited to perform repetitive

operations. It can do so tirelessly ten, hundred
or even ten thousand times. Every computer
language must have features that instruct a
computer to perform such repetitive tasks. The
process of repeatedly executing a block of
statements is known as looping.

 A looping process, in general, would include
the following four steps:
 Setting and Initialization of a counter.
 Execution of the statements In the loop.
 Test for a specified condition for execution of the

loop.
 Incrementing the counter.

 The test may be either to determine whether the
loop has been repeated the specified number of
times or to determine whether a particular
condition has been met with. The C# language
provides for four constructs for performing loop
operations. They are:

 The while statement
 The do statement
 The for statement
 The foreach statement

 THE WHILE STATEMENT
 The simplest of all the looping structures in

C# is the while statement. The basic format
of the while statement is :

 initialization;
 while(test condition) {
 Body of the loop
 }
 while is an entry -controlled loop statement.

The test condition is evaluated and if the
condition is true, then the body of the loop is
executed.

 After execut ion of the body , the tes t
condition is once again evaluated and if it is
true, the body is executed once again.

 This process of repeated execution of the
body continues until the test condition finally
becomes false and the control is transferred
out of the loop. On exi t , the program
continues with the statement immediately
after the body of the loop.

 The body of the loop may have one or more
statements. The braces are needed only if the
body contains two or more statements.

 Consider the following code segment:
 sum = 0;
 n = 1; I I counter
 while(n <= 10)

 {
 sum = sum + n * n;
 n = n+1; I I incrementing the number
 }
 System.Console.Wri teLine(" Sum = " + sum);
 The body of the loop is executed 10 times for

n = I, 2,, 10 each time adding the square
of the value of n, which is incremented inside
the loop.

 THE DO STATEMENT
 On some occasions it might be necessary to

execute the body of the loop before the test
is performed. Such situations can be handled
with the help of the do statement. This takes
the form:

 Initialiazat ion;
 do
 {
 body of the loop
 }
 while (test condition);
 On reaching the do statement, the program

proceeds to evaluate the body of the loop first.
At the end of the loop , the test condition in the
while statement is evaluated.

 If the condition is true, the program continues to
evaluate the body of the loop once again. This
process continues as long as the condition is true.
Then the condition becomes false, the loop will
be terminated and the control goes to the
statement that appears immediately after the
while statement.

 Since the test condition is evaluated at the
bottom of the loop, the do while construct
provides an exit-controlled loop and therefore
the body of the loop is always executed at least
once.

 Consider an example:
 i =1;
 sum = 0;
 do
 {
 sum = sum + i;
 i = i + 2;
 }
 while(sum < 40 || i < 10); I I semicolon here
 The loop will be executed as long as one of the

two relations is true.

 THE FOR STATEMENT
 for is another entry-controlled loop that

provides a more concise loop-control
structure. The general form of the for loop is:

 for (initialization ; test condition; increment)
 {
 Body of the loop
 }
 The execution of the for statement is as

follows:
 Initialization of the control variables is done first,

using assignment statements such as i = 1 and
count = 0. The variables i and count are known as
loop-control variables.

 The value of the control variable is tested using
the test condition. The test condition is a
relational expression, such as i < 10, which
determines when the loop wil l exit. I f the
condit ion is true, the body of the loop is
executed; otherwise the loop is terminated and
the execution continues with the statement that
immediately follows the loop.

 When the body of the loop is executed, the
control is transferred back to the for statement
after evaluating the last statement in the loop.
Now, the control variable is incremented using an
assignment statement such as i = i+1 and the
new value of the control variable is again tested
to sec whether it satisfies the loop condition.

 If the condition is satisfied, the body of the
loop i s aga in executed . Th is process
continues till the value of the control variable
fails to satisfy the test condition.

 Consider the following segment of a
program:

 for (x = 0 ; x <= 9 ; x = x+1)
 {
 System.ConsoleWriteLline(x);
 }
 This for loop is executed ten times and prints

the digits 0 to 9. The three sections enclosed
within parentheses must be separated by
semicolons.

Additional Features of the for Loop
 The for loop has several capabilities that are

not found in other loop constructs. For
example, more than one variable can be
initialized in the for statement. The statements:

 p = 1;
 for (n=0; n<17; ++n) can be rewritten as
 for (p=1, n=0; n<17;++n)
 Notice that the initialization section bas two

parts p = 1 and n = 0 separated by a comma.
 Like the initialization section, the increment

section may also have more than one part. For
example,

 for (n=1, m=50; n<=m; n=n+1, m=m-1)

Nesting of for Loops
 Nesting of loops, that is, one for statement within

another for statement, is allowed in C#.
 for (i= 1; i<10; ++i) //Outer loop
 {
 for(j= 1;j< 5; ++j)
 {

Inner loop
 }
 A program segment to print a multiplication table

using for loops is show n below:
 for (row=1; row <= ROWMAX; ++row) {
 for (column = 1; column <= COLMAX; ++ column) {
 Y = row + column;
 System.Console.Write(" " + Y);
 }
 System.Console.WriteLine(" ");
 }

 THE FOREACH STATEMENT
 The foreach statement is similar to the for

statement but implemented differently. It
enables us to iterate the elements in arrays and
collection classes such as List and HashTable.
The general form of the foreach statement is:

 foreach (type variable in expression)
 {
 Body of the loop
 }
 The type and variable declare the iteration

variable. During execution, the iteration variable
represents the array element (or collection
element in case of collections) for which an
iteration is currently being performed.

 The expression must be an array or collection
type and an explicit conversion must exist
from the element type of the collection to the
type of the iteration variable. Example:

 public static void Main (string [] args)
 {
 foreach (string s in args)
 {
 Console. WriteLine(s);
 }
 }
 This program segment displays the command

line arguments.

 using System;
 class ForeachTest
 {
 public static void Main ()
 {
 int[] arraylnt = {11 , 22, 33, 44 };
 foreach (int m in arraylnt)
 {
 Console.Write(“ "+ m);
 }
 Console.WriteLine();
 }
 }
 Program segment will display the following

output:
 11 22 33 44

 Loops perform a set of operations repeatedly
until the control variable fails to satisfy the
test condition. The number of times a loop is
repeated is decided in advance and the test
cond i t i on i s w r i t t en to a ch i eve th i s .
Somet imes , when execut ing a loop i t
becomes desirable to skip a part of the loop
or to leave the loop as soon as a certain
condition occurs.

 For example, consider the case of searching
for a particular name in a list containing, say,
a hundred names.

 Jumping Out of a Loop
 A n e a r l y e x i t f r o m a l o o p c a n b e

accomplished by using the break and goto
statements. We have already seen the use of
the break in the switch statement. These
statements can also be used within while, do
or for loops for an early exit.

 When the break statement is encountered
inside a loop, the loop is immediately exited
and the p rog ram con t inues w i th the
statement immediately following the loop.

 During the loop operat ions, i t may be
necessary to skip a part of the body of the
loop under certain conditions.

 Like the break statement, C# supports another
similar statement called the continue statement.
However, unlike break which causes the loop to
be terminated, the continue statement, as the
name implies, causes the loop to continue with
the next iteration after skipping any statements
in between.

Labeled Jumps
 We have seen that the break will enable us to

come out of only the nearest loop and the
continue will enable us to restart the current
loop. If we want to jump a set of nested loops
or to continue a loop that is outside the current
one, we may have to use the concept labeling
and the goto statement.

 A label is any valid C# variable name ending with
a colon. We can use labels anywhere in a
program and use the goto statement to
transfer the control to the statement marked by
the label. For Example:

 public static void Main(String [] args)
 {
 if (args.Length == 0)
 goto end;
 Console. WriteLine(args. Length);
 end: / / Label name
 Console. WriteLine("end");
 }
 We can use a goto statement and a label to

transfer control out of a nested loop also.

 For example code below:
 for (int i = 0; i < 10; i++)
 {
 while (x < 100) {
 y = i + x;
 if (y > 500)
 goto out;
 }
 }
 out:
 Here, the label out is outside the for loop and the

refer the statement.
 goto out;
 causes the execution to break out of both the

loops.

