
PYTHON PROGRAMMING

prepared by S.Radha Priya 1

TUPLES

• Tuples are series of values of different types separated by commas(,)

• Assessed by index values, starting from 0.

• The values in tuples cannot be replaced with another, once tuples are
created.

I Creating Tuples

• All items are placed inside parenthesis separated by commas and assigned
to a variable.

• Tuples can have any number of different data items(int, float, string, list,
etc)

Ex:

a. Tuple with integer data item

T=(4,2,9,1)

Print t

Output

(4,2,9,1)

prepared by S.Radha Priya 2

b. Tuple with different data types

input

Tm=(2,30,’python’,5.8)

Print tm

Output

(2,30,’python’, 5.8)

c. Nested Tuple

Input

nt=(“python”,*1,4,2+,*“sita”,3.9+)

Print nt

Output

(“python”,*1,4,2+,*‘sita’,3.9+)

prepared by S.Radha Priya 3

d. Tuple can be created without parenthesis

input

T=4.9,6,’house’

Print T

Output

(4.9,6,’house’)

Note: creating a tuple with one element we need to add a final comma after
the item or element in order to complete the assignment of the tuple.

Ex:

t=(“house”,)

Type(t)

Output

<type ‘tuple’>

prepared by S.Radha Priya 4

II Accessing values in tuple:

Use the index number enclosed in square brackets along with the name of
the tuple.

Ex: using square bracket

T1=(‘physics’, ’chemistry’, ’maths’)

T2=(10,20,30)

Print t1[1]

Print t2[2]

Output

Chemistry

30

prepared by S.Radha Priya 5

Ex: using slicing

T1=(‘physics’, ‘chemistry’,’maths’)

T2=(10,20,30)

T2[1:2]

T1[:1]

Output

20

‘physics’

III Tuples are immutable

The values or items in the tuple cannot be changed, once it is declared if we
want to change the values we have to create a new tuple.

Ex:

T1=*12,15,’python’,2.3+

T1*2+=“hello”

Output

Type error:’tuple’ object does not support items assignment.

prepared by S.Radha Priya 6

IV Tuple Assignment

• Assignment of values to a tuple of variables on the left side of the
assignment from the tuple of values on the right side of the assignment

• The number of items on left side must match the number of elements on
the right side of the assignment

Ex:

#creating the tuple

A=(‘221’, ’sony’, ’ragul’, 1971)

#tuple assignment

(id,name,name1,year)=A

Print id

Print name1

Output

221

ragul

prepared by S.Radha Priya 7

Swapping the values of two variables

Ex:
Temp=x
X=y
Y=temp

Ex:
X=3
Y=4
x, y=y,x
Print x
Print y
Output
4
3

prepared by S.Radha Priya 8

V tuples as return values

Function returns only one value by returning tuple, a function can return
more than one value.

#Function definition #Function calling

Def div(a,b):
Q=a/b
R=a%b
Return q,r

X=10
Y=3
T=div(x,y)
Print t
Output
(3,1)
Type(t)
Output
<type ‘tuple’>

Def max_min(t):
Return max(t),min(t)

A=[10,3,2,100]
Max_min(a)
Output
(100,2)

prepared by S.Radha Priya 9

VI variable length argument tuples:

A variable name that is preceded by an astrisk(*) collects the arguments into
a tuple.

#function definition #Function calling

Def traverse(*t):
*t can take any number of
arguments
i=0
While i<len(t)
Print t[i]
i=i+1

Traverse(1,2,3,4,5)
Output
1
2
3
4
5

Ex: an email address is
provided hello@ python.org
using tuple assignment, split
the username and domain
from the email address

A=hello@python.org
Usname,domain=a.split(‘@’)
Print usname
Print domain
Output
Hello
Pyhton.org

prepared by S.Radha Priya 10

mailto:A=hello@python.org

Write a function called sumall that takes
any number of arguments and returns
their sum

Write a function called circle info which
takes the radius of circle as arguments
and returns the area and circumference
of the circle

#function definition
Def sumall(*t)
i=0
Sum=0
While i<len(t):
Sum=sum+t[i]
i=i+1
Return sum

#function definition
Def circleinfo(r):
C=2*3.14*r
A=3.14*r*r
Return(c,a)
#function call
Circleinfo(10)
output
(62,83,314.15)

prepared by S.Radha Priya 11

VII basic tuple operations

1. concatenation: + operator concatenates two tuples

Ex:

t1=(1,2,3)

t2=(4,5,6)

t3=t1+t2

Print t3

Output

(1,2,3,4,5,6)

2. Repetition: it repeats the tuples a given number of times * operator is
used.

Ex:

T1=(‘ok’)

t1*5

Output

(‘ok’,’ ok’,’ ok’, ’ok’, ’ok’)

prepared by S.Radha Priya 12

3. In operator

It tells the user that the given element exists in the tuple or not. It gives the
boolean output true or false.

Ex:

T1=(10,20,30,40)

20 in t1

50 in t1

Output

True

false

Ex:

T1=(‘rose’,’jasmine’,’lilly’)

Jasmine in t1

Output

true

prepared by S.Radha Priya 13

4. Iteration-iteration can be done in tuples using for loop. It helps in traversing
the tuple.

Ex:

T1=(1,2,3,4,5)

For x in t1:

Print x

Output

1

2

3

4

5

prepared by S.Radha Priya 14

BUILT-IN TUPLE FUNCTIONS

FUNCTIONS DESCRIPTION

Cmp(tuple1,tuple2) It compares the items of two tuples

Len(tuple) It returns the length of a tuple

Zip(tuple1,tuple2) It ‘zips’ elements from 2 tuples into a list of tuples

Max(tuple) It returns the largest value among the elements in a tuple

Min(tuple) It returns the smallest value among the element in a tuple

Tuple(seq) It converts a list into a tuple

Ex:
T1=(‘physics’, ’ chemistry’, ’mathematics’)
T2=(10,20,30,40,50)
Len(t1) #output 3
Len(t2) #output 5
Zip(t1,t2) #output *(‘physics’,10),(chemistry’,20),(‘mathematics’,30)+
Max(t1) #output ‘physics’ #outputs in alphabetical order
Max(t2) #output 50
Min(t1) #’chemistry’
Min(t2) # 10

prepared by S.Radha Priya 15

Ex:

S=(‘Hello’)

T=(‘python’)

Zip(s,t)

Output:

*(‘H’, ‘p’),(‘e’,’y’),(‘l’,’t’),(‘l’,’h’),(‘o’,’o)]

Note: if the length of tuples are not same then the resulting tuple after
applying the zip function will have the length of shorter tuple.

DICTIONARIES

• Python dictionary is an unordered collection of items or elements.

• Dictionary is said to be mapping between some set of keys and values. The
mapping of a key and value is called key-value pair and together they are
called one item or element.

• Key and value is separated by(:). The items or elements in a dictionary are
separated by commas and all the elements must be enclosed in curly
braces.

prepared by S.Radha Priya 16

• A pair of curly braces with no values in between is known as empty
dictionary.

• The values in a dictionary can be duplicated, but the keys in the dictionary
are unique.

1. Creating a Dictionary

Values in a dictionary→ can be any data type

Keys in a dictionary → string, number or tuple

Ex: empty dictionary

D1={}

Print d1

Output

{}

Dictionary with integer keys

D1=,1:’red’, 2: ‘yellow’ , 3: ‘green’-

Print d1

Output =,1:’red’, 2: ‘yellow’ , 3: ‘green’-
prepared by S.Radha Priya 17

Dictionary with mixed keys

Ex:

D1=,‘name’:’Radha’, 3:*‘Hello’,2+-

Print d1

Output

,3:*‘hello’,2+,’name’:’radha’-

Note: dictionary has internal mechanism to sort the keys and then print them.

Note: python provides a built-in functions dict() for creating a dictionary.

Ex:

D1=dict(,1:’red’, 2:’yellow’-)

D2=dict(,1,’red’,2,’yellow’-)

D3=dict(one=1,two=2,three=3)

Print d3

output

,‘three’:3, ‘two’:2, ‘one’:1-

prepared by S.Radha Priya 18

2. Accessing values in a dictionary

• We can use the value of the key enclosed in square bracket

• We can use get() method

Ex:

D1=,‘name’:’radha’, ‘age’:30-

D1[name] #output ‘radha’

Print d1*‘name’+ #output radha

Print d1*‘age’+ #output 30

D1.get(‘name’) #output radha

D1.get(‘age’) #output 30

Note: when we try to access a key that does not exists in a dictionary, an error
occurs.

prepared by S.Radha Priya 19

3. Updating Dictionary

• Dictionaries are mutable

• Values in a dictionary can be changed, added or deleted

Ex:

D1=,‘name’:’Radha’, ‘age’:30-

D1*‘age’+=35

Print d1 #output ,‘age’:35, ‘name’:’Radha’-

D1*‘address’+=‘coimbatore’

Print d1 #output ,‘age’:35, ‘name’:’radha’, ‘address’: ‘coimbatore’-

4. Deleting elements from dictionary

• Removed or deleted using pop() method

• Popitem() is used to remove or delete and return an arbitary item from
the dictionary

• Clear() method removes all the items/elements from the dictionary at
once. Now the dictionary becomes empty dictionary.

prepared by S.Radha Priya 20

Ex:

D1=(1:1, 2:8, 3:9, 4:64, 5:125, 6:216)

D1.pop(3) #remove a particular item #output 9

D1.popitem() #remove arbitary item(first item) #output (1,1)

D1.popitem() #output (2,8)

D1 #output (4:64,5:125,6:216)

Del d1[6]

D1 #output (4:64, 5:125)

D1.clear()

D1 #output {}

Del d1 #output traceback most recent call last

prepared by S.Radha Priya 21

Properties of dictionary keys:

Keys have restrictions while defining them:

1. One key in a dictionary cannot have two values

– i.e. duplicate keys are not allowed in a dictionary, they must be unique

Ex:

D1=,‘name’:’radha’, age:30, ‘name’:’kavitha’-

Print d1*‘name’+

Output

Kavitha

2. Keys are immutable

- We can use string, integers or tuples for dictionary keys.

- *‘key’+ →key within bracket is not allowed.

prepared by S.Radha Priya 22

Ex:

D1=,*‘name’+:’radha’, ‘age’:30-

Output

Traceback most recent call last

Operations in dictionary

1. Traversing: Traversing is done in on the basis of keys. For loop is used, which
iterates over the keys and prints the corresponding values.

Ex:

Def d1(d):

For c in d:

 print c,d[c]

d2=,1:’a’ , 2:’b’, 3:’c’-

d1(d2)

Output

1 a

2 b

3 c

prepared by S.Radha Priya 23

2.Membership

The membership operator i. in ii. Not in

We can test whether the key is in dictionary or not.

If the key found True

If key not found false

Ex:

C={1:1, 2:8, 3:27}

3 in c #output true

7 not in c #output true

10 in c #output false

prepared by S.Radha Priya 24

Built-in Dictionary methods

all(dict) It is a boolean type function which returns true if all keys of
dictionary are true or dictionary is empty.

any(dict) Returns true, if any key of the dictionary is true

len(dict) It returns length in the dictionary(items)

sorted(dict) It returns the sorted list of keys

str(dict) It produces the printable string representation of the dictionary

Ex:
C={1:1, 2:8, 3:27, 4:64, 5:125}
all(c) # true
any(c) # true
len(c) # 5
sorted(c) #[1,2,3,4,5]
str(c) #’,1:1, 2:8, 3;27, 4:64, 5:125-’

prepared by S.Radha Priya 25

Reading and Writing to text files in Python

Python provides inbuilt functions for creating, writing and reading files. There
are two types of files that can be handled in python, normal text files and
binary files (written in binary language,0s and 1s).

• Text files: In this type of file, Each line of text is terminated with a special
character called EOL (End of Line), which is the new line character (‘\n’) in
python by default.

• Binary files: In this type of file, there is no terminator for a line and the
data is stored after converting it into machine understandable binary
language.

File Access Modes

Access modes govern the type of operations possible in the opened file. It
refers to how the file will be used once its opened. These modes also define
the location of the File Handle in the file. File handle is like a cursor, which
defines from where the data has to be read or written in the file. There are 6
access modes in python.

prepared by S.Radha Priya 26

• Read Only (‘r’) : Open text file for reading. The handle is positioned at the
beginning of the file. If the file does not exists, raises I/O error. This is also
the default mode in which file is opened.

• Read and Write (‘r+’) : Open the file for reading and writing. The handle is
positioned at the beginning of the file. Raises I/O error if the file does not
exists.

• Write Only (‘w’) : Open the file for writing. For existing file, the data is
truncated and over-written. The handle is positioned at the beginning of
the file. Creates the file if the file does not exists.

• Write and Read (‘w+’) : Open the file for reading and writing. For existing
file, data is truncated and over-written. The handle is positioned at the
beginning of the file.

• Append Only (‘a’) : Open the file for writing. The file is created if it does
not exist. The handle is positioned at the end of the file. The data being
written will be inserted at the end, after the existing data.

• Append and Read (‘a+’) : Open the file for reading and writing. The file is
created if it does not exist. The handle is positioned at the end of the file.
The data being written will be inserted at the end, after the existing data.

prepared by S.Radha Priya 27

Opening a File

• It is done using the open() function. No module is required to be imported
for this function.

• File_object = open(r"File_Name","Access_Mode")

• The file should exist in the same directory as the python program file else,
full address of the file should be written on place of filename.

Note: The r is placed before filename to prevent the characters in filename
string to be treated as special character. For example, if there is \temp in the
file address, then \t is treated as the tab character and error is raised of
invalid address. The r makes the string raw, that is, it tells that the string is
without any special characters. The r can be ignored if the file is in same
directory and address is not being placed.

prepared by S.Radha Priya 28

Open function to open the file "MyFile1.txt"

(same directory) in append mode and

file1 = open("MyFile.txt","a")

store its reference in the variable file1

and "MyFile2.txt" in D:\Text in file2

file2 = open(r"D:\Text\MyFile2.txt","w+")

Here, file1 is created as object for MyFile1 and file2 as object for MyFile2

Closing a file

close() function closes the file and frees the memory space acquired by that
file. It is used at the time when the file is no longer needed or if it is to be
opened in a different file mode.

Opening and Closing a file "MyFile.txt"

for object name file1.

file1 = open("MyFile.txt","a")

file1.close()

prepared by S.Radha Priya 29

Writing to a file

There are two ways to write in a file.

• write() : Inserts the string str1 in a single line in the text
file.File_object.write(str1)

• writelines() : For a list of string elements, each string is inserted in the text
file.Used to insert multiple strings at a single time.

File_object.writelines(L) for L = [str1, str2, str3]

Reading from a file

There are three ways to read data from a text file.

• read() : Returns the read bytes in form of a string. Reads n bytes, if no n
specified, reads the entire file.File_object.read([n])

• readline() : Reads a line of the file and returns in form of a string.For
specified n, reads at most n bytes. However, does not reads more than
one line, even if n exceeds the length of the line.File_object.readline([n])

• readlines() : Reads all the lines and return them as each line a string
element in a list. File_object.readlines()

prepared by S.Radha Priya 30

Program to show various ways to read and write data in a file.
file1 = open("myfile.txt","w")
L = ["This is Delhi \n","This is Paris \n","This is London \n"]
\n is placed to indicate EOL (End of Line)
file1.write("Hello \n")
file1.writelines(L)
file1.close() #to change file access modes
file1 = open("myfile.txt","r+")
print "Output of Read function is "
print file1.read()
print
seek(n) takes the file handle to the nth bite from the beginning.
file1.seek(0)
print "Output of Readline function is "
print file1.readline()
print
file1.seek(0)
To show difference between read and readline
print "Output of Read(9) function is "
print file1.read(9)
print

prepared by S.Radha Priya 31

file1.seek(0)

print "Output of Readline(9) function is "

print file1.readline(9)

file1.seek(0)

readlines function

print "Output of Readlines function is "

print file1.readlines()

print

file1.close()

output

Output of Read function is

Hello

This is Delhi

This is Paris

This is London

prepared by S.Radha Priya 32

Output of Readline function is

Hello

Output of Read(9) function is

Hello

Th

Output of Readline(9) function is

 Hello

Output of Readline(9) function is

Hello

Output of Readlines function is

['Hello \n', 'This is Delhi \n', 'This is Paris \n', 'This is London \n']

prepared by S.Radha Priya 33

Appending to a file

Python program to illustrate Append vs write mode
file1 = open("myfile.txt","w")
L = ["This is Delhi \n","This is Paris \n","This is London \n"]
file1.close()
Append-adds at last
file1 = open("myfile.txt","a")#append mode
file1.write("Today \n")
file1.close()
file1 = open("myfile.txt","r")
print "Output of Readlines after appending"
print file1.readlines()
print
file1.close()
Write-Overwrites
file1 = open("myfile.txt","w")#write mode
file1.write("Tomorrow \n")
file1.close()
file1 = open("myfile.txt","r")
print "Output of Readlines after writing"
print file1.readlines()
print
file1.close()
 prepared by S.Radha Priya 34

Output of Readlines after appending

['This is Delhi \n', 'This is Paris \n', 'This is London \n', 'Today \n']

Output of Readlines after writing

 ['Tomorrow \n']

prepared by S.Radha Priya 35

