
PYTHON PROGRAMMING

Prepared by S.Radha Priya 1

STRINGS AND LISTS

STRINGS

• Strings are created by enclosing various characters within quotes. Strings
are one of the most popular data types

• Python does not distinguish between single quotes and double quotes.

Ex:

V1=“hello python”

V2=‘welcome’

V3=“””this is triple quoted string”””

Print v1

Print v2

Print v3

Output

Hello python

Welcome

This is triple quoted string

 Prepared by S.Radha Priya 2

• Strings are of literal or scalar type

• Python interpreter treats string as a single value

• Strings are immutable. If we want to change an element of a string, we
have to create a new string.

• Triple quoted strings can span to multiple lines

>>>v1=“””welcome

 to

 python

 programming”’’

>>>print v1

output

 welcome

 to

 python

 programming

Prepared by S.Radha Priya 3

1.Compound data type

• Strings are made up of smaller pieces of characters. The data types that
are made up of smaller pieces are known as compound data types.

• To access a part of the string ([]) must be used.

>>>string=“hello”

>>>letter=string[4]

>>>print letter #5th letter of string

Output

O

Getting first letter of the string

>>string=“hello”

>>>letter=string[0]

>>>print letter

Output

h

Prepared by S.Radha Priya 4

2.Len function

• len is a built-in function in python. When used with a string, len returns
the length or number of characters in the string.

Ex:

>>>v1=“hello python!”

>>>len(v1)

Output

13

Access the last letter of out string

>>>v1=“hello python!”

>>>l=len(v1) #hello python!

 last=v1[-1]

 print last

output

 !

Prepared by S.Radha Priya 5

Ex:

>>>var=“hello world”

 last=var[-1] #negative indices for accessing the string from last

 second_last=var[-2] #second last element of the string

 print last

 print second_last

Output

d

l

3. String Slices

• A piece or subset of a string is known as slice

• Slice operator is applied to a string with the use of square braces([])

• Operator [n:m] will give a substring consists of letters between n and m
indices[i.e., nth index to (m-1)th index.

• Operator [n:m:s] nth index to (m-1)th index, where s is called the step
value ie., n,n+s, n+2s,n+3s……..

Prepared by S.Radha Priya 6

Ex:

>>>var=‘hello python’

>>>print var[0:4]

>>>print var[6:12]

Output

hell

python

>>>al=‘abcdefghij’

>>>print al[1:8:3]

>>>print al[1:8:2]

Output

beh

bdfh

>>>var=‘banana’

>>>var[:4]

>>>var[4:0]

>>>var[:]

Prepared by S.Radha Priya 7

>>>var=‘banana’

>>>var[4:3]

>>>var[: :-1]

Output

bana

na

‘banana’

‘’ #the second index is smaller than first index, then the
 output will be empty and represented in single quotes.

‘ananab’ #step is -1, and no value for n and m, then it will print the
 string in reverse order.

An empty string has a length 0. though it does not contain any character, it is
still a string.

Prepared by S.Radha Priya 8

4. Strings are immutable.

• We cannot change any element of a string.

>>>v1=‘hello’

v1*0+=‘p’

Output: type error ‘str’ object does not support item assignment.

Solution: generate a new string rather than change the old string

>>>var=‘hello python’

>>>new_var=‘p’+var[1:]

>>>print new_var

Output

Pello python

5. String Traversal

Traversal is a process in which we access all the elements of the string one by
one using some conditional statements such as for loop, while loop etc.,

Prepared by S.Radha Priya 9

Ex:

var1='hello python‘

while i<len(var1):

 letter=var1[i]

 print letter

 i=i+1

Output

h

e

l

l

o

p

y

t

h

o

n

 Prepared by S.Radha Priya 10

Ex:

var=‘hello python’

for char in var:

 print char

Output

h

e

l

l

o

p

y

t

h

o

n

Prepared by S.Radha Priya 11

Ex: you have been given a string ‘I live in cochin. I love pets’. Divide this string
in such a way that the two sentences in it are separated and stored in
different variables. Print them.

var=‘I live in cochin. I love pets’

var1=var[:17]

var2=var[18:30]

print var1

print var2

Output

I live in cochin

I love pets

Prepared by S.Radha Priya 12

Ex: searching within strings

Ex:

def find(string,char)

index=0

while index<len(string):

 if string[index]==char:

 return index

index=index+1

return -1

A function find takes a string and a character as input. A while loop traverses
the string until the end and compares every element of the string with the
character passed by the user. If it matches any element of the string then the
index of that element is returned by the function. otherwise it returns -1.

Note: the return statement in a while loop works in the same way as the
break statement.

Prepared by S.Radha Priya 13

6. ESCAPE CHARACTERS

• Backslash(\) character is used to escape characters

• If we want quotation marks in the output, then we will make use of
escaping characters.

Ex:

>>>print “I am 5\” tall”

Output

I am 5” tall

Following table is a list of escape or non-printable characters that can be
represented with backslash notation.

An escape character gets interpreted in a single quoted as well as double
quoted strings

.

Prepared by S.Radha Priya 14

An escape character gets interpreted; in a single quoted as well as double
quoted strings.

Escape Sequence Meaning

\newline ignored

\\ Backslash(\)

\’ Single quote(‘)

\” Double quote(“)

\a ASCII bell

\f ASCII backspace

\n ASCII linefeed

\r ASCII carriage return

\t ASCII horizontal tab

\v ASCII vertical tab

\ooo ASCII character using octal value ooo

\xhhh ASCII character with Hex value
Prepared by S.Radha Priya 15

Examples using escape sequences

txt = "We are the so-called "Vikings" from the north.“

#You will get an error if you use double quotes inside a string that are
surrounded by double quotes:

txt = "We are the so-called \"Vikings\" from the north."

print(txt)

output

We are the so-called "Vikings" from the north.

txt = 'It\'s alright.'

print(txt)

output

It's alright.

Prepared by S.Radha Priya 16

txt = "This will insert one \\ (backslash)."

print(txt)

output

This will insert one \ (backslash).

txt = "Hello\nWorld!"

print(txt)

output

Hello
World!

txt = "Hello\rWorld!"

print(txt)

Output

Hello
World!

Prepared by S.Radha Priya 17

txt = "Hello\tWorld!"

print(txt)

Output

Hello World!

#This example erases one character (backspace):

txt = "Hello \bWorld!"

print(txt)

Output

HelloWorld!

#A backslash followed by three integers will result in a octal value:

txt = "\110\145\154\154\157"

print(txt)

Output

Hello

Prepared by S.Radha Priya 18

7. String formatting operator

Format Symbol Conversion

%c Character

%s String conversion

%i Signed Decimal integer

%d Signed Decimal integer

%u Unsigned decimal integer

%o Octal integer

%x Hexadecimal integer(lowercase letters)

%X Hexadecimal integer(uppercase letters)

%e Exponential notation(with lowercase ‘e’)

%E Exponential notation(with uppercase ‘E’)

%f Floating point real number

%g The shorter of %f and %e

%G The shorter of %f and %E

Prepared by S.Radha Priya 19

Ex:
>>>print(“the first letter of %s is %c” %(‘python’ , ’p’))
>>>print(“the sum=%d” %(-15))
>>>print(“the sum=%i” %(-15))
>>>print(“the sum=%u” %(15))
>>>print(“%o is the octal equivalent of %d”, %(9,9))
>>>print(“%x is the hexadecimal equivalent of %d” %(12,12))
>>>print(“%X is the hexadecimal equivalent of %f” %(8.98354,8.98354))
>>>print(“%E is the exponential equivalent of %f” %(8.98354,8.98354))

Output
The first letter of python is p
The sum=-15
The sum=-15
The sum=15
11 is the octal equivalent of 9
c is the hexadecimal equivalent of 12
C is the hexadecimal equivalent of 12
8.983540e+00 is the exponential equivalent of 8.983540
8.983540E+00 is the exponential equivalent of 8.983540

Prepared by S.Radha Priya 20

8.String formatting functions

Built-in functions for strings

1. capitalize()

 makes the first letter of the string capital

ex:

a='banana‘

x=a.capitalize()

print(x)

Output:Banana

2. center(width,fillchar())

 Returns a space-padded string with the original string centred to a total
width columns.

Ex:

a=‘banana’

x=a.center(20)

print(x)

Output:

--7 blanksplace-- banana ---7 blank space----

Prepared by S.Radha Priya 21

Ex:

a='banana‘

x=a.center(20,"0")

print(x)

output

0000000banana0000000

Ex:

a='hello, and welcome to my world‘

x=a.capitalize()

print(x)

output

Hello, and welcome to my world

3.count(str,beg=0,end=len(string())

 counts the number of times string occurs in the string or in a
substring provided that starting index is beg and ending index is end.

Prepared by S.Radha Priya 22

Ex:

 txt="i love apples”

x=txt.count("apple")

print(x)

Output optional

1 optional

Syntax: string.count(value,start,end)

txt="i love apples, apple are my favourite fruit”

x=txt.count("apple“,10,24)

print(x)

Output

1

 Prepared by S.Radha Priya 23

LISTS

I. values and accessing elements

• List is a collection of items or elements

• Sequence of data in a list is ordered

• Elements in the list can be accessed by their positions [indices]

• Lists are defined before they are used

• Creation of list using []

Ex:

List1=[2,-1,0,-2,8]

List2=*‘lilly’, ‘jasmine’, ‘rose’+

List3=*‘python’, 5.5,8+

List4=*‘python’, 5.6, *20,40++ list is contained in another list.ie nested list

Prepared by S.Radha Priya 24

Copying the list

 duplicate or copy of an existing list

org1=[1,2,3,4]

cp1=org1

Modifying org1

>>>org1.append(10)

>>>print org1

[1,2,3,4,10]

>>>print cp1

[1,2,3,4,10]

Note: the modification made in org1 will also take place in cp1.

Two methods to make copy of a list

1. Using [:] operator

2. Using built-in copy function

Prepared by S.Radha Priya 25

1. Using [:] operator

>>>org1=[1,2,3,4]

cp1=org1[:]

Print cp1

Output

[1,2,3,4]

Making changes in the original list

>>>org1.append(10)

>>>print org1

[1,2,3,4,10] #original list is changed

>>>print cp1

[1,2,3,4] #copied list is unchanged

Prepared by S.Radha Priya 26

2. Using built-in functions

• To copy the list use import function

Ex:

>>>from copy import copy #import library copy

>>>org1=[1,2,3,4]

>>>cp1=copy(org1)

>>>print cp1

output

[1,2,3,4]

An empty list also can be created using enclosing brackets with no elements,
inside them

>>>a=[]

Printing a list assigning it to a variable:

>>>list=*10,20,30,’hello’+

>>>print list

*10,20,30,’hello’+
Prepared by S.Radha Priya 27

II list are mutable

• The value of any element inside the list can be changed at any point of
time

• The elements accessible by their index value.

• Index value starts with 0 and ends with n-1

Ex:

 list=[10,20,30,40]

Print list[1]

Output

20

Changing the value in the list

List[3]=50

Print list

Output

[10,20,30,50]

Prepared by S.Radha Priya 28

Indices in a list work in the same way as in string:

• Any integer expression can be used as an index number

• If any element that does not exists in the list is accessed there will be
index error

• If the indices are given in negative, then counting happens from the end of
the list(backward)

III .Traversing a list

• Accessing all the elements of the list

• Traversing is performed using any conditional statement in python, but
prefer for loop.

Ex:

l1=['a','b','c','d']

for x in l1:

 print x

Prepared by S.Radha Priya 29

Output

a

b

c

d

Ex:

list=[10,20,30,40]

for i in range(len(list)):

 list[i]=list[i]+4

print list

Output

[14,24,34,44]

Note:range and len are functions

Range returns the indices

Len return the length

Prepared by S.Radha Priya 30

IV DELETING ELEMENTS FROM THE LIST

a. Pop operator

Ex:

List=[10,20,30,40]

a=list.pop(2)

Print list

Print a

output

[10,20,40]

30

The pop operator deletes the element on the provided index and stores that
element in a variable for further use.

b. Del Operator

The del operator deletes the value on the provided index, but it does not
store the value for further use.

Prepared by S.Radha Priya 31

Ex:

List=*‘W’,’X’,’Y’,’Z’+

del list(1)

Print list

Output

*‘w’,’y’,’z’+

c.Remove operator

This operator is used to remove or delete from the list.

Ex:

List=[10,20,30,40]

List.remove(10)

Print.list

Output

[20,30,40]

Prepared by S.Radha Priya 32

Delete more than one value from a list, del operator with slicing is used.

Ex:

List=[1,2,3,4,5,6,7,8]

del list[1:3]

Print list

Output

[1,4,5,6,7,8]

V. Built-in list operators

a. concatenation: this operator concatenates two strings (+) operator.

Ex:

List1=[10,20,30,40]

List2=[50,60,70]

List3=list1+list2

Print list3

Output:[10,20,30,40,50,60,70]
Prepared by S.Radha Priya 33

b. Repetition: repeats the list for a given number of times

Ex:

List1=[1,2,3]

List1*4

Output

[1,2,3,1,2,3,1,2,3,1,2,3,1,2,3]

[2]*6

[2,2,2,2,2,2]

c. In operator

The In operator tells the user whether the given string exists in the list or not.
It gives a Boolean output true or false.

Ex:

List=*‘hello’,’python’,’program’+

‘hello’ in list

True #output

Prepared by S.Radha Priya 34

‘world’ in list

False #output

Ex:

List=[10,20,30,40]

10 in list

True #output

Built-in list methods

1. len(list) – it determine how many items a list has

Ex:

List=*“apple”,”banana”,”cherry”+

Print(len(list))

Output

3

Prepared by S.Radha Priya 35

2. append() – To add item to the end of the list

Ex:

List=[1,2,3,4]

List.append(0)

Print list

Output

[1,2,3,4,0]

3. Insert() method- to add an item at the specified index

Ex:

List=*“apple”,”banana”,”cherry”+

List.insert*1, ”orange”+

Output

*‘apple’,’orange’,’banana’,’cherry’+

Prepared by S.Radha Priya 36

4.Remove() method removes the specified item.

Ex:

List=*“apple”,”banana”,”cherry”+

List.remove(“banana”)

Print(list)

Output

*‘apple’, ’cherry’+

5. pop() method removes the specified index,(or the last item if index is not
specified)

Ex:

List=*“apple”, ”banana”, “cherry”+

List.pop()

Print(list)

Output

*‘apple’, ’banana’+

Prepared by S.Radha Priya 37

6. del() method- removes the specified index.

Ex:

List=*“apple”, “banana”, “cherry”+

del list[0]

Print(list)

Output

*‘banana’, ‘cherry’+

7.clear() method- empties the list.

Ex:

List=*“apple”,”banana”,”cherry”+

List.clear()

Print(list)

Output

[]

Prepared by S.Radha Priya 38

8.list.count(item)-item can be string, number, list, tuple etc.,

Ex:

list=["apple","banana","cherry"]

p= list.count('apple')

print(p)

Output

1

Ex:

P=[1,4,2,9,7,8,9,3,1]

X=p.count(9)

Print(x)

Output

2

Prepared by S.Radha Priya 39

9.extend()

List.extend(iterable)- it adds the specified list elements to the end of the
current list.

Ex:

Fruits=*‘apple’, ‘banana’, ‘cherry’+

Points=[1,4,5,8]

Fruits.extend(points)

Print(fruits)

Output

*‘apple’, ‘banana’, ‘cherry’, 1,4,5,8+

10.index() method –position of the element is found

List.index(element)- element can be string, number,list

Prepared by S.Radha Priya 40

Ex:

 list1=[4,55,64,32,16,32]

X=list1.index(32)

Print(x)

Output

3

11. reverse() method- method reverse the sorting order of the elements.

Ex:

Fruits=*‘apple’,’banana’,’cherry’+

Fruits.reverse()

Print(fruits)

Output:

*‘cherry’, ’banana’, ’apple’+

Prepared by S.Radha Priya 41

12. sort() method- The method sorts the list in ascending by default.

Ex:

Cars=*‘ford’, ‘bmw’, ‘volvo’+

Cars.sort()

Print(cars)

Output

*‘bmw’ ‘ford’, ‘volvo’+

13. max(list)- it returns the item that has the maximum value in the list.

14. min(list)- it returns the item that has the minimum value in the list.

Ex:

Cars=*‘ford’, ‘bmw’, ‘volvo’+

Max(cars)

Min(cars)

Output

Volvo

bmw
Prepared by S.Radha Priya 42

