
PYTHON PROGRAMMING

Prepared by S.Radha Priya 1

UNIT II -FUNCTIONS

• Functions are self-contained programs that perform some particular task.

• Once the function is created, this function can be called anytime to perform
that task.

• Each function is given a name. A function may or may not return a value.

• Built in functions dir(), len(), abs() etc., provided in python.

• Users can build their own functions-called user-defined functions.

Advantages of using functions

• Reduce duplication of code in a program

• Break the large complex problems into small parts

• Help in improving the clarity of code

• Piece of code may be reused any number of times.

Prepared by S.Radha Priya 2

Built-in Functions

Functions already defined in the python programming

1.Type conversion:- Explicit Conversion

Convert one type of data into another type

Ex:

Int(5.5)

5

Int(‘python’) #string value cannot be int

Value error

Int(5)

5

Float(44)

44.0

Str(67)

‘67’

Print(‘python’+2.7) #cannot concatenate string and float

Prepared by S.Radha Priya 3

2.Type coercion-implicit conversion

It is automatically done by the interpreter.

Ex:using type conversion

Minute=59

Float(minute)/60

0.98333

Ex:using type coercion

Minute=59

Minute/60.0

0.98333 #operand is float, the other is automatically converted to
 float

3. Mathematical function

Python provides math module.

Module is a file that contains some predefined python codes

 Module can define function classes and variables.

 it is a collection of related functions grouped together.

Prepared by S.Radha Priya 4

>>>import math

To Access the function write the name of the module followed by dot(.)
period

Ex:

Height=math.sin(90)

Degree=45

Angle=degree*2*math.pi/360.0

4. Date and time

• python have built in modules, time and calendar to work with date and
time.

• Import time and calendar module.

Ex: getting current date and time

Import time;

lt=time.localtime(time.time())

Print “local current time”,lt

Returns nine tuples, seconds,
hour, minute, year, month, day….

Prepared by S.Radha Priya 5

Ex.getting formatted date and time

Import time;

lt=time.asctime(time.localtime(time.time()))

Print “local time is”,lt

Output:

Local time is wed nov 4 19:28:05 2020

Ex: getting calendar for a month

Python provides yearly or monthly calender

Import calendar

c=calendar.month(2020,11)

Print “calendar for november\n”,c)

Output:

Display the november month calendar.

4. dir() function

• dir() takes an object as an argument

Prepared by S.Radha Priya 6

• It returns a list of strings which are names of members of that object

Ex:

import math

list=dir(math)

Print list

Output

*‘cos’, ’sin’, ’tan’, ’log’, ’pi’, ’pow’……+

6. help() function

• It is a built in function which is used to invoke the help system.

• It gives all the detailed information about the module.

Ex:

import math

help(math.sin) #gives the detailed information about the sin function

help(math.cos)

 Prepared by S.Radha Priya 7

Composition of functions

Syntax:

f(g(x))=f.g(x)

• f and g are functions

• Return value of function ‘g’ is passed into the function ‘f’ as
parameters/arguments.

Ex:

x=math.sin(angle+math.pi/4)

x=math.exp(math.log(10.0))

User Defined Functions

• Python allows users to define their own functions

• Users have to define the function first known as function definition

• In function definition, users have to define a name for the new function
and also the list of the statements that will execute when the function will
be called.

• A function is a self contained block of one or more statements that
performs a special task when called.

Prepared by S.Radha Priya 8

Syntax for function

def nameoffunction(parameters) #function header

 statement1

 statement2

 ….. Function body

 statement n

• The function header may contain zero or more number of parameters.
These parameters are called formal parameters.

Ex:

def display()

 print(“welcome to python coding”)

display() #call function

Output

Welcome to python coding.

Prepared by S.Radha Priya 9

Ex:

def print_msg():

 str1=input(“please enter your name”)

 print(“dear”,str1,”welcome”)

print_msg() #call function

Output

dear sai welcome

Ex:

def sum(x,y):

s=0;

for i in range(x,y+1):

 s=s+i

print(“sum of integers from “, x, ”to” y “is”, s)

sum(1,25)

sum(50,75)

sum(90,100)
Prepared by S.Radha Priya 10

PARAMETERS AND ARGUMENTS

Are the values passed to the functions between parenthesis

Ex:

>>>def print_line(line):

 print line

 print line

>>> print_line(‘Hello’)

 Hello

 Hello

>>>print_line(17)

 17

 17

>>>print_line(math.pi)

 3.141

 3.141

Prepared by S.Radha Priya 11

There are 4 types of formal arguments using which a function can be called:

• Required arguments/positional arguments

• Keyword arguments

• Default arguments

• Variable length arguments

Required arguments

 When we assign the parameters to a function at the time of function
definition, at the time of calling, the arguments should be passed to a
function in correct positional order.

 The number of arguments should match the defined number of
parameters.

Prepared by S.Radha Priya 12

Ex:

def display(name,age)

 print(“name=“,name, “age”,=age)

display(“radha”) #print error message, the argument for age is missing

Ex:

def display(name,age)

Print(“name=“,name,”age=“,age)

display(“radha”,21)

Display(21,”ramya”) #it passes 21 to name and ramya to age

Prepared by S.Radha Priya 13

Keyword arguments

• In keyword arguments the calling recognises the argument by the
parameters names

• The programmer can pass a keyword argument to a function by using its
corresponding parameter name rather than its position.

Ex:

>>> def print_info(name,age):

 print “name:”,name

 print “age:”, age

 return Keyword argument example

>>>print_info(age=15, name=‘radha’);

Output:

name:radha

Age:21

Prepared by S.Radha Priya 14

Precautions for using keyword arguments
1. A positional argument cannot follow keyword arguments

Ex:

 def display(num1,num2):

 display(40,num2=10)

 display(num2=10,40) #wrong invoking

Because the positional arguments 40 appears after the keyword argument
num2=10.

2. The programmer cannot duplicate an argument by specifying its as both,a
positional argument and a keyword argument.

Ex: consider a functional definition

def display(num1,num2)

The programmer cannot invoke the display() function as

display(40,num1=40)#error

i.e multiple values for the parameter num1

Prepared by S.Radha Priya 15

3. Default arguments

We can assign a value to a parameter at the time of function definition. This
value is considered as default value to that parameter.

Ex:

>>>def info(name,age=35):

 print “name:”,name

 print “age:”,age

 return

>>>info(age=20,name=‘radha’);

 output

 name: radha

 age:20

>>>info(name=‘radha’);

 output

 name:radha

 age:35

Prepared by S.Radha Priya 16

4. variable-length arguments

In many cases where we are required to process a function with more
number of arguments than we specified in the function definition. These
types of arguments are known as variable length arguments.

For these arguments we use (*) before the name of the variable, which holds
the value of all non-keyword variable arguments.

>>>def info(arg1,*vartuple):

 print “result is”,arg1

 for var in vartuple:

 print var

 return

>>>info(10); >>>info(90,60,40);

Output output
Result is 10 result is 90

 60

 40

Prepared by S.Radha Priya 17

Function calls

>>> def m(a,b):

 mul=a*b

 return mul

>>>a=4

>>>b=3

>>>m1=m(a,b)

>>>print(m1)

Output: 12

Ex:

def fact(n1):

Fact1=1

Print(“entered number is “,n1)

For i in range(1,n1+1)

 fact1=fact1*i

 print(“factorial of number”,n1 “is”,fact1)

Num=int(input(“enter the number”))

Fact(num)
Output
Enter the number 5
Entered number is 5
Factorial of number 5 is 120

Prepared by S.Radha Priya 18

• The function is called using the name with which it was defined earlier,
followed by a pair of parenthesis(()). Any input parameters or arguments
are to be placed within these calling parenthesis.

• All parameters/arguments which are passed in functions are always
passed by reference in python.

The return statement

• The return statement is used to exit a function

• A function may or may not return a value

• If a function returns a value it is passed back by the return statement as
argument to the caller

 If it does not return a value, we simply write return with no
arguments.

Syntax

 return(expression)

Prepared by S.Radha Priya 19

Ex:

>>>def div(arg1,arg2):

 division=arg1/arg2

 return division

>>>arg3=div(20,10)

>>>print arg3

Output

2

Python Recursive Function

• Recursion is generally understood to be the process of repeating
something in a self similar way.

• Function can call another function, it is also possible that a function call
itself.

Ex:Factorial of a number

 4!=4*3*2*1=24

Prepared by S.Radha Priya 20

>>>def fact(x):

 if x==1:

 return 1

 else:

 return(x*fact(x-1))

>>>fact(4)

Output 24

Fibonacci numbers 1,1,2,3,5,8…….

Def fib(n):

 if n==0:

 return 1

 if n==1:

 return 1

 return fib(n-1)+fib(n-1)

Print(“the value of fibonacci numbers”, fib(8))

Prepared by S.Radha Priya 21

The anonymous functions

• Functions created by lambda keyword.

• They are not defined by using def keyword. For this reason they are called
anonymous functions

• We can pass any number of arguments to a lamda form functions, but still
they return only one value in the form of expression.

• It is a single line statement function

Syntax

lamda *arg1,arg2….argn]:expression

Ex:

>>>mult=lamda val1,val2:val1*val2;

>>>print “value”, mult(20,40)

Output

Value 800

The lamda function is defined with 2 arguments val1 and val2. The val1*val2
does the multiplication of 2 values. We can call the mult function with two
valid values as arguments.

Prepared by S.Radha Priya 22

Writing python scripts

A scripting language is a programming language that uses an interpreter to
translate its source code. A python script will be full of functions that can be
imported as a library of functions in other scripts, or a python script can be a
command.

Two ways of executing python program:

1. Through the python terminal called interactive mode

2. Through scripting

Method 2-called scripting

• We write a python program in notepad and then save the program with
.py extension.

• When we have to run the program we type the name of the program in
command prompt as:

 python filename.py

 before executing the script the path variable must be correctly set.

Prepared by S.Radha Priya 23

To execute the file

1. Open cmd

2. Change directory to python folder

 a. c:\>cd

 b. C:\python2.7\

3. Run python script first.py

 c:\python2.7\>pythonpath>python first.py

Prepared by S.Radha Priya 24

