
PYTHON PROGRAMMING 
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UNIT II -FUNCTIONS 

• Functions are self-contained programs that perform some particular task. 

 

• Once the function is created, this function can be called anytime to perform 
that task. 

 

• Each function is given a name. A function may or may not return a value. 

 

• Built in functions dir(), len(), abs() etc., provided in python. 

 

• Users can build their own functions-called user-defined functions. 

 

Advantages of using functions 

• Reduce duplication of code in a program 

• Break the large complex problems into small parts 

• Help in improving the clarity of code 

• Piece of code may be reused any number of times. 
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Built-in Functions 
 

Functions already defined in the python programming 

 

1.Type conversion:- Explicit Conversion 

Convert one type of data into another type  

Ex: 

Int(5.5) 

5 

Int(‘python’) #string value cannot be int 

Value error 

Int(5) 

5 

Float(44) 

44.0 

Str(67) 

‘67’ 

Print(‘python’+2.7) #cannot concatenate string and float 

 
Prepared by S.Radha Priya 3 



2.Type coercion-implicit conversion 

It is automatically done by the interpreter. 

Ex:using type conversion 

Minute=59 

Float(minute)/60 

0.98333 

Ex:using type coercion 

Minute=59 

Minute/60.0 

0.98333  #operand is float, the other is automatically converted to 
   float 

3. Mathematical function 

Python provides math module. 

Module is a file that contains some predefined python codes 

 Module can define function classes and variables. 

 it is a collection of related functions grouped together. 
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>>>import math 

To Access the function write the name of the module followed by dot(.) 
period 

Ex: 

Height=math.sin(90) 

Degree=45 

Angle=degree*2*math.pi/360.0 

4. Date and time 

• python have built in modules, time and calendar to work with date and 
time. 

• Import time and calendar module. 

Ex: getting current date and time 

Import time; 

lt=time.localtime(time.time()) 

Print “local current time”,lt 

# Returns nine tuples, seconds, 
hour, minute, year, month, day…. 
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Ex.getting formatted date and time 

Import time; 

lt=time.asctime(time.localtime(time.time())) 

Print “local time is”,lt 

Output: 

Local time is wed nov 4 19:28:05 2020 

Ex: getting calendar for a month 

Python provides yearly or monthly calender 

Import calendar 

c=calendar.month(2020,11) 

Print “calendar for november\n”,c) 

Output: 

Display the november month calendar. 

 

4. dir() function 

• dir() takes an object as an argument 
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• It returns a list of strings which are names of members of that object 

Ex: 

import math 

list=dir(math) 

Print list 

Output 

*‘cos’, ’sin’, ’tan’, ’log’, ’pi’, ’pow’……+ 

 

6. help() function 

• It is a built in function which is used to invoke the help system. 

• It gives all the detailed information about the module. 

Ex: 

import math 

help(math.sin) #gives the detailed information about the sin function 

help(math.cos) 
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Composition of functions 

Syntax: 

f(g(x))=f.g(x) 

• f and g are functions 

• Return value of function ‘g’ is passed into the function ‘f’ as 
parameters/arguments. 

Ex: 

x=math.sin(angle+math.pi/4) 

x=math.exp(math.log(10.0)) 

 

User Defined Functions 

• Python allows users to define their own functions 

• Users have to define the function first known as function definition 

• In function definition, users have to define a name for the new function 
and also the list of the statements that will execute when the function will 
be called. 

• A function is a self contained block of one or more statements that 
performs a special task when called. 
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Syntax for function 

def nameoffunction(parameters) #function header 

 statement1 

 statement2 

 …..        Function body 

 statement n 

• The function header may contain zero or more number of parameters. 
These parameters are called formal parameters. 

 

Ex:  

def display() 

       print(“welcome to python coding”) 

display()       #call function 

Output 

Welcome to python coding. 
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Ex: 

def print_msg(): 

     str1=input(“please enter your name”) 

     print(“dear”,str1,”welcome”) 

print_msg()  #call function 

Output 

dear sai welcome 

Ex: 

def sum(x,y): 

s=0; 

for i in range(x,y+1): 

         s=s+i 

print(“sum of integers from “, x, ”to”  y  “is”, s) 

sum(1,25) 

sum(50,75) 

sum(90,100) 
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PARAMETERS AND ARGUMENTS 

Are the values passed to the functions between parenthesis 

Ex: 

>>>def print_line(line): 

              print line 

              print line 

>>> print_line(‘Hello’) 

          Hello 

          Hello 

>>>print_line(17) 

         17 

         17 

>>>print_line(math.pi) 

         3.141 

         3.141 
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There are 4 types of formal arguments using which a function can be called: 

• Required arguments/positional arguments 

 

• Keyword arguments 

 

• Default arguments 

 

• Variable length arguments 

 

Required arguments 

 When we assign the parameters to a function at the time of function 
definition, at the time of calling, the arguments should be passed to a 
function in correct positional order. 

 

 The number of arguments should match the defined number of 
parameters. 
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Ex: 

def display(name,age) 

       print(“name=“,name, “age”,=age) 

display(“radha”) #print error message, the argument for age is missing 

 

 

Ex: 

def display(name,age) 

Print(“name=“,name,”age=“,age) 

display(“radha”,21) 

Display(21,”ramya”) #it passes 21 to name and ramya to age 

Prepared by S.Radha Priya 13 



Keyword arguments 

• In keyword arguments the calling recognises the argument by the 
parameters names 

• The programmer can pass a keyword argument to a function by using its 
corresponding parameter name rather than its position. 

Ex: 

>>> def print_info(name,age): 

         print “name:”,name 

         print “age:”, age 

         return    Keyword argument example 

>>>print_info(age=15, name=‘radha’); 

Output:  

name:radha 

Age:21 
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Precautions for using keyword arguments 
1. A positional argument cannot follow keyword arguments 

Ex: 

  def display(num1,num2): 

         display(40,num2=10) 

         display(num2=10,40) #wrong invoking 

Because the positional arguments 40 appears after the keyword argument 
num2=10. 

 

2. The programmer cannot duplicate an argument by specifying its as both,a 
positional argument and a keyword argument. 

Ex: consider a functional definition 

def display(num1,num2) 

 

The programmer cannot invoke the display() function as  

display(40,num1=40)#error 

 

i.e multiple values for the parameter num1 
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3. Default arguments 

We can assign a value to a parameter at the time of function definition. This 
value is considered as default value to that parameter. 

Ex: 

>>>def info(name,age=35): 

               print “name:”,name 

                print “age:”,age 

                return 

>>>info(age=20,name=‘radha’); 

       output 

       name: radha 

        age:20 

>>>info(name=‘radha’); 

      output 

      name:radha 

       age:35 
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4. variable-length arguments 

In many cases where we are required to process a function with more 
number of arguments than we specified in the function definition. These 
types of arguments are known as variable length arguments. 

 

For these arguments we use (*) before the name of the variable, which holds 
the value of all non-keyword variable arguments. 

 

>>>def  info(arg1,*vartuple): 

               print “result is”,arg1 

        for var in vartuple: 

                print var 

         return 

>>>info(10); >>>info(90,60,40); 

Output  output 
Result is 10  result is 90 

  60 

  40 
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Function calls 

>>> def m(a,b): 

        mul=a*b 

        return mul 

>>>a=4 

>>>b=3 

>>>m1=m(a,b) 

>>>print(m1) 

Output: 12 

Ex: 

def fact(n1): 

Fact1=1 

Print(“entered number is “,n1) 

For i in range(1,n1+1) 

       fact1=fact1*i 

 print(“factorial of number”,n1 “is”,fact1) 

Num=int(input(“enter the number”)) 

 

 

 

 

Fact(num) 
Output 
Enter the number 5 
Entered number is 5 
Factorial of number 5 is 120 
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• The function is called using the name with which it was defined earlier, 
followed by a pair of parenthesis(()). Any input parameters or arguments 
are to be placed within these calling parenthesis. 

• All parameters/arguments which are passed in functions are always 
passed by reference in python. 

 

The return statement 

• The return statement is used to exit a function 

• A function may or may not return a value 

• If a function returns a value it is passed back by the return statement as 
argument to the caller 

 If it does not return a value, we simply write return with no 
arguments. 

Syntax 

 return(expression) 
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Ex: 

>>>def div(arg1,arg2): 

         division=arg1/arg2 

         return division 

>>>arg3=div(20,10) 

>>>print arg3 

Output 

2 

Python Recursive Function 

• Recursion is generally understood to be the process of repeating 
something in a self similar way. 

• Function can call another function, it is also possible that a function call 
itself. 

 

Ex:Factorial of a number 

  4!=4*3*2*1=24 
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>>>def fact(x): 

       if x==1: 

           return 1 

       else: 

           return(x*fact(x-1)) 

>>>fact(4) 

Output 24 

Fibonacci numbers    1,1,2,3,5,8……. 

Def fib(n): 

     if n==0: 

           return 1 

     if n==1: 

          return 1 

     return fib(n-1)+fib(n-1) 

Print(“the value of fibonacci numbers”, fib(8)) 
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The anonymous functions 

• Functions created by lambda keyword. 

• They are not defined by using def keyword. For this reason they are called 
anonymous functions 

• We can pass any number of arguments to a lamda form functions, but still 
they return only one value in the form of expression. 

• It is a single line statement function 

Syntax 

lamda *arg1,arg2….argn]:expression 

Ex: 

>>>mult=lamda val1,val2:val1*val2; 

>>>print “value”, mult(20,40) 

Output 

Value 800 

The lamda function is defined with 2 arguments val1 and val2. The val1*val2 
does the multiplication of 2 values. We can call the mult function with two 
valid values as arguments. 
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Writing python scripts 

A scripting language is a programming language that uses an interpreter to 
translate its source code. A python script will be full of functions that can be 
imported as a library of functions in other scripts, or a python script can be a 
command. 

Two ways of executing python program: 

1. Through the python terminal called interactive mode 

2. Through scripting 

 

Method 2-called scripting 

• We write a python program in notepad and then save the program with 
.py extension. 

• When we have to run the program we type the name of the program in 
command prompt as: 

  python filename.py 

       before executing the script the path variable must be correctly set. 
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To execute the file 

1. Open cmd 

2. Change directory to python folder 

       a.   c:\>cd 

       b.   C:\python2.7\ 

3. Run python script first.py 

        c:\python2.7\>pythonpath>python first.py 
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