
ADVANCED OPERATING SYSTEM
(18MIT12C)

UNIT - II

I – M.Sc (IT)- Semester - I

ADVANCED OPERATING SYSTEM
(18MIT12C)

UNIT - II

Threads – Thread Usage – Classical Thread model- POSIX threads - Pop-
up threads – Inter Process Communication – Race condition – Critical
Region – Mutual Exclusion with busy waiting – Sleep and wakeup –
Semaphores – Mutexes – Monitors - Message Passing - Classical IPC
Problems:
The Dining Philosophers Problem – The Readers and Writers Problem-
Memory management: virtual memory – Paging- Paging tables- Speeding
up paging – Page tables for large memories.

UNIT–II:

Threads – Thread Usage – Classical Thread model- POSIX threads - Pop-
up threads – Inter Process Communication – Race condition – Critical
Region – Mutual Exclusion with busy waiting – Sleep and wakeup –
Semaphores – Mutexes – Monitors - Message Passing - Classical IPC
Problems:
The Dining Philosophers Problem – The Readers and Writers Problem-
Memory management: virtual memory – Paging- Paging tables- Speeding
up paging – Page tables for large memories.

Multiprogramming

(a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one

program is active at once.

• Enables parallelism (web server) with blocking system
calls

• Threads are faster to create and destroy then
processes

• Natural for multiple cores
• Easy programming model

Reasons to use threads

• Enables parallelism (web server) with blocking system
calls

• Threads are faster to create and destroy then
processes

• Natural for multiple cores
• Easy programming model

Threads are lightweight

• Have same states
• Running
• Ready
• Blocked

• Have their own stacks –same as processes
• Stacks contain frames for (un-returned) procedure calls

• Local variables
• Return address to use when procedure comes back

Threads are like processes

• Have same states
• Running
• Ready
• Blocked

• Have their own stacks –same as processes
• Stacks contain frames for (un-returned) procedure calls

• Local variables
• Return address to use when procedure comes back

• Start with one thread in a process
• Thread contains (id, registers, attributes)
• Use library call to create new threads and

to use threads
• Thread_create includes parameter indicating what procedure

to run
• Thread_exit causes thread to exit and disappear (can’t

schedule it)
• Thread_join Thread blocks until another thread finishes its

work
• Thread_yield

How do threads work?

• Start with one thread in a process
• Thread contains (id, registers, attributes)
• Use library call to create new threads and

to use threads
• Thread_create includes parameter indicating what procedure

to run
• Thread_exit causes thread to exit and disappear (can’t

schedule it)
• Thread_join Thread blocks until another thread finishes its

work
• Thread_yield

POSIX Threads (Pthreads)

Pthreads are IEEE Unix standard library calls

Implementing Threads in User Space

(a) A user-level threads package. (b) A threads package managed
by the kernel.

• Thread table contains info about threads (program
counter, stack pointer...) so that run time system can
manage them

• If thread blocks, run time system stores thread info in
table and finds new thread to run.

• State save and scheduling are invoked faster then
kernel call (no trap, no cache flush)

Threads in user space-the good

• Thread table contains info about threads (program
counter, stack pointer...) so that run time system can
manage them

• If thread blocks, run time system stores thread info in
table and finds new thread to run.

• State save and scheduling are invoked faster then
kernel call (no trap, no cache flush)

• Can’t let thread execute system call which blocks
because it will block all of the other threads

• No elegant solution
• Hack system library to avoid blocking calls
• Could use select system calls-in some versions of

Unix which do same thing
• Threads don’t voluntarily give up CPU

• Could interrupt periodically to give control to run
time system

• Overhead of this solution is a problem…..

Threads in user space-the bad

• Can’t let thread execute system call which blocks
because it will block all of the other threads

• No elegant solution
• Hack system library to avoid blocking calls
• Could use select system calls-in some versions of

Unix which do same thing
• Threads don’t voluntarily give up CPU

• Could interrupt periodically to give control to run
time system

• Overhead of this solution is a problem…..

• Kernel keeps same thread table as user table
• If thread blocks, kernel just picks another one

Not necessarily from same process!
• The bad-expensive to manage the threads in the

kernel and takes valuable kernel space

Threads in kernel space-the good

• Kernel keeps same thread table as user table
• If thread blocks, kernel just picks another one

Not necessarily from same process!
• The bad-expensive to manage the threads in the

kernel and takes valuable kernel space

• Expensive to manage the threads in the kernel and
takes valuable kernel space

• How do we get the advantages of both approaches,
without the disadvantages?

Threads in kernel space-the bad

• Expensive to manage the threads in the kernel and
takes valuable kernel space

• How do we get the advantages of both approaches,
without the disadvantages?

Hybrid approach
Multiplex user-level threads onto kernel level threads

• Kernel is aware of kernel threads only
• User level threads are scheduled, created destroyed

independently of kernel thread
• Programmer determines how many user level and

how many kernel level threads to use

Hybrid

• Kernel is aware of kernel threads only
• User level threads are scheduled, created destroyed

independently of kernel thread
• Programmer determines how many user level and

how many kernel level threads to use

Pop-Up Threads
(How to handle message arrivals in distributed systems)

Create a new thread when a message arrives

• Could use thread which blocks on a receive
system call and processes messages when
they arrive

• Means that you have to restore the history of
the thread each time a message arrives

• Pop ups are entirely new-nothing to restore
• They are faster

Why pop ups?

• Could use thread which blocks on a receive
system call and processes messages when
they arrive

• Means that you have to restore the history of
the thread each time a message arrives

• Pop ups are entirely new-nothing to restore
• They are faster

• How do we implement variables which should be
global to a thread but not to the entire program?

• Example: Thread wants access to a file, Unix grants
access via global errno

• Race ensues-thread 1 can get the wrong permission
because thread 2 over-writes it

Adding threads to an OS-problems

• How do we implement variables which should be
global to a thread but not to the entire program?

• Example: Thread wants access to a file, Unix grants
access via global errno

• Race ensues-thread 1 can get the wrong permission
because thread 2 over-writes it

Thread 1 gets the wrong permission

• Three problems
• How to actually do it
• How to deal with process conflicts (2 airline

reservations for same seat)
• How to do correct sequencing when dependencies are

present-aim the gun before firing it
• SAME ISSUES FOR THREADS AS FOR PROCESSES-SAME

SOLUTIONS AS WELL

• Proceed to discuss these problems

.

Interprocess Communication

• Three problems
• How to actually do it
• How to deal with process conflicts (2 airline

reservations for same seat)
• How to do correct sequencing when dependencies are

present-aim the gun before firing it
• SAME ISSUES FOR THREADS AS FOR PROCESSES-SAME

SOLUTIONS AS WELL

• Proceed to discuss these problems

.

Race Conditions

In is local variable containing pointer to next free slot
Out is local variable pointing to next file to be printed

• Mutual exclusion–only one process at a time can use
a shared variable/file

• Critical regions-shared memory which leads to races
• Solution- Ensure that two processes can’t be in the

critical region at the same time

.

How to avoid races

• Mutual exclusion–only one process at a time can use
a shared variable/file

• Critical regions-shared memory which leads to races
• Solution- Ensure that two processes can’t be in the

critical region at the same time

.

• Mutual exclusion
• No assumptions about speeds or number of CPU’s
• No process outside critical region can block other

processes
• No starvation-no process waits forever to enter

critical region

.

Properties of a good solution

• Mutual exclusion
• No assumptions about speeds or number of CPU’s
• No process outside critical region can block other

processes
• No starvation-no process waits forever to enter

critical region

.

What we are trying to do

A list of proposals to achieve mutual exclusion

• Disabling interrupts
• Lock variables
• Strict alternation
• Peterson's solution
• The TSL instruction

First attempts-Busy Waiting

A list of proposals to achieve mutual exclusion

• Disabling interrupts
• Lock variables
• Strict alternation
• Peterson's solution
• The TSL instruction

Disabling Interrupts

most obvious way of achieving mutual exclusion is to allow a
process to disable interrupts before it enters its critical section and
then enable interrupts after it leaves its critical section.
By disabling interrupts the CPU will be unable to switch
processes.

• Idea: process disables interrupts, enters critical region ,
enables interrupts when it leaves critical region

• Problems
• Process might never enable interrupts, crashing

system
• Won’t work on multi-core chips as disabling interrupts

only effects one CPU at a time

• A software solution-everyone shares a lock
• When lock is 0, process turns it to 1 and

enters critical region
• When exit critical region, turn lock to 0

• Problem-Race condition

Lock variables

• A software solution-everyone shares a lock
• When lock is 0, process turns it to 1 and

enters critical region
• When exit critical region, turn lock to 0

• Problem-Race condition

Strict Alternation
Turn Variable or Strict Alternation Approach.

Turn Variable or Strict Alternation Approach is the software
mechanism implemented at user mode. It is a busy waiting
solution which can be implemented only for two processes. In this
approach, A turn variable is used which is actually a lock.

First me, then you

• Employs busy waiting-while waiting for the critical region,
a process spins

• If one process is outside the critical region and it is its
turn, then other process has to wait until outside guy
finishes both outside AND inside (critical region) work

Problems with strict alternation

• Employs busy waiting-while waiting for the critical region,
a process spins

• If one process is outside the critical region and it is its
turn, then other process has to wait until outside guy
finishes both outside AND inside (critical region) work

Peterson's algorithm (or Peterson's solution) is a
concurrent programming algorithm for mutual exclusion
that allows two or more processes to share a single-use
resource without conflict, using only shared memory for
communication

Peterson's Solution

Peterson's algorithm (or Peterson's solution) is a
concurrent programming algorithm for mutual exclusion
that allows two or more processes to share a single-use
resource without conflict, using only shared memory for
communication

The critical section is a code segment where the shared
variables can be accessed. An atomic action is required in
a critical section i.e. only one process can execute in its
critical section at a time

Peterson's Solution

.

• Process 0 & 1 try to get in simultaneously

• Last one in sets turn: say it is process 1

• Process 0 enters (turn= = process is False)

Peterson

• Process 0 & 1 try to get in simultaneously

• Last one in sets turn: say it is process 1

• Process 0 enters (turn= = process is False)

TSL
operating system provides a special
instruction called Test Set Lock (TSL)
instruction which simply loads the value of
lock variable into the local register R0 and sets
it to 1 simultaneously.

• TSL reads lock into register and stores NON ZERO
VALUE in lock (e.g. process number)

• Instruction is atomic: done by freezing access to bus
line (bus disable)

operating system provides a special
instruction called Test Set Lock (TSL)
instruction which simply loads the value of
lock variable into the local register R0 and sets
it to 1 simultaneously.

Using TSL

test-and-set instruction is an instruction used to write 1 (set) to a memory
location and return its old value as a single atomic (i.e., non-
interruptible) operation. ...

TSL is atomic. Memory bus is locked until it is finished executing.

• Busy waiting-waste of CPU time!

• Idea: Replace busy waiting by blocking calls
• Sleep blocks process
• Wakeup unblocks process

What’s wrong with Peterson, TSL ?

• Busy waiting-waste of CPU time!

• Idea: Replace busy waiting by blocking calls
• Sleep blocks process
• Wakeup unblocks process

The Producer-Consumer Problem
(Bounded Buffer Problem)

. . .

• Empty buffer,count==0
• Consumer gets replaced by producer before it goes to

sleep
• Produces something, count++, sends wakeup to

consumer
• Consumer not asleep, ignores wakeup, thinks count=

= 0, goes to sleep
• Producer fills buffer, goes to sleep
• P and C sleep forever
• So the problem is lost wake-up calls

The problem with sleep and wake-up calls

• Empty buffer,count==0
• Consumer gets replaced by producer before it goes to

sleep
• Produces something, count++, sends wakeup to

consumer
• Consumer not asleep, ignores wakeup, thinks count=

= 0, goes to sleep
• Producer fills buffer, goes to sleep
• P and C sleep forever
• So the problem is lost wake-up calls

a semaphore is a variable or abstract data type used to
control access to a common resource by multiple
processes in a concurrent system such as a
multitasking operating system

Semaphores

3-types of semaphores namely Binary, Counting and
Mutex semaphore.

Wait and signal are the atomic operation possible
on semaphore

• Semaphore is an integer variable
• Used to sleeping processes/wakeups

• Two operations, down and up

• Down checks semaphore. If not zero, decrements
semaphore. If zero, process goes to sleep

• Up increments semaphore. If more then one process
asleep, one is chosen randomly and enters critical region
(first does a down)

• ATOMIC IMPLEMENTATION-interrupts disabled

Semaphores

• Semaphore is an integer variable
• Used to sleeping processes/wakeups

• Two operations, down and up

• Down checks semaphore. If not zero, decrements
semaphore. If zero, process goes to sleep

• Up increments semaphore. If more then one process
asleep, one is chosen randomly and enters critical region
(first does a down)

• ATOMIC IMPLEMENTATION-interrupts disabled

• 3 semaphores: full, empty and mutex

• Full counts full slots (initially 0)

• Empty counts empty slots (initially N)

• Mutex protects variable which contains the items
produced and consumed

Producer Consumer with Semaphores

• 3 semaphores: full, empty and mutex

• Full counts full slots (initially 0)

• Empty counts empty slots (initially N)

• Mutex protects variable which contains the items
produced and consumed

The producer consumer problem is a synchronization problem.
There is a fixed size buffer and the producer produces items and
enters them into the buffer. The consumer removes the items from the
buffer and consumes them.

A semaphore is a variable or abstract data type used to control access
to a common resource by multiple processes in a concurrent system
such as a multitasking operating system. A semaphore is simply a
variable

Example of a multi-process synchronization problem.
The problem describes two processes, the producer and
the consumer , who share a common, fixed-size buffer used as a
queue

Producer Consumer with semaphores

The producer consumer problem is a synchronization problem.
There is a fixed size buffer and the producer produces items and
enters them into the buffer. The consumer removes the items from the
buffer and consumes them.

A semaphore is a variable or abstract data type used to control access
to a common resource by multiple processes in a concurrent system
such as a multitasking operating system. A semaphore is simply a
variable

Example of a multi-process synchronization problem.
The problem describes two processes, the producer and
the consumer , who share a common, fixed-size buffer used as a
queue

Producer Consumer with semaphores

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

• Mutex: variable which can be in one of two states-
locked (0), unlocked(1 or other value)

• Easy to implement

• Good for using with thread packages in user space
• Thread (process) wants access to cr, calls mutex_lock.
• If mutex is unlocked, call succeeds. Otherwise, thread blocks

until thread in the cr does a mutex_unlock.

Mutexes
Mutex is a mutual exclusion object that synchronizes access to a
resource. It is created with a unique name at the start of a program.
The Mutex is a locking mechanism that makes sure only one
thread can acquire the Mutex at a time and enter the critical
section

• Mutex: variable which can be in one of two states-
locked (0), unlocked(1 or other value)

• Easy to implement

• Good for using with thread packages in user space
• Thread (process) wants access to cr, calls mutex_lock.
• If mutex is unlocked, call succeeds. Otherwise, thread blocks

until thread in the cr does a mutex_unlock.

Mutexes
Mutex is only modified by the process that may
request or release a resource.

Mutex operations are locked or unlocked.

User space code for mutex lock and unlock

Pthread calls for mutexes

Pthread_mutex-trylock tries to lock mutex. If it fails it returns an
error code, and can do something else.

• Allows a thread to block if a condition is not met,
e.g. Producer-Consumer. Producer needs to
block if the buffer is full.

• Mutex make it possible to check if buffer is full
• Condition variable makes it possible to put

producer to sleep if buffer is full
• Both are present in pthreads and are used

together

Condition Variables

• Allows a thread to block if a condition is not met,
e.g. Producer-Consumer. Producer needs to
block if the buffer is full.

• Mutex make it possible to check if buffer is full
• Condition variable makes it possible to put

producer to sleep if buffer is full
• Both are present in pthreads and are used

together

Pthread Condition Variable calls

• Producer produces one item and blocks waiting
for consumer to use the item

• Signals consumer that the item has been
produced

• Consumer blocks waiting for producer to signal
that item is in buffer

• Consumer consumes item, signals producer to
produce new item

Producer Consumer with condition variables
and mutexes

• Producer produces one item and blocks waiting
for consumer to use the item

• Signals consumer that the item has been
produced

• Consumer blocks waiting for producer to signal
that item is in buffer

• Consumer consumes item, signals producer to
produce new item

Producer Consumer with condition variables

.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

• Easy to make a mess of things using mutexes
and condition variables. Little errors cause
disasters.

• Producer consumer with semaphores-
interchange two downs in producer code
causes deadlock

• Monitor is a language construct which enforces
mutual exclusion and blocking mechanism

• C does not have monitor

Monitors

• Easy to make a mess of things using mutexes
and condition variables. Little errors cause
disasters.

• Producer consumer with semaphores-
interchange two downs in producer code
causes deadlock

• Monitor is a language construct which enforces
mutual exclusion and blocking mechanism

• C does not have monitor

• Monitor consists of {procedures, data structures,
and variables} grouped together in a “module”

• A process can call procedures inside the monitor,
but cannot directly access the stuff inside the
monitor

• C does not have monitors

Monitors

• Monitor consists of {procedures, data structures,
and variables} grouped together in a “module”

• A process can call procedures inside the monitor,
but cannot directly access the stuff inside the
monitor

• C does not have monitors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monitor-a picture

• In a monitor it is the job of the compiler, not the
programmer to enforce mutual exclusion.

• Only one process at a time can be in the monitor
When a process calls a monitor, the first thing done is
to check if another process is in the monitor. If so,
calling process is suspended.

• Need to enforce blocking as well –
• use condition variables
• Use wait , signal ops on cv’s

Onwards

• In a monitor it is the job of the compiler, not the
programmer to enforce mutual exclusion.

• Only one process at a time can be in the monitor
When a process calls a monitor, the first thing done is
to check if another process is in the monitor. If so,
calling process is suspended.

• Need to enforce blocking as well –
• use condition variables
• Use wait , signal ops on cv’s

• Monitor discovers that it can’t continue (e.g.
buffer is full), issues a signal on a condition
variable (e.g. full) causing process (e.g.
producer) to block

• Another process is allowed to enter the monitor
(e.g. consumer).This process can can issue a
signal, causing blocked process (producer) to
wake up

• Process issuing signal leaves monitor

Condition Variables

• Monitor discovers that it can’t continue (e.g.
buffer is full), issues a signal on a condition
variable (e.g. full) causing process (e.g.
producer) to block

• Another process is allowed to enter the monitor
(e.g. consumer).This process can can issue a
signal, causing blocked process (producer) to
wake up

• Process issuing signal leaves monitor

Producer Consumer Monitor

• The good-No messy direct programmer control of
semaphores

• The bad- You need a language which supports
monitors (Java).

• OS’s are written in C

Monitors:Good vs Bad

• The good-No messy direct programmer control of
semaphores

• The bad- You need a language which supports
monitors (Java).

• OS’s are written in C

• The good-Easy to implement
• The bad- Easy to mess up

Semaphores:Good vs Bad

• The good-Easy to implement
• The bad- Easy to mess up

• Monitors and semaphores only work for shared
memory

• Don’t work for multiple CPU’s which have their
own private memory, e.g. workstations on an
Ethernet

Reality

• Monitors and semaphores only work for shared
memory

• Don’t work for multiple CPU’s which have their
own private memory, e.g. workstations on an
Ethernet

• Information exchange between machines
• Two primitives

• Send(destination, &message)
• Receive(source,&message)

• Lots of design issues
• Message loss

• acknowledgements, time outs deal with loss
• Authentication-how does a process know the identity of

the sender? For sure, that is

Message Passing

• Information exchange between machines
• Two primitives

• Send(destination, &message)
• Receive(source,&message)

• Lots of design issues
• Message loss

• acknowledgements, time outs deal with loss
• Authentication-how does a process know the identity of

the sender? For sure, that is

• Consumer sends N empty messages to producer
• Producer fills message with data and sends to

consumer

Producer Consumer Using Message
Passing

• Consumer sends N empty messages to producer
• Producer fills message with data and sends to

consumer

Producer-Consumer Problem
with Message Passing (1)

.

. . .

Producer-Consumer Problem
with Message Passing (2)

. . .

• Have unique ID for address of recipient process
• Mailbox

• In producer consumer, have one for the producer and
one for the consumer

• No buffering-sending process blocks until the
receive happens. Receiver blocks until send
occurs (Rendezvous)

• MPI

Message Passing Approaches

• Have unique ID for address of recipient process
• Mailbox

• In producer consumer, have one for the producer and
one for the consumer

• No buffering-sending process blocks until the
receive happens. Receiver blocks until send
occurs (Rendezvous)

• MPI

Barriers

. Barriers are intended for synchronizing groups of processes
Often used in scientific computations.

• PC’s
• One user who only competes with himself for the

CPU

Who doesn’t care about scheduling
algorithms?

Scheduling – Process Behavior

Bursts of CPU usage alternate with periods of waiting for I/O. (a) A
CPU-bound process. (b) An I/O-bound process.

• Batch (accounts receivable, payroll…..)
• Interactive
• Real time (deadlines)
• Depends on the use to which the CPU is

being put

Categories of Scheduling Algorithms

• Batch (accounts receivable, payroll…..)
• Interactive
• Real time (deadlines)
• Depends on the use to which the CPU is

being put

Scheduling Algorithm Goals

• Easy to implement
• Won’t work for a varied workload

• I/O process (long execution time) runs in
front of interactive process (short execution
time)

First come first serve

• Easy to implement
• Won’t work for a varied workload

• I/O process (long execution time) runs in
front of interactive process (short execution
time)

• Need to know run times in
advance

• Non pre-emptive algorithm
• Provably optimal

Eg 4 jobs with runs times of a,b,c,d

First finishes at a, second at a+b,third at a+b+c,
last at a+b+c+d

Mean turnaround time is (4a+3b+2c+d)/4
=> smallest time has to come first to minimize the

mean turnaround time

Shortest Job First
• Need to know run times in

advance
• Non pre-emptive algorithm
• Provably optimal

Eg 4 jobs with runs times of a,b,c,d

First finishes at a, second at a+b,third at a+b+c,
last at a+b+c+d

Mean turnaround time is (4a+3b+2c+d)/4
=> smallest time has to come first to minimize the

mean turnaround time

• Round robin
• Priority
• Multiple Queues
• Shortest Process Next
• Guaranteed Scheduling
• Lottery Scheduling
• Fair Share Scheduling

Scheduling in Interactive Systems

• Round robin
• Priority
• Multiple Queues
• Shortest Process Next
• Guaranteed Scheduling
• Lottery Scheduling
• Fair Share Scheduling

Round-Robin Scheduling

Process list-before and after

• Run jobs according to their priority
• Can be static or can do it

dynamically
• Typically combine RR with priority.

Each priority class uses RR inside

Priority Scheduling

• Run jobs according to their priority
• Can be static or can do it

dynamically
• Typically combine RR with priority.

Each priority class uses RR inside

Priority Scheduling

• Cool idea if you know the
remaining times

• exponential smoothing can be
used to estimate a jobs’ run time

• aT0 + (1-a)T1 where T0 and T1
are successive runs of the same
job

Shortest Process Next

• Cool idea if you know the
remaining times

• exponential smoothing can be
used to estimate a jobs’ run time

• aT0 + (1-a)T1 where T0 and T1
are successive runs of the same
job

• Hold lottery for cpu time several
times a second

• Can enforce priorities by allowing
more tickets for “more important”
processes

Lottery Scheduling

• Hold lottery for cpu time several
times a second

• Can enforce priorities by allowing
more tickets for “more important”
processes

Thread Scheduling

Kernel picks process (left)
Kernel picks thread (right)

Dining Philosophers Problem

. Lunch time in the Philosophy Department.

Dining Philosophers Problem
#define N 5 /*number of philosophers*/
Void philosopher(int i) /*i:philosopher number, from 0 to 4*/
{
While(TRUE){

think(); /*philosopher is thinking*/
take_fork(i); /*take left fork*/
take_fork(i+1)%N; /*take right for;% is modulo operator*/
eat(): /*self-explanatory*/
put_fork(i); /*put left fork back on table*/
put_fork(i+1)%N; /*put right fork back on table*/
}

}

A nonsolution to the dining philosophers problem.

#define N 5 /*number of philosophers*/
Void philosopher(int i) /*i:philosopher number, from 0 to 4*/
{
While(TRUE){

think(); /*philosopher is thinking*/
take_fork(i); /*take left fork*/
take_fork(i+1)%N; /*take right for;% is modulo operator*/
eat(): /*self-explanatory*/
put_fork(i); /*put left fork back on table*/
put_fork(i+1)%N; /*put right fork back on table*/
}

}

Dining Philosophers Problem

A solution to the dining philosophers problem. N=5.

. . .

Dining Philosophers Problem

. . .

. A solution to the dining philosophers problem.

. . .

Dining Philosophers Problem (5)
. . .

A solution to the dining philosophers problem.

Readers-Writers Problem
• A data set is shared among a number of

concurrent processes
– Readers – only read the data set; they do not perform

any updates
– Writers – can both read and write.

• Problem – allow multiple readers to read at the
same time. Only one single writer can access the

shared data at the same time.
• Shared Data

– Data set
– Semaphore mutex initialized to 1.
– Semaphore wrt initialized to 1.
– Integer readcount initialized to 0.

• A data set is shared among a number of
concurrent processes

– Readers – only read the data set; they do not perform
any updates

– Writers – can both read and write.
• Problem – allow multiple readers to read at the

same time. Only one single writer can access the
shared data at the same time.

• Shared Data
– Data set
– Semaphore mutex initialized to 1.
– Semaphore wrt initialized to 1.
– Integer readcount initialized to 0.

Readers-Writers Problem (Cont.)
• The structure of a writer process

do {
wait (wrt) ;

// writing is performed

signal (wrt) ;
} while (true)

• The structure of a writer process

do {
wait (wrt) ;

// writing is performed

signal (wrt) ;
} while (true)

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;

if (readcount == 1) wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;

if readcount == 0) signal (wrt) ;
signal (mutex) ;
} while (true)

• The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;

if (readcount == 1) wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;

if readcount == 0) signal (wrt) ;
signal (mutex) ;
} while (true)

Readers-Writers Locks
Generalized to provide reader-writer locks on

some systems.

Most useful in following situations:

1. In apps where it is easy to identify which
processes only read shared data and which

only write shared data.
2. In apps with more readers than writers.

More overhead to create reader-writer lock
than plain semaphores.

Generalized to provide reader-writer locks on
some systems.

Most useful in following situations:

1. In apps where it is easy to identify which
processes only read shared data and which

only write shared data.
2. In apps with more readers than writers.

More overhead to create reader-writer lock
than plain semaphores.

The Readers and Writers Problem (1)

A solution to the readers and writers problem.
. . .

The Readers and Writers Problem (2)

. . .

. A solution to the readers and writers problem.

• Don’t have infinite RAM
• Do have a memory hierarchy-

• Cache (fast)
• Main(medium)
• Disk(slow)

• Memory manager has the job of using this hierarchy
to create an abstraction (illusion) of easily
accessible memory

Memory Management Basics

• Don’t have infinite RAM
• Do have a memory hierarchy-

• Cache (fast)
• Main(medium)
• Disk(slow)

• Memory manager has the job of using this hierarchy
to create an abstraction (illusion) of easily
accessible memory

One program at a time in memory

OS reads program in from disk and it is executed

• Can only have one program in memory at a time.
• Bug in user program can trash the OS (a and c)
• Second on some embedded systems
• Third on MS-DOS (early PCs) -part in ROM called

BIOS

One program at a time

• Can only have one program in memory at a time.
• Bug in user program can trash the OS (a and c)
• Second on some embedded systems
• Third on MS-DOS (early PCs) -part in ROM called

BIOS

• Could swap new program into memory from
disk and send old one out to disk

• Not really concurrent

Really want to run more than one program

• Could swap new program into memory from
disk and send old one out to disk

• Not really concurrent

• IBM 360 -divide memory into 2 KB blocks, and
associate a 4 bit protection key with chunk. Keep
keys in registers.

• Put key into PSW for program
• Hardware prevents program from accessing block

with another protection key

IBM static relocation idea

• IBM 360 -divide memory into 2 KB blocks, and
associate a 4 bit protection key with chunk. Keep
keys in registers.

• Put key into PSW for program
• Hardware prevents program from accessing block

with another protection key

Problem with relocation

JMP 28 in program (b) trashes ADD instruction in location 28
Program crashes

• Problem is that both programs reference absolute physical
memory.

• Static relocation- load first instruction of program at
address x, and add x to every subsequent address during
loading

• This is too slow and
• Not all addresses can be modified

• Mov register 1,28 can’t be modified

Static relocation

• Problem is that both programs reference absolute physical
memory.

• Static relocation- load first instruction of program at
address x, and add x to every subsequent address during
loading

• This is too slow and
• Not all addresses can be modified

• Mov register 1,28 can’t be modified

• Create abstract memory space for program to exist in
• Each program has its own set of addresses
• The addresses are different for each program
• Call it the address space of the program

Address Space

• A form of dynamic relocation
• Base contains beginning address of program
• Limit contains length of program
• Program references memory, adds base address to

address generated by process. Checks to see if
address is larger then limit. If so, generates fault

• Disadvantage-addition and comparison have to be
done on every instruction

• Used in the CDC 6600 and the Intel 8088

Base and Limit Registers

• A form of dynamic relocation
• Base contains beginning address of program
• Limit contains length of program
• Program references memory, adds base address to

address generated by process. Checks to see if
address is larger then limit. If so, generates fault

• Disadvantage-addition and comparison have to be
done on every instruction

• Used in the CDC 6600 and the Intel 8088

Base and Limit Registers

Add 16384 to JMP 28. Hardware adds 16384 to 28 resulting
in JMP 16412

• Can’t keep all processes in main memory
• Too many (hundreds)
• Too big (e.g. 200 MB program)

• Two approaches
• Swap-bring program in and run it for awhile
• Virtual memory-allow program to run even if only

part of it is in main memory

How to run more programs then fit in main
memory at once

• Can’t keep all processes in main memory
• Too many (hundreds)
• Too big (e.g. 200 MB program)

• Two approaches
• Swap-bring program in and run it for awhile
• Virtual memory-allow program to run even if only

part of it is in main memory

