| - M.Sc IT

MODERN OPERATING SYSTEMS

UNIT — |

Prepared By
Dr. T. Christopher

UNIT-I

Introduction — History of Operating systems — Computer
Hardware review — Operating System Concepts — System calls —
Processes — Model — Creation — Termination — Process Hierarchy —
Process States — Implementation of Processes.

What Is An Operating System

A modern computer consists of:

« One or more processors

« Main memory

 Disks

Printers

e Various input/output devices

Managing all these components requires a layer of
software — the operating system

What 1s an Operating System?

A modern computer is very complex.
o Networking

o Disks

o Video/audio card

a

It Is Impossible for every application
programmer to understand every detall

A layer of computer software Is introduced to
provide a better, simpler, cleaner model of
the resources and manage them

What Is An Operating System

User mode

Kernel mode

<

{

E-mail Music
Web reader player

[CXe

User interface program

Operating system

E

> Software

~ Hardware

Figure 1-1. Where the operating system fits in.

What 1s an Operating System?

Users use various OS

o Windows, Linux, Mac OS etc.
User interacts with shell or GUI
o part of OS?

o they use OS to get their work done

Is device driver part of OS?

What 1s an Operating System?

On top of hardware is OS
Most computers have two modes of operation:

d

d

Kernel mode and user mode

OS runs in kernel mode, which has complete
access to all hardware and can execute any
Instruction

Rest of software runs in user mode, which has
limited capability

Shell or GUI is the lowest level of user mode
software

What 1s an operating system?

Two functions:

o From top to down: provide application
programmers a clean abstract set of resources
Instead of hardware ones

o From down to top: Manage these hardware
resources

The Operating System as an Extended
Machine

Application programs

- Beautiful interface

-— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

As an extended machine

Abstraction:

o CPU—process

o Storage — files

o Memory— address space

4 types of people:

o Industrial engineer: design hardware
o Kernel designer

o Application programmer: OS’s user
o End users

The Operating System as a Resource
Manager

Allow multiple programs to run at the same time

« Manage and protect memory, I/O devices, and
other resources

 Includes multiplexing (sharing) resources in two
different ways:

* Intime
* |n space

As a resource manager

Modern OS runs multiple programs of
multiple users at the same time

o Imagine what would happen if several programs
want to print at the same time?

o How to account the resource usage of each
0rocess?

o Resources can be multiplexed:
How to ensure fairness and efficiency?

summary

Operating system Is a software
0 |Is a complex software

o Runs in kernel mode

o Manages hardware
d

Provide a friendly interface for application
programmer

History of Operating Systems

Generations:

e (1945-55) Vacuum Tubes

¢ (1955-65) Transistors and Batch Systems
e (1965-1980) ICs and Multiprogramming
 (1980-Present) Personal Computers

15t vacuum tubes

Large and slow

Engineers design, build, operate and
maintain the computer

All programming is done with machine
language, or by wiring circuits using cables
iInsert plugboards into the computer and
operate

The work i1s mainly numerical calculations

2nd: transistors and batch systems

Also called mainframes
Computers are managed by professional operators

Programmers use punch card to run programs;
operators operate (load compiler, etc) and collect
output to the user

Complains soon come:
o Human Operation between computer operation
o Lead to batch system

o Collect a batch of jobs in the input room, then read them
Into a magnetic tape; the same for output

2"d: Transistors and Batch Systems (1)

Tape System
drive Input lape Qutput
Card | tEl.pE
reader g g?@ 4 E =& B 5 Printer
= [5) — A NS : ')
— I} Dt 0 Bl WO 0 B | D]
IO tf A [L AU
b
1401 D’:T 7094 | ,ﬂ 1401
Y\ | | Js

Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(b)1401 reads batch of jobs onto tape.

Tanenbaum, Modern Operating Systems 3 g, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (2)

Tape System
drive Input tape Qutput
Card | tEl.pE
reader 3 g?@ E Eg 3|C: E Printer
=] | s!a \ > if 1] H.- nf | | = O)
IO E A [L \ AU
] b
1401 D.FT 7094 | ﬂ' 1401
SN L | S

(a) (B) (c) (d) () (f)

Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to
1401. (f) 1401 prints output.

Transistors and Batch Systems (4)

/.’SEND

A Fortran program /'

|
/” $FORTRAN

/@DE, 10,6610802, MARVIN TANENBALUM "

Figure 1-4. Structure of a typical FMS job.

3td: IC and Multiprogramming

OS/360:

o Introduces several key techniques
Multi-programming: solve the problem of CPU idling

Spooling: simultaneous peripheral operation on line

0 Whenever a job finishes, OS load a new job from disk to
the empty-partition

3'd: ICs and Multiprogramming

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-5. A multiprogramming system
with three jobs in memory.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

3rd: Tes and Multiprogramming

Problems:

o 39 generation OS was well suited for big scientific
calculations and massive data processing

o But many programmers complain a lot... for not
be able to debug quickly.... Why?

o And the solution to this problem would be....?

o Timesharing:
A variant of multiprogramming

Provide both fast interactive service but also fits big
batch work

3td. TC and Multiprogramming

A system to be remembered: MULTICS

o A machine that would support hundreds of
simultaneous timesharing users— like the
electricity system (like a web server nowadays)

o Introduces many brilliant ideas but enjoys no
commercial success

o Its step-child is the well-known and time-honored
UNIX

o System V/ FreeBSD, MINIX, Linux

4%h: personal computers

Computers have performance similar to 3
generation, but prices drastically different

CP/M
o First disk-based OS

1980, IBM PC, Basic Interpreter, DOS, MS-
DOS

GUI--Lisa—Apple: user friendly

MS-DOS with GUI- WIin95/98/me—
WINNT/Xp...

Summary

4 generations OS
Develops with hardware and user needs
Multi-user, multi-programming, time-sharing

Computer Hardware Review

Monitor
Hard
keyboard USE printer disk drive
=
| (T noooo
; Hard
LA MLy Ultdeﬁ HEYEGﬁm ant?cﬁler ik
YT controller controller Gt
Bus

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 g, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Hardware: processor

Brain of computer
Fetches instruction from memory and execute

d

d

o PSW: program status word, priority, mod

Cycle of CPU:

fetch, decode, execute

CPU has registers to store variable and temporary
result: load from memory to register; store from

register to memory
Program counter: next instruction to fetc
Stack pointer: the top of the current stac

1
K

e...

‘ A reference

CPU Pipelining

Decode
unit

Fetch
unit
Fetch Decodea Execute
unit 3| unit - unit
Fetch
unit

Decode
Uhit

(a)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

Holding Y=—>
buffer

Execute
Lnit

Execute
unit

Exacute
Linit

CPU Pipeline

Accelerate the execution
Cause headaches to OS/compiler writers

For superscalar: instructions are often
executed out of order

Multithreaded and Multicore Chips

L1 :
cache Core 1 Core 2
L2 L2

Z]
Core 3 Core 4

L2 L2

Figure 1-8. (a) A guad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.

Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

MEemory

Memory Is where computer fetch and store
data, ideally, it should be both chip/large

The best people can do, Is to construct a
memory hierarchy

Cache lines:

o Memory divided into cache lines; the mostly used
ones are stored in caches

o Cache hit, cache miss

o Cache: whenever there Is disparity in usage or
speed; used to improve performance

Memory (2)

Questions when dealing with cache:

« When to put a new item into the cache.
 Which cache line to put the new item in.

e Which item to remove from the cache when a
slot Is needed.

« Where to put a newly evicted item in the larger
memory.

Disks

J

Read/write head (1 per surface)

(

—S—

| —

Surface 7 = |
L S
Surface 6 =
Surface 5 |
T S
Surface 4
Surface 3 — -
X:L-—_Db Direction of arm motion
Surface 2 e
Surface 1 ;(—-

Surface 0

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disks

Cheap and large: two orders better than RAM
Slow: three orders worse than RAM
Mechanical movement to fetch data

One or more platter—rotate— rpm

Information Is stored on concentric circles
Arm, track, cylinder, sector

Disk helps to implement Virtual Memory

2 When no enough memory is available, disks are
used as the storage, and memory as cache

Booting the Computer

BIOS—basic input/output system
On the parentboard, low-level I/O software
Checks RAM, keyboard and other basic devices

d

C O O O

Determine the boot device: floppy, C
First sector of the boot-device Is reac

D-ROM, disk
INnto memory

The sector contains program to chec
partition Is active

kK which

Then a secondary boot-loader is read into
memory and reads in operating system from the

active partition

Operating System Concepts

Processes

Address spaces

~lles

nput/Output

Protection

The shell

Ontogeny recapitulates phylogeny

e Large memories

e Protection hardware
e Disks

* Virtual memory

PrOCCSSES

Process

o Address space: 0-4G; executable program,
program’s data, and its stack

o Other resources like: registers, files, alarms,
related processes, and other information

o A process is fundamentally a container that holds
Information for a program to run

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child processes,
D, E,and F.

Address Space

The memory used by a process, in concept

MOS allows multiple processes in memory
simultaneously

Some processes need more memory than
physically available— virtual memory

STUIﬂEII'I'[S/

i
/

Raobbert Aﬂy

I
T

A
I
:} 1

Lea

Files (1)

Foot directory

Tl

/

\Faﬂulty

S
Prof.Brawn A&en l
Courses F

|

[+

\:rﬂ e

e

L

! \
C5101 DS‘H‘JE\ ;

Y \"\ 3
apars Granmts Committaas
/ i \
. [
1
!
r J 1r E
o O o /
S0SP COsT-11

Figure 1-14. Afile system for a university department.

Files (2)

() (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Files (3)

Process Process

OanO

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System calls

System calls is the interface users contact
with OS and hardware

System calls vary from system to system, but
the underlying concepts are similar

System Calls

Address
OxFFFFFFFF _
Heturn ta caller] -
Trap to the kemel LIDERrY.
P procedure
5| Put code for read in register | read
10
il
Jeer space < Increment SP 11)
~ Call read
3| Push fd User program
2| Fush &bufiar calling read
1| Fush nbytes
B 9
P i r
Kernel space ; 7 8 | Sys call
(Operating system) < Dispatch EBEeee | handler

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

File management

Call Description
fd = open(file. how, ...} Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(hame, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (2)

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link{name1, name2)

Create a new entry, name2, pointing to name

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Call Description
s = chdir(dirname) Change the working directory
s = chmod(name, mode) Change a file's protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 g, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

int pid;

pid = fork();
if(pid > 0){
printf("parent: child=%d\n", pid);
pid = wait();
printf("child %d 1s done\n", pid);
} else 1f(pid == 0){
printf("child: exiting\n");
exit();
} else {
printf("fork error\n");

char *argv[3];

argv[0] = "echo";
argv[l] = "hello";
argv[2] = O;
exec("/bin/echo", argv);
printf("exec error\n");

What Is a process?

 Aninstance of a program, replete with registers,
variables, and a program counter

|t has a program, input, output and a state

« Why is this idea necessary?

. A computer manages many computations concurrently-need
an abstraction to describe how it does it

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multiprogramming

One program counter

N Four program counters
A Process
E switch o D — s
B 4
e o] — -
(08
1 s A# B ¥ & i DY B| =— —
E gy —
-\Y D Time —=

(a) (b) (c)

(a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one
program Is active at once.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Creation

Events which can cause process creation

¢ System initialization.

EXxecution of a process creation system call by a
running process.

Auser request to create a new process.
* Initiation of a batch job.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Termination

Events which cause process termination:

Normal exit (voluntary).

« Error exit (voluntary).

« Fatal error (involuntary).

« Killed by another process (involuntary).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

A process can be in running, blocked, or ready state. Transitions
between these states are as shown.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

New The process is just being put together.

(R:’lFJ)r&ning Instructions being executed. This running process holds the

Waiting For an event (hardware, human, or another process.)
Ready The process has all needed resources - waiting for CPU only.

Suspended Another process has explicitly told this process to
sleep. It will be awakened when a process explicitly awakens it.

Terminated The process is being torn apart.

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Implementation of Processes (1)

Processes

Scheduler

The lowest layer of a process-structured operating system
handles interrupts and scheduling. Above that layer are
sequential processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Irhplementation of Processes (2)

Process management
Registers

Program counter
Program status word
Stack pointer

FProcess state

Priority

Scheduling parameters
Process 1D

Parent process
Process group

signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment info
Pointer to data segment info
Pointer to stack segment info

File management
Root directory
Working directary
File descriptors
User ID

Group ID

Some of the fields of a typical process table entry.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

