
MODERN OPERATING SYSTEMS

UNIT – I
Prepared By

Dr. T. Christopher

I – M.Sc IT

MODERN OPERATING SYSTEMS

UNIT – I
Prepared By

Dr. T. Christopher

UNIT–I

 Introduction – History of Operating systems –– Computer
Hardware review – Operating System Concepts – System calls –
Processes – Model – Creation – Termination – Process Hierarchy –
Process States – Implementation of Processes.

What Is An Operating System

A modern computer consists of:

• One or more processors
• Main memory
• Disks
• Printers
• Various input/output devices

Managing all these components requires a layer of
software – the operating system

A modern computer consists of:

• One or more processors
• Main memory
• Disks
• Printers
• Various input/output devices

Managing all these components requires a layer of
software – the operating system

What is an Operating System?

 A modern computer is very complex.
 Networking
 Disks
 Video/audio card
 ….

 It is impossible for every application
programmer to understand every detail

 A layer of computer software is introduced to
provide a better, simpler, cleaner model of
the resources and manage them

 A modern computer is very complex.
 Networking
 Disks
 Video/audio card
 ….

 It is impossible for every application
programmer to understand every detail

 A layer of computer software is introduced to
provide a better, simpler, cleaner model of
the resources and manage them

What Is An Operating System

Figure 1-1. Where the operating system fits in.

What is an Operating System?

 Users use various OS
 Windows, Linux, Mac OS etc.

 User interacts with shell or GUI
 part of OS?
 they use OS to get their work done

 Is device driver part of OS?

 Users use various OS
 Windows, Linux, Mac OS etc.

 User interacts with shell or GUI
 part of OS?
 they use OS to get their work done

 Is device driver part of OS?

What is an Operating System?

 On top of hardware is OS
 Most computers have two modes of operation:
 Kernel mode and user mode
 OS runs in kernel mode, which has complete

access to all hardware and can execute any
instruction

 Rest of software runs in user mode, which has
limited capability

 Shell or GUI is the lowest level of user mode
software

 On top of hardware is OS
 Most computers have two modes of operation:
 Kernel mode and user mode
 OS runs in kernel mode, which has complete

access to all hardware and can execute any
instruction

 Rest of software runs in user mode, which has
limited capability

 Shell or GUI is the lowest level of user mode
software

What is an operating system?

 Two functions:
 From top to down: provide application

programmers a clean abstract set of resources
instead of hardware ones

 From down to top: Manage these hardware
resources

 Two functions:
 From top to down: provide application

programmers a clean abstract set of resources
instead of hardware ones

 From down to top: Manage these hardware
resources

The Operating System as an Extended
Machine

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

As an extended machine

 Abstraction:
 CPU—process
 Storage –- files
 Memory– address space

 4 types of people:
 Industrial engineer: design hardware
 Kernel designer
 Application programmer: OS’s user
 End users

 Abstraction:
 CPU—process
 Storage –- files
 Memory– address space

 4 types of people:
 Industrial engineer: design hardware
 Kernel designer
 Application programmer: OS’s user
 End users

The Operating System as a Resource
Manager

• Allow multiple programs to run at the same time
• Manage and protect memory, I/O devices, and

other resources
• Includes multiplexing (sharing) resources in two

different ways:
• In time
• In space

• Allow multiple programs to run at the same time
• Manage and protect memory, I/O devices, and

other resources
• Includes multiplexing (sharing) resources in two

different ways:
• In time
• In space

As a resource manager

 Modern OS runs multiple programs of
multiple users at the same time
 Imagine what would happen if several programs

want to print at the same time?
 How to account the resource usage of each

process?
 Resources can be multiplexed:
 How to ensure fairness and efficiency?

 Modern OS runs multiple programs of
multiple users at the same time
 Imagine what would happen if several programs

want to print at the same time?
 How to account the resource usage of each

process?
 Resources can be multiplexed:
 How to ensure fairness and efficiency?

summary

 Operating system is a software
 Is a complex software
 Runs in kernel mode
 Manages hardware
 Provide a friendly interface for application

programmer

 Operating system is a software
 Is a complex software
 Runs in kernel mode
 Manages hardware
 Provide a friendly interface for application

programmer

History of Operating Systems

Generations:

• (1945–55) Vacuum Tubes
• (1955–65) Transistors and Batch Systems
• (1965–1980) ICs and Multiprogramming
• (1980–Present) Personal Computers

Generations:

• (1945–55) Vacuum Tubes
• (1955–65) Transistors and Batch Systems
• (1965–1980) ICs and Multiprogramming
• (1980–Present) Personal Computers

1st: vacuum tubes

 Large and slow
 Engineers design, build, operate and

maintain the computer
 All programming is done with machine

language, or by wiring circuits using cables
 insert plugboards into the computer and

operate
 The work is mainly numerical calculations

 Large and slow
 Engineers design, build, operate and

maintain the computer
 All programming is done with machine

language, or by wiring circuits using cables
 insert plugboards into the computer and

operate
 The work is mainly numerical calculations

2nd: transistors and batch systems

 Also called mainframes
 Computers are managed by professional operators
 Programmers use punch card to run programs;

operators operate (load compiler, etc) and collect
output to the user

 Complains soon come:
 Human Operation between computer operation
 Lead to batch system
 Collect a batch of jobs in the input room, then read them

into a magnetic tape; the same for output

 Also called mainframes
 Computers are managed by professional operators
 Programmers use punch card to run programs;

operators operate (load compiler, etc) and collect
output to the user

 Complains soon come:
 Human Operation between computer operation
 Lead to batch system
 Collect a batch of jobs in the input room, then read them

into a magnetic tape; the same for output

2nd: Transistors and Batch Systems (1)

Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(b)1401 reads batch of jobs onto tape.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (2)

Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to

1401. (f) 1401 prints output.

Transistors and Batch Systems (4)

Figure 1-4. Structure of a typical FMS job.

3rd: IC and Multiprogramming

 OS/360:
 introduces several key techniques
 Multi-programming: solve the problem of CPU idling
 Spooling: simultaneous peripheral operation on line
 Whenever a job finishes, OS load a new job from disk to

the empty-partition

 OS/360:
 introduces several key techniques
 Multi-programming: solve the problem of CPU idling
 Spooling: simultaneous peripheral operation on line
 Whenever a job finishes, OS load a new job from disk to

the empty-partition

3rd: ICs and Multiprogramming

Figure 1-5. A multiprogramming system
with three jobs in memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

3rd: Ics and Multiprogramming

 Problems:
 3rd generation OS was well suited for big scientific

calculations and massive data processing
 But many programmers complain a lot… for not

be able to debug quickly…. Why?
 And the solution to this problem would be….?
 Timesharing:
 A variant of multiprogramming
 Provide both fast interactive service but also fits big

batch work

 Problems:
 3rd generation OS was well suited for big scientific

calculations and massive data processing
 But many programmers complain a lot… for not

be able to debug quickly…. Why?
 And the solution to this problem would be….?
 Timesharing:
 A variant of multiprogramming
 Provide both fast interactive service but also fits big

batch work

3rd: IC and Multiprogramming

 A system to be remembered: MULTICS
 A machine that would support hundreds of

simultaneous timesharing users– like the
electricity system (like a web server nowadays)

 Introduces many brilliant ideas but enjoys no
commercial success

 Its step-child is the well-known and time-honored
UNIX

 System V/ FreeBSD, MINIX, Linux

 A system to be remembered: MULTICS
 A machine that would support hundreds of

simultaneous timesharing users– like the
electricity system (like a web server nowadays)

 Introduces many brilliant ideas but enjoys no
commercial success

 Its step-child is the well-known and time-honored
UNIX

 System V/ FreeBSD, MINIX, Linux

4th: personal computers

 Computers have performance similar to 3rd

generation, but prices drastically different
 CP/M
 First disk-based OS

 1980, IBM PC, Basic Interpreter, DOS, MS-
DOS

 GUI--Lisa—Apple: user friendly
 MS-DOS with GUI– Win95/98/me—

winNT/xp…

 Computers have performance similar to 3rd

generation, but prices drastically different
 CP/M
 First disk-based OS

 1980, IBM PC, Basic Interpreter, DOS, MS-
DOS

 GUI--Lisa—Apple: user friendly
 MS-DOS with GUI– Win95/98/me—

winNT/xp…

Summary

 4 generations OS
 Develops with hardware and user needs
 Multi-user, multi-programming, time-sharing

Computer Hardware Review

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Hardware: processor

 Brain of computer
 Fetches instruction from memory and execute
 Cycle of CPU:
 fetch, decode, execute

 CPU has registers to store variable and temporary
result: load from memory to register; store from
register to memory

 Program counter: next instruction to fetch
 Stack pointer: the top of the current stack
 PSW: program status word, priority, mode…

 Brain of computer
 Fetches instruction from memory and execute
 Cycle of CPU:
 fetch, decode, execute

 CPU has registers to store variable and temporary
result: load from memory to register; store from
register to memory

 Program counter: next instruction to fetch
 Stack pointer: the top of the current stack
 PSW: program status word, priority, mode…

A reference

CPU Pipelining

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

CPU Pipeline

 Accelerate the execution
 Cause headaches to OS/compiler writers

 For superscalar: instructions are often
executed out of order

 Accelerate the execution
 Cause headaches to OS/compiler writers

 For superscalar: instructions are often
executed out of order

Multithreaded and Multicore Chips

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.

Memory (1)

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

memory

 Memory is where computer fetch and store
data, ideally, it should be both chip/large

 The best people can do, is to construct a
memory hierarchy

 Cache lines:
 Memory divided into cache lines; the mostly used

ones are stored in caches
 Cache hit, cache miss
 Cache: whenever there is disparity in usage or

speed; used to improve performance

 Memory is where computer fetch and store
data, ideally, it should be both chip/large

 The best people can do, is to construct a
memory hierarchy

 Cache lines:
 Memory divided into cache lines; the mostly used

ones are stored in caches
 Cache hit, cache miss
 Cache: whenever there is disparity in usage or

speed; used to improve performance

Questions when dealing with cache:

• When to put a new item into the cache.
• Which cache line to put the new item in.
• Which item to remove from the cache when a

slot is needed.
• Where to put a newly evicted item in the larger

memory.

Memory (2)

Questions when dealing with cache:

• When to put a new item into the cache.
• Which cache line to put the new item in.
• Which item to remove from the cache when a

slot is needed.
• Where to put a newly evicted item in the larger

memory.

Disks

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disks

 Cheap and large: two orders better than RAM
 Slow: three orders worse than RAM
 Mechanical movement to fetch data
 One or more platter—rotate– rpm
 Information is stored on concentric circles
 Arm, track, cylinder, sector
 Disk helps to implement Virtual Memory
 When no enough memory is available, disks are

used as the storage, and memory as cache

 Cheap and large: two orders better than RAM
 Slow: three orders worse than RAM
 Mechanical movement to fetch data
 One or more platter—rotate– rpm
 Information is stored on concentric circles
 Arm, track, cylinder, sector
 Disk helps to implement Virtual Memory
 When no enough memory is available, disks are

used as the storage, and memory as cache

Booting the Computer

 BIOS—basic input/output system
 On the parentboard, low-level I/O software
 Checks RAM, keyboard and other basic devices
 Determine the boot device: floppy, CD-ROM, disk
 First sector of the boot-device is read into memory
 The sector contains program to check which

partition is active
 Then a secondary boot-loader is read into

memory and reads in operating system from the
active partition

 BIOS—basic input/output system
 On the parentboard, low-level I/O software
 Checks RAM, keyboard and other basic devices
 Determine the boot device: floppy, CD-ROM, disk
 First sector of the boot-device is read into memory
 The sector contains program to check which

partition is active
 Then a secondary boot-loader is read into

memory and reads in operating system from the
active partition

• Processes
• Address spaces
• Files
• Input/Output
• Protection
• The shell
• Ontogeny recapitulates phylogeny

• Large memories
• Protection hardware
• Disks
• Virtual memory

Operating System Concepts

• Processes
• Address spaces
• Files
• Input/Output
• Protection
• The shell
• Ontogeny recapitulates phylogeny

• Large memories
• Protection hardware
• Disks
• Virtual memory

processes

 Process
 Address space: 0-4G; executable program,

program’s data, and its stack
 Other resources like: registers, files, alarms,

related processes, and other information
 A process is fundamentally a container that holds

information for a program to run

 Process
 Address space: 0-4G; executable program,

program’s data, and its stack
 Other resources like: registers, files, alarms,

related processes, and other information
 A process is fundamentally a container that holds

information for a program to run

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child processes,

D, E, and F.

Address Space

 The memory used by a process, in concept
 MOS allows multiple processes in memory

simultaneously
 Some processes need more memory than

physically available– virtual memory

 The memory used by a process, in concept
 MOS allows multiple processes in memory

simultaneously
 Some processes need more memory than

physically available– virtual memory

Files (1)

Figure 1-14. A file system for a university department.

Files (2)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Files (3)

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System calls

 System calls is the interface users contact
with OS and hardware

 System calls vary from system to system, but
the underlying concepts are similar

 System calls is the interface users contact
with OS and hardware

 System calls vary from system to system, but
the underlying concepts are similar

System Calls

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (2)

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• An instance of a program, replete with registers,
variables, and a program counter

• It has a program, input, output and a state
• Why is this idea necessary?

• A computer manages many computations concurrently-need
an abstraction to describe how it does it

What is a process?

• An instance of a program, replete with registers,
variables, and a program counter

• It has a program, input, output and a state
• Why is this idea necessary?

• A computer manages many computations concurrently-need
an abstraction to describe how it does it

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multiprogramming

(a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one
program is active at once.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which can cause process creation

• System initialization.
• Execution of a process creation system call by a

running process.
• A user request to create a new process.
• Initiation of a batch job.

Process Creation

Events which can cause process creation

• System initialization.
• Execution of a process creation system call by a

running process.
• A user request to create a new process.
• Initiation of a batch job.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process termination:

• Normal exit (voluntary).
• Error exit (voluntary).
• Fatal error (involuntary).
• Killed by another process (involuntary).

Process Termination

Events which cause process termination:

• Normal exit (voluntary).
• Error exit (voluntary).
• Fatal error (involuntary).
• Killed by another process (involuntary).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process States

A process can be in running, blocked, or ready state. Transitions
between these states are as shown.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

 New The process is just being put together.

 Running Instructions being executed. This running process holds the
CPU.

 Waiting For an event (hardware, human, or another process.)

 Ready The process has all needed resources - waiting for CPU only.

 Suspended Another process has explicitly told this process to
sleep. It will be awakened when a process explicitly awakens it.

 Terminated The process is being torn apart.

 New The process is just being put together.

 Running Instructions being executed. This running process holds the
CPU.

 Waiting For an event (hardware, human, or another process.)

 Ready The process has all needed resources - waiting for CPU only.

 Suspended Another process has explicitly told this process to
sleep. It will be awakened when a process explicitly awakens it.

 Terminated The process is being torn apart.

Implementation of Processes (1)

The lowest layer of a process-structured operating system
handles interrupts and scheduling. Above that layer are
sequential processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of Processes (2)

Some of the fields of a typical process table entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

