
MODERN OPERATING SYSTEMS

UNIT – I
Prepared By

Dr. T. Christopher

I – M.Sc IT

MODERN OPERATING SYSTEMS

UNIT – I
Prepared By

Dr. T. Christopher

UNIT–I

 Introduction – History of Operating systems –– Computer
Hardware review – Operating System Concepts – System calls –
Processes – Model – Creation – Termination – Process Hierarchy –
Process States – Implementation of Processes.

What Is An Operating System

A modern computer consists of:

• One or more processors
• Main memory
• Disks
• Printers
• Various input/output devices

Managing all these components requires a layer of
software – the operating system

A modern computer consists of:

• One or more processors
• Main memory
• Disks
• Printers
• Various input/output devices

Managing all these components requires a layer of
software – the operating system

What is an Operating System?

 A modern computer is very complex.
 Networking
 Disks
 Video/audio card
 ….

 It is impossible for every application
programmer to understand every detail

 A layer of computer software is introduced to
provide a better, simpler, cleaner model of
the resources and manage them

 A modern computer is very complex.
 Networking
 Disks
 Video/audio card
 ….

 It is impossible for every application
programmer to understand every detail

 A layer of computer software is introduced to
provide a better, simpler, cleaner model of
the resources and manage them

What Is An Operating System

Figure 1-1. Where the operating system fits in.

What is an Operating System?

 Users use various OS
 Windows, Linux, Mac OS etc.

 User interacts with shell or GUI
 part of OS?
 they use OS to get their work done

 Is device driver part of OS?

 Users use various OS
 Windows, Linux, Mac OS etc.

 User interacts with shell or GUI
 part of OS?
 they use OS to get their work done

 Is device driver part of OS?

What is an Operating System?

 On top of hardware is OS
 Most computers have two modes of operation:
 Kernel mode and user mode
 OS runs in kernel mode, which has complete

access to all hardware and can execute any
instruction

 Rest of software runs in user mode, which has
limited capability

 Shell or GUI is the lowest level of user mode
software

 On top of hardware is OS
 Most computers have two modes of operation:
 Kernel mode and user mode
 OS runs in kernel mode, which has complete

access to all hardware and can execute any
instruction

 Rest of software runs in user mode, which has
limited capability

 Shell or GUI is the lowest level of user mode
software

What is an operating system?

 Two functions:
 From top to down: provide application

programmers a clean abstract set of resources
instead of hardware ones

 From down to top: Manage these hardware
resources

 Two functions:
 From top to down: provide application

programmers a clean abstract set of resources
instead of hardware ones

 From down to top: Manage these hardware
resources

The Operating System as an Extended
Machine

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

As an extended machine

 Abstraction:
 CPU—process
 Storage –- files
 Memory– address space

 4 types of people:
 Industrial engineer: design hardware
 Kernel designer
 Application programmer: OS’s user
 End users

 Abstraction:
 CPU—process
 Storage –- files
 Memory– address space

 4 types of people:
 Industrial engineer: design hardware
 Kernel designer
 Application programmer: OS’s user
 End users

The Operating System as a Resource
Manager

• Allow multiple programs to run at the same time
• Manage and protect memory, I/O devices, and

other resources
• Includes multiplexing (sharing) resources in two

different ways:
• In time
• In space

• Allow multiple programs to run at the same time
• Manage and protect memory, I/O devices, and

other resources
• Includes multiplexing (sharing) resources in two

different ways:
• In time
• In space

As a resource manager

 Modern OS runs multiple programs of
multiple users at the same time
 Imagine what would happen if several programs

want to print at the same time?
 How to account the resource usage of each

process?
 Resources can be multiplexed:
 How to ensure fairness and efficiency?

 Modern OS runs multiple programs of
multiple users at the same time
 Imagine what would happen if several programs

want to print at the same time?
 How to account the resource usage of each

process?
 Resources can be multiplexed:
 How to ensure fairness and efficiency?

summary

 Operating system is a software
 Is a complex software
 Runs in kernel mode
 Manages hardware
 Provide a friendly interface for application

programmer

 Operating system is a software
 Is a complex software
 Runs in kernel mode
 Manages hardware
 Provide a friendly interface for application

programmer

History of Operating Systems

Generations:

• (1945–55) Vacuum Tubes
• (1955–65) Transistors and Batch Systems
• (1965–1980) ICs and Multiprogramming
• (1980–Present) Personal Computers

Generations:

• (1945–55) Vacuum Tubes
• (1955–65) Transistors and Batch Systems
• (1965–1980) ICs and Multiprogramming
• (1980–Present) Personal Computers

1st: vacuum tubes

 Large and slow
 Engineers design, build, operate and

maintain the computer
 All programming is done with machine

language, or by wiring circuits using cables
 insert plugboards into the computer and

operate
 The work is mainly numerical calculations

 Large and slow
 Engineers design, build, operate and

maintain the computer
 All programming is done with machine

language, or by wiring circuits using cables
 insert plugboards into the computer and

operate
 The work is mainly numerical calculations

2nd: transistors and batch systems

 Also called mainframes
 Computers are managed by professional operators
 Programmers use punch card to run programs;

operators operate (load compiler, etc) and collect
output to the user

 Complains soon come:
 Human Operation between computer operation
 Lead to batch system
 Collect a batch of jobs in the input room, then read them

into a magnetic tape; the same for output

 Also called mainframes
 Computers are managed by professional operators
 Programmers use punch card to run programs;

operators operate (load compiler, etc) and collect
output to the user

 Complains soon come:
 Human Operation between computer operation
 Lead to batch system
 Collect a batch of jobs in the input room, then read them

into a magnetic tape; the same for output

2nd: Transistors and Batch Systems (1)

Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(b)1401 reads batch of jobs onto tape.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (2)

Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to

1401. (f) 1401 prints output.

Transistors and Batch Systems (4)

Figure 1-4. Structure of a typical FMS job.

3rd: IC and Multiprogramming

 OS/360:
 introduces several key techniques
 Multi-programming: solve the problem of CPU idling
 Spooling: simultaneous peripheral operation on line
 Whenever a job finishes, OS load a new job from disk to

the empty-partition

 OS/360:
 introduces several key techniques
 Multi-programming: solve the problem of CPU idling
 Spooling: simultaneous peripheral operation on line
 Whenever a job finishes, OS load a new job from disk to

the empty-partition

3rd: ICs and Multiprogramming

Figure 1-5. A multiprogramming system
with three jobs in memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

3rd: Ics and Multiprogramming

 Problems:
 3rd generation OS was well suited for big scientific

calculations and massive data processing
 But many programmers complain a lot… for not

be able to debug quickly…. Why?
 And the solution to this problem would be….?
 Timesharing:
 A variant of multiprogramming
 Provide both fast interactive service but also fits big

batch work

 Problems:
 3rd generation OS was well suited for big scientific

calculations and massive data processing
 But many programmers complain a lot… for not

be able to debug quickly…. Why?
 And the solution to this problem would be….?
 Timesharing:
 A variant of multiprogramming
 Provide both fast interactive service but also fits big

batch work

3rd: IC and Multiprogramming

 A system to be remembered: MULTICS
 A machine that would support hundreds of

simultaneous timesharing users– like the
electricity system (like a web server nowadays)

 Introduces many brilliant ideas but enjoys no
commercial success

 Its step-child is the well-known and time-honored
UNIX

 System V/ FreeBSD, MINIX, Linux

 A system to be remembered: MULTICS
 A machine that would support hundreds of

simultaneous timesharing users– like the
electricity system (like a web server nowadays)

 Introduces many brilliant ideas but enjoys no
commercial success

 Its step-child is the well-known and time-honored
UNIX

 System V/ FreeBSD, MINIX, Linux

4th: personal computers

 Computers have performance similar to 3rd

generation, but prices drastically different
 CP/M
 First disk-based OS

 1980, IBM PC, Basic Interpreter, DOS, MS-
DOS

 GUI--Lisa—Apple: user friendly
 MS-DOS with GUI– Win95/98/me—

winNT/xp…

 Computers have performance similar to 3rd

generation, but prices drastically different
 CP/M
 First disk-based OS

 1980, IBM PC, Basic Interpreter, DOS, MS-
DOS

 GUI--Lisa—Apple: user friendly
 MS-DOS with GUI– Win95/98/me—

winNT/xp…

Summary

 4 generations OS
 Develops with hardware and user needs
 Multi-user, multi-programming, time-sharing

Computer Hardware Review

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Hardware: processor

 Brain of computer
 Fetches instruction from memory and execute
 Cycle of CPU:
 fetch, decode, execute

 CPU has registers to store variable and temporary
result: load from memory to register; store from
register to memory

 Program counter: next instruction to fetch
 Stack pointer: the top of the current stack
 PSW: program status word, priority, mode…

 Brain of computer
 Fetches instruction from memory and execute
 Cycle of CPU:
 fetch, decode, execute

 CPU has registers to store variable and temporary
result: load from memory to register; store from
register to memory

 Program counter: next instruction to fetch
 Stack pointer: the top of the current stack
 PSW: program status word, priority, mode…

A reference

CPU Pipelining

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

CPU Pipeline

 Accelerate the execution
 Cause headaches to OS/compiler writers

 For superscalar: instructions are often
executed out of order

 Accelerate the execution
 Cause headaches to OS/compiler writers

 For superscalar: instructions are often
executed out of order

Multithreaded and Multicore Chips

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.

Memory (1)

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

memory

 Memory is where computer fetch and store
data, ideally, it should be both chip/large

 The best people can do, is to construct a
memory hierarchy

 Cache lines:
 Memory divided into cache lines; the mostly used

ones are stored in caches
 Cache hit, cache miss
 Cache: whenever there is disparity in usage or

speed; used to improve performance

 Memory is where computer fetch and store
data, ideally, it should be both chip/large

 The best people can do, is to construct a
memory hierarchy

 Cache lines:
 Memory divided into cache lines; the mostly used

ones are stored in caches
 Cache hit, cache miss
 Cache: whenever there is disparity in usage or

speed; used to improve performance

Questions when dealing with cache:

• When to put a new item into the cache.
• Which cache line to put the new item in.
• Which item to remove from the cache when a

slot is needed.
• Where to put a newly evicted item in the larger

memory.

Memory (2)

Questions when dealing with cache:

• When to put a new item into the cache.
• Which cache line to put the new item in.
• Which item to remove from the cache when a

slot is needed.
• Where to put a newly evicted item in the larger

memory.

Disks

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disks

 Cheap and large: two orders better than RAM
 Slow: three orders worse than RAM
 Mechanical movement to fetch data
 One or more platter—rotate– rpm
 Information is stored on concentric circles
 Arm, track, cylinder, sector
 Disk helps to implement Virtual Memory
 When no enough memory is available, disks are

used as the storage, and memory as cache

 Cheap and large: two orders better than RAM
 Slow: three orders worse than RAM
 Mechanical movement to fetch data
 One or more platter—rotate– rpm
 Information is stored on concentric circles
 Arm, track, cylinder, sector
 Disk helps to implement Virtual Memory
 When no enough memory is available, disks are

used as the storage, and memory as cache

Booting the Computer

 BIOS—basic input/output system
 On the parentboard, low-level I/O software
 Checks RAM, keyboard and other basic devices
 Determine the boot device: floppy, CD-ROM, disk
 First sector of the boot-device is read into memory
 The sector contains program to check which

partition is active
 Then a secondary boot-loader is read into

memory and reads in operating system from the
active partition

 BIOS—basic input/output system
 On the parentboard, low-level I/O software
 Checks RAM, keyboard and other basic devices
 Determine the boot device: floppy, CD-ROM, disk
 First sector of the boot-device is read into memory
 The sector contains program to check which

partition is active
 Then a secondary boot-loader is read into

memory and reads in operating system from the
active partition

• Processes
• Address spaces
• Files
• Input/Output
• Protection
• The shell
• Ontogeny recapitulates phylogeny

• Large memories
• Protection hardware
• Disks
• Virtual memory

Operating System Concepts

• Processes
• Address spaces
• Files
• Input/Output
• Protection
• The shell
• Ontogeny recapitulates phylogeny

• Large memories
• Protection hardware
• Disks
• Virtual memory

processes

 Process
 Address space: 0-4G; executable program,

program’s data, and its stack
 Other resources like: registers, files, alarms,

related processes, and other information
 A process is fundamentally a container that holds

information for a program to run

 Process
 Address space: 0-4G; executable program,

program’s data, and its stack
 Other resources like: registers, files, alarms,

related processes, and other information
 A process is fundamentally a container that holds

information for a program to run

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child processes,

D, E, and F.

Address Space

 The memory used by a process, in concept
 MOS allows multiple processes in memory

simultaneously
 Some processes need more memory than

physically available– virtual memory

 The memory used by a process, in concept
 MOS allows multiple processes in memory

simultaneously
 Some processes need more memory than

physically available– virtual memory

Files (1)

Figure 1-14. A file system for a university department.

Files (2)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Files (3)

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System calls

 System calls is the interface users contact
with OS and hardware

 System calls vary from system to system, but
the underlying concepts are similar

 System calls is the interface users contact
with OS and hardware

 System calls vary from system to system, but
the underlying concepts are similar

System Calls

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (2)

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• An instance of a program, replete with registers,
variables, and a program counter

• It has a program, input, output and a state
• Why is this idea necessary?

• A computer manages many computations concurrently-need
an abstraction to describe how it does it

What is a process?

• An instance of a program, replete with registers,
variables, and a program counter

• It has a program, input, output and a state
• Why is this idea necessary?

• A computer manages many computations concurrently-need
an abstraction to describe how it does it

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multiprogramming

(a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one
program is active at once.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which can cause process creation

• System initialization.
• Execution of a process creation system call by a

running process.
• A user request to create a new process.
• Initiation of a batch job.

Process Creation

Events which can cause process creation

• System initialization.
• Execution of a process creation system call by a

running process.
• A user request to create a new process.
• Initiation of a batch job.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process termination:

• Normal exit (voluntary).
• Error exit (voluntary).
• Fatal error (involuntary).
• Killed by another process (involuntary).

Process Termination

Events which cause process termination:

• Normal exit (voluntary).
• Error exit (voluntary).
• Fatal error (involuntary).
• Killed by another process (involuntary).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process States

A process can be in running, blocked, or ready state. Transitions
between these states are as shown.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

 New The process is just being put together.

 Running Instructions being executed. This running process holds the
CPU.

 Waiting For an event (hardware, human, or another process.)

 Ready The process has all needed resources - waiting for CPU only.

 Suspended Another process has explicitly told this process to
sleep. It will be awakened when a process explicitly awakens it.

 Terminated The process is being torn apart.

 New The process is just being put together.

 Running Instructions being executed. This running process holds the
CPU.

 Waiting For an event (hardware, human, or another process.)

 Ready The process has all needed resources - waiting for CPU only.

 Suspended Another process has explicitly told this process to
sleep. It will be awakened when a process explicitly awakens it.

 Terminated The process is being torn apart.

Implementation of Processes (1)

The lowest layer of a process-structured operating system
handles interrupts and scheduling. Above that layer are
sequential processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of Processes (2)

Some of the fields of a typical process table entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

