
UNIT II: Exception handing: Types of Exceptions - Uncaught

Exception - try, catch, throw, throws, finally - Built-in

Exception, user defined exception. Multithreading: The Java

thread model – Main thread - Creating a thread – Thread

priorities - Synchronization. I/O basics – Stream Classes –

Predefined streams – Reading/Writing console input/output-

Applet class: Applet basics – Applet architecture – Applet

display method – HTML Applet Tag.

Text Book:

Herbert Schildt, “The Complete Reference Java”, 7th Edition

Tata McGraw-Hill Pub. Company Ltd.

Prepared by : B.Loganathan



 An exception is an abnormal condition that
arises in a code sequence at run time. In other
words, an exception is a run-time error.

 A Java exception is an object that describes
an exceptional (that is, error) condition that
has occurred in a piece of code.

 When an exceptional condition arises, an
object representing that exception is created
and thrown in the method that caused the
error.

 Java exception handling is managed via five
keywords: try, catch, throw, throws, and
finally.



 Try and catch :
 If an exception occurs within the try block, it

is thrown. Our code can catch this exception
(using catch) and handle it in some rational
manner.

 Any exception that is thrown out of a method
must be specified as such by a throws clause.
Any code that absolutely must be executed
after a try block completes is put in a finally
block.

 This is the general form of an exception-
handling block:

 try { 
 // block of code to monitor for errors 

 }



 catch (ExceptionType1 exOb) { 
 // exception handler for ExceptionType1 
 } 
 catch (ExceptionType2 exOb) { 
 // exception handler for ExceptionType2 
 } 
 // ... 
 finally { 
 /* block of code to be executed after try 

block ends */
 } 

 Here, ExceptionType is the type of exception
that has occurred.



 All exception types are subclasses of the built-
in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy.

 Immediately below Throwable are two
subclasses that partition exceptions into two
distinct branches.

 There is an important subclass of Exception,
called RuntimeException, such as division by
zero and invalid array indexing.

 The other branch is topped by Error, which
defines exceptions that are not expected to be
caught under normal circumstances. Stack
overflow is an example of such an error.



Uncaught Exception 
 This small program includes an expression

that intentionally causes a divide-by-zero
error:

 class Exc0 { 
 public static void main(String args[]) { 
 int d = 0; 
 int a = 42 / d; 
 } 
 } 
 When the Java run-time system detects the

attempt to divide by zero, it constructs a new
exception object and then throws this
exception.

 This causes the exception during Exc0
execution .



 The default handler displays a string

describing the exception, prints a stack trace

from the point at which the exception

occurred, and terminates the program.

 Here is the exception generated when this

example is executed:

 java.lang.ArithmeticException: / by zero at 
Exc0.main(Exc0.java:4) 

 Notice here the class name, Exc0; the method

name, main; the filename, Exc0.java; and the

line number, 4, are all included in the simple

stack trace.



 To guard against and handle a run-time error,

simply enclose the code that we want to

monitor inside a try block. Immediately

following the try block, include a catch clause

that specifies the exception type that we wish

to catch.

 The following program includes a try block

and a catch clause that processes the

ArithmeticException generated by the

division-by-zero error:



 class Exc2 { 
 public static void main(String args[]) { 
 int d, a; 
 try { // monitor a block of code. 
 d = 0; 
 a = 42 / d; 
 System.out.println("This will not be printed."); 
 } 
 catch (ArithmeticException e) { 
 // catch divide-by-zero error 
 System.out.println("Division by zero."); 
 }  /* end catch */
 System.out.println("After catch statement."); 
 }  /* end try */
 }



 This program generates the following output: 

 Division by zero. 

 After catch statement. 

 Notice that the call to println( ) inside the try

block is never executed.

 Once an exception is thrown, program control

transfers out of the try block into the catch

block. Put differently, catch is not “called,” so

execution never “returns” to the try block from

a catch.

 Thus, the line “This will not be printed.” is not

displayed.



Throw:
 The general form of  throw is shown here: 
 throw ThrowableInstance; 

 Here, ThrowableInstance must be an object
of type Throwable or a subclass of
Throwable.

 There are two ways we can obtain a
Throwable object: using a parameter in a
catch clause, or creating one with the new
operator.

 Here is a sample program that creates and
throws an exception. The handler that
catches the exception rethrows it to the
outer handler.



 // Demonstrate throw. 
 class ThrowDemo { 
 static void demoproc() { 
 try { 
 throw new NullPointerException("demo"); 
 } catch(NullPointerException e) { 
 System.out.println("Caught inside demoproc."); 
 throw e; // rethrow the exception 
 } 
 } 
 public static void main(String args[]) { 
 try { 
 demoproc(); 
 } catch(NullPointerException e) { 
 System.out.println("Recaught: " + e); 
 } 
 } 
 }



 The exception is then rethrown. Here is the 

resulting output: 

 Caught inside demoproc. 

 Recaught: java.lang.NullPointerException: demo

 Here, new is used to construct an instance of  

NullPointerException. Many of  Java’s built-in run-

time exceptions have at least two constructors: 

one with no parameter and one that takes a string 

parameter. 

 When the second form is used, the argument 

specifies a string that describes the exception. 

This string is displayed when the object is used as 

an argument to print( ) or println( ).



 Throws:
 A throws clause lists the types of exceptions that

a method might throw. This is necessary for all
exceptions, except those of type Error or
RuntimeException, or any of their subclasses.

 This is the general form of a method declaration
that includes a throws clause:

 type method-name(parameter-list)
 throws exception-list 
 { 

 // body of method 

 } 

 Here, exception-list is a comma-separated list of
the exceptions that a method can throw.



 // This is throws example progam

 class ThrowsDemo { 

 static void throwOne() 

 throws IllegalAccessException { 

 System.out.println("Inside throwOne."); 

 throw new IllegalAccessException("demo"); 

 } 

 public static void main(String args[]) { 

 try { 

 throwOne(); 

 } catch (IllegalAccessException e) { 

 System.out.println("Caught " + e); 

 } 

 } 

 } 



 Here is the output generated by running this 
example program: 

 inside throwOne
 caught java.lang.IllegalAccessException: demo

 Finally:
 When exceptions are thrown, execution in a

method takes an abrupt, nonlinear path that
alters the normal flow through the method.

 For example, if a method opens a file upon
entry and closes it upon exit, then we will not
want the code that closes the file to be
bypassed by the exception-handling
mechanism. The finally keyword is designed to
address this contingency.



 finally creates a block of code that will be

executed after a try/catch block has

completed and before the code following the

try/catch block. The finally block will execute

whether or not an exception is thrown.

 If an exception is thrown, the finally block will

execute even if no catch statement matches

the exception.

 Any time a method is about to return to the

caller from inside a try/catch block, via an

uncaught exception or an explicit return

statement, the finally clause is also executed

just before the method returns.



 This finally can be useful for closing file

handles and freeing up any other resources

that might have been allocated at the

beginning of a method with the intent of

disposing of them before returning.

 The finally clause is optional. However, each 

try statement requires at least one catch or a 

finally clause. 

 Here is an example program that shows three

methods that exit in various ways, none

without executing their finally clauses:



 // Demonstrate finally. 

 class FinallyDemo { 

 // Through an exception out of the method. 

 static void procA() { 

 try { 

 System.out.println("inside procA"); 

 throw new RuntimeException("demo"); 

 } 

 finally { 

 System.out.println("procA's finally"); 

 } 

 }



 // Return from within a try block. 

 static void procB() { 

 try { 

 System.out.println("inside procB"); 

 return; 

 } finally { 

 System.out.println("procB's finally"); 

 } 

 } 

 // Execute a try block normally. 

 static void procC() { 

 try { 

 System.out.println("inside procC"); 

 } finally {



 System.out.println("procC's finally"); 

 } 

 } 

 public static void main(String args[]) { 

 try { 

 procA(); 

 } catch (Exception e) { 

 System.out.println("Exception caught"); 

 } 

 procB(); 

 procC(); 

 }



 In this example, procA( ) prematurely breaks out of
the try by throwing an exception. The finally clause
is executed on the way out. procB( )’s try statement
is exited via a return statement.

 The finally clause is executed before procB( )
returns. In procC( ), the try statement executes
normally, without error. However, the finally block is
still executed.

 Here is the output generated by the preceding
program:

 inside procA
 procA’s finally 
 Exception caught 
 inside procB
 procB’s finally 
 inside procC
 procC’s finally



 Built-in Exception:
 Inside the standard package java.lang, Java

defines several exception classes.

 The unchecked exceptions defined in java.lang

are listed in the first Table.

 The second Table lists those exceptions

defined by java.lang that must be included in a

method’s throws list if that method can

generate one of these exceptions and does not

handle it itself. These are called checked
exceptions.



Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-
zero.

ArrayIndexOutOfBounds
Exception

Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an 
incompatible type.

ClassCastException Invalid Cast.

EnumConstantNotPrese
ntException

An attempt is made to use an 
undefined enumeration value.

IllegalArgumentExceptio
n

Illegal argument used to invoke a 
method.

IllegalMonitorStateExce
ption

Illegal monitor operation, such as 
waiting on an unlocked 
thread.



IllegalStateException Environment or application is in 
incorrect state.

IllegalThreadStateException Requested operation not 
compatible with current thread 
state.

IndexOutOfBoundsException Some type of index is out-of-
bounds.

NegativeArraySizeException Array created with a negative 
size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to 
a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the 
bounds of a string.



Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedExcepti
on

Attempt to clone an object that does 
not implement the Cloneable
interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an 
abstract class or interface.

InterruptedException One thread has been interrupted by 
another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.



 Although Java’s built-in exceptions handle

most common errors, we will probably want to

create our own exception types to handle

situations specific to our applications.

 This is quite easy to do: just define a subclass

of Exception (which is, of course, a subclass

of Throwable).

 The Exception class does not define any

methods of its own. It does, of course, inherit

those methods provided by Throwable.

 They are shown in the following Table as the

Methods defined by Throwable.



Method Description

Throwable fillInStackTrace( ) Returns a Throwable object that 
contains a completed stack trace. This 
object can be rethrown.

Throwable getCause( ) Returns the exception that underlies the 
current exception. If there is no 
underlying exception, null  is returned.

String getLocalizedMessage( ) Returns a localized description of the 
exception.

String getMessage( ) Returns a description of the exception.

StackTraceElement[ ] 
getStackTrace( )

Returns an array that contains the stack 
trace, one element at a time, as an array 
of StackTraceElement.

void printStackTrace( ) Displays the stack trace.

String toString( ) Returns a String object containing a 
description of the exception. This 
method is called by println( ) when 
outputting a Throwable object.



 Exception defines two are shown here:
 Exception( ) 
 Exception(String msg)

 The first form creates an exception that has no
description. The second form lets specify a
description of the exception.

 /* This program creates a custom exception 
type. */

 class MyException extends Exception { 
 private int detail; 
 MyException(int a) { 
 detail = a; 
 }



 public String toString() { 
 return "MyException[" + detail + "]"; 
 } 
 } 
 class ExceptionDemo { 
 static void compute(int a) throws MyException { 
 System.out.println("Called compute(" + a + ")"); 
 if(a > 10) 
 throw new MyException(a); 
 System.out.println("Normal exit"); 
 } 
 public static void main(String args[]) { 
 try { 
 compute(1); 
 compute(20); 
 } catch (MyException e) { 
 System.out.println("Caught " + e); 
 } 
 } 
 }



 This example defines a subclass of Exception
called MyException. This subclass is quite
simple: it has only a constructor plus an
overloaded toString( ) method that displays
the value of the exception.

 The ExceptionDemo class defines a method
named compute( ) that throws a MyException
object. The exception is thrown when
compute( )’s integer parameter is greater
than 10.

 The main( ) method sets up an exception
handler for MyException, then calls compute()
with a legal value (less than 10) and an illegal
one to show both paths through the code.



 Here is the program result: 

 Called compute(1) 

 Normal exit 

 Called compute(20) 

 Caught MyException[20]

 Multithreading:
 Java provides built-in support for

multithreaded programming. A multithreaded

program contains two or more parts that can

run concurrently.



 Each part of a program is called a thread, and

each thread defines a separate path of

execution.

 There are two distinct types of multitasking:

process based and thread-based.

 A process is, in essence, a program that is

executing. Thus, process-based multitasking

is the feature that allows our computer to run

two or more programs concurrently.

 For example, process-based multitasking

enables us to run the Java compiler at the

same time that we are using a text editor.



 In a thread-based multitasking environment, the
thread is the smallest unit of dispatchable code.
This means that a single program can perform
two or more tasks simultaneously.

 For instance, a text editor can format text at the
same time that it is printing, as long as these
two actions are being performed by two
separate threads.

 Multitasking threads require less overhead than
multitasking processes. Processes are
heavyweight tasks that require their own
separate address spaces. Interprocess
communication is expensive and limited.
Context switching from one process to another
is also costly.



 Threads, on the other hand, are lightweight.

They share the same address space and

cooperatively share the same heavyweight

process. Interthread communication is

inexpensive, and context switching from one

thread to the next is low cost.

 The Java Thread Model:
 Single-threaded systems use an approach

called an event loop with polling. In this

model, a single thread of control runs in an

infinite loop, polling a single event queue to

decide what to do next.



 This wastes CPU time. It can also result in one
part of a program dominating the system and
preventing any other events from being
processed.

 In general, in a singled-threaded environment,
when a thread blocks (that is, suspends
execution) because it is waiting for some
resource, the entire program stops running.

 The benefit of Java’s multithreading is that the
main loop/polling mechanism is eliminated.
One thread can pause without stopping other
parts of our program.

 When a thread blocks in a Java program, only
the single thread that is blocked pauses. All
the threads continue to run.



 Threads exist in several states. A thread can

be running. It can be ready to run as soon as it

gets CPU time. A running thread can be

suspended, which temporarily suspends its

activity.

 A suspended thread can then be resumed,
allowing it to pick up where it left off. A thread

can be blocked when waiting for a resource.

At any time, a thread can be terminated,

which halts its execution immediately.

 Thread Priorities:
 Thread priorities are integers that specify the

relative priority of one thread to another.



 A thread’s priority is used to decide when to switch

from one running thread to the next. This is called a

context switch. The rules that determine when a

context switch takes place are simple:

 A thread can voluntarily relinquish control:

 This is done by explicitly yielding, sleeping, or

blocking on pending I/O. All other threads are

examined, and the highest-priority thread that is

ready to run is given the CPU.

 A thread can be preempted by a higher-priority
thread:

 In this case, a lower-priority thread that does not

yield the processor is simply preempted by a higher-
priority thread. This is called preemptive

multitasking.



 Synchronization:
 Because multithreading introduces an

asynchronous behavior to our programs, there
must be a way to enforce synchronicity when
we need it.

 We must prevent one thread from writing data
while another thread is in the middle of reading
it.

 Java implements an elegant twist on an age-old
model of interposes synchronization: the
monitor. In this way, a monitor can be used to
protect a shared asset from being manipulated
by more than one thread at a time.



 Each object has its own implicit monitor that is
automatically entered when one of the object’s
synchronized methods is called. Once a thread
is inside a synchronized method, no other
thread can call any other synchronized method
on the same object.

 Messaging :
 Java provides a clean, low-cost way for two or

more threads to talk to each other, via calls to
predefined methods that all objects have.
Java’s messaging system allows a thread to
enter a synchronized method on an object, and
then wait there until some other thread
explicitly notifies it to come out.



 Thread Class and the Runnable Interface :

 Java’s multithreading system is built upon the

Thread class, its methods, and its companion

interface, Runnable.

 To create a new thread, our program will

either extend Thread or implement the

Runnable interface.

 The Thread class defines several methods

that help manage threads. The ones that will

be used are shown here:



Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of 
time.

start Start a thread by calling its run 

method.



 When a Java program starts up, one thread

begins running immediately. This is usually

called the main thread of our program,

because it is the one that is executed when

our program begins.

 The main thread is important for two reasons:

• It is the thread from which other “child”

threads will be spawned.

• Often, it must be the last thread to finish

execution because it performs various

shutdown actions.



 Although the main thread is created
automatically when our program is started, it
can be controlled through a Thread object.

 Its general form is shown here:
 static Thread currentThread( )

 This method returns a reference to the thread
in which it is called. The following example
program shows the main thread.

 In this program, a reference to the current
thread (the main thread) is obtained by calling
currentThread( ), and this reference is stored
in the local variable t.

 Next, the program displays information about 
the thread.



 // Controlling the main Thread. 
 class CurrentThreadDemo { 
 public static void main(String args[]) { 
 Thread t = Thread.currentThread(); 
 System.out.println("Current thread: " + t); 
 // change the name of the thread 
 t.setName("My Thread"); 
 System.out.println("After name change: " + t); 
 try { 
 for(int n = 5; n > 0; n--) { 
 System.out.println(n); 
 Thread.sleep(1000); 
 } 
 } catch (InterruptedException e) { 
 System.out.println("Main thread interrupted"); 
 } 
 } 
 }



 The program then calls setName( ) to change the

internal name of the thread.

 Here is the output generated by this program:

 Current thread: Thread[main,5,main] 

 After name change: Thread[My Thread,5,main] 

 5

 4

 3

 2

 1

 Notice the output produced when t is used as an 

argument to println( ).



 Java does provide strong, flexible support for
I/O as it relates to files and networks.

 Java programs perform I/O through streams.
A stream is an abstraction that either
produces or consumes information.

 An input stream can abstract many different
kinds of input: from a disk file, a keyboard, or
a network socket. Likewise, an output stream
may refer to the console, a disk file, or a
network connection.

 Java implements streams within class
hierarchies defined in the java.io package.



 Stream Classes :

 Java defines two types of streams: byte and
character.

 Byte streams provide a convenient means for
handling input and output of bytes. Byte
streams are used, when reading or writing
binary data.

 Character streams provide a convenient
means for handling input and output of
characters.

 At the lowest level, all I/O is still byte-oriented.
The character-based streams simply provide
a convenient and efficient means for handling
characters.



 The Byte Stream Classes :

 Byte streams are defined by using two class

hierarchies. At the top are two abstract

classes: InputStream and OutputStream.

 The abstract classes InputStream and

OutputStream define several key methods that

the other stream classes implement.

 Two of the most important are read( ) and

write( ), which, respectively, read and write

bytes of data.

 The byte stream classes are shown in the

following Table:



Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered Output stream

ByteArrayInputStream Input stream that reads from a byte 
array

ByteArrayOutputStream Output stream that write to a byte array

DataInputStream An input stream that contains methods 
for reading the Java standard data types

DataOutputStream An Output stream that contains methods 
for writing the Java standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that write to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream 
input



Stream Class Meaning

ObjectInputStream Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println( 
)

PushbackInputStream Input stream that supports one-byte 

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or 
more input streams that 
will be read sequentially, one after the other



Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character 
stream

CharArrayReader Input stream that reads from a 
character array

CharArrayWriter Output stream that writes to a 
character array

FileReader Input stream that reads from a 
file

FileWriter Output stream that writes to a 
file

FilterReader Filtered reader

FilterWriter Filtered writer



Stream Class Meaning

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates Characters to bytes 

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print( ) and println( )

PushbackReader Input stream that allows characters to be returned 
to the input stream

Reader Abstract class that describes character stream 
input

Writer Abstract class that describes character stream 
output

StringReader Input stream that reads from a string

StringWriter Output stream that write to a string



 All Java programs automatically import the

java.lang package. This package defines a

class called System, which encapsulates

several aspects of the run-time environment.

 System also contains three predefined stream

variables: in, out, and err. These fields are

declared as public, static, and final within

System. This means that they can be used by

any other part of our program and without

reference to a specific System object.

 System.out refers to the standard output

stream. By default, this is the console.



 System.in refers to standard input, which is

the keyboard by default. System.err refers to

the standard error stream, which also is the

console by default.

 System.in is an object of type InputStream;

System.out and System.err are objects of

type PrintStream.

 Reading Console Input:
 The preferred method of reading console

input is to use a character-oriented stream,

which makes our program easier to

internationalize and maintain.



 In Java, console input is accomplished by
reading from System.in. To obtain a character
based stream that is attached to the console,
in a BufferedReader object.

 BufferedReader supports a buffered input
stream. Its most commonly used constructor
is shown here:

 BufferedReader(Reader inputReader) 

 Here, inputReader is the stream that is linked
to the instance of BufferedReader that is
being created.

 Reader is an abstract class. One of its
concrete subclasses is InputStreamReader,
which converts bytes to characters.



 An InputStreamReader object that is linked to
System.in, use the following constructor:

 InputStreamReader(InputStream inputStream) 

 Because System.in refers to an object of  type 
InputStream, it can be used for inputStream.

 The following line of code creates a
BufferedReader that is connected to the
keyboard:

 BufferedReader br = new BufferedReader(new 
 InputStreamReader(System.in)); 

 After this statement executes, br is a
character-based stream that is linked to the
console through System.in.



 Reading Characters:
 To read a character from a BufferedReader,

use read( ). The version of read( ) that we will

be using is :

 int read( ) throws IOException

 Each time that read( ) is called, it reads a

character from the input stream and returns it

as an integer value.

 The following program demonstrates read( )

by reading characters from the console until

the user types a "q.”



 /* Use a BufferedReader to read characters from 
the console. */

 import java.io.*; 

 class BRRead { 

 public static void main(String args[]) 

 throws IOException

 { 

 char c; 

 BufferedReader br = new BufferedReader(new 
InputStreamReader(System.in)); 

 System.out.println("Enter characters, 'q' to 
quit.");



 // read characters 
 do { 
 c = (char) br.read(); 
 System.out.println(c); 
 } while(c != 'q'); 
 } 
 } 
 Here is a Output of  the program run:
 Enter characters, 'q' to quit. 
 123abcq 
 1
 2
 3
 a
 b
 c
 q



 Reading Strings :
 To read a string from the keyboard, use the

version of readLine( ) that is a member of the

BufferedReader class. Its general form is shown

here:

 String readLine( ) throws IOException

 It returns a String object.

 The following part of  program reads and displays 

lines of  text until we enter the word “stop”:

 do { 

 str = br.readLine();

 System.out.println(str); 

 } while(!str.equals("stop"));



 Console output is most easily accomplished

with print( ) and println( ). These methods are

defined by the class PrintStream (which is the

type of object referenced by System.out).

 write( ) can be used to write to the console.

The simplest form of write( ) defined by

PrintStream is shown here:

 void write(int byteval) 

 This method writes to the stream the byte

specified by byteval.



 Here is a short example that uses write( ) to

output the character “A” followed by a newline

to the screen:

 // Demonstrate System.out.write(). 

 class WriteDemo { 

 public static void main(String args[]) { 

 int b; 

 b = 'A'; 

 System.out.write(b); 

 System.out.write('\n'); 

 } 

 }



 The PrintWriter Class :
 PrintWriter is one of the character-based

classes. Using a character-based class for

console output makes it easier to

internationalize our program.

 PrintWriter defines several constructors. The

one we will use is shown here:

 PrintWriter(OutputStream outputstream, 
boolean flushOnNewline)

 Here, outputstream is an object of type

OutputStream. If flushOnNewline is true,

flushing automatically takes place. If false,

flushing is not automatic.



 The following application illustrates using a
PrintWriter to handle console output:

 // Demonstrate PrintWriter
 import java.io.*; 
 public class PrintWriterDemo { 
 public static void main(String args[]) { 
 PrintWriter pw = new PrintWriter(System.out, true); 
 pw.println("This is a string"); 
 int i = -7; 
 pw.println(i); 
 double d = 4.5e-7; 
 pw.println(d); 
 } 
 } 
 The output from this program is shown here: 
 This is a string 
 -7 
 4.5E-7



 Applets are small applications that are accessed on
an Internet server, transported over the Internet,
automatically installed, and run as part of a web
document.

 Applets differ from console-based applications in
several key areas. The simple applet shown here:

 import java.awt.*; 

 import java.applet.*; 

 public class SimpleApplet extends Applet { 

 public void paint(Graphics g) { 

 g.drawString("A Simple Applet", 20, 20); 

 } 

 }



 This applet begins with two import
statements. The first imports the Abstract
Window Toolkit (AWT) classes. Applets
interact with the user (either directly or
indirectly) through the AWT, not through the
console-based I/O classes.

 The second import statement imports the
applet package, which contains the class
Applet. Every applet that we create using a
subclass of Applet.

 The next line in the program declares the
class SimpleApplet. This class must be
declared as public, because it will be
accessed by code that is outside the program.



 Inside SimpleApplet, paint( ) is declared. This
method is defined by the AWT and must be
overridden by the applet.

 Inside paint( ) is a call to drawString( ), which
is a member of the Graphics class.

 This method outputs a string beginning at the
specified X,Y location. It has the following
general form:

 void drawString(String message, int x, int y)

 Here, message is the string to be output
beginning at x,y. In a Java window, the upper-
left corner is location 0,0. The call to
drawString( ) in the applet causes the
message “A Simple Applet” to be displayed
beginning at location 20,20.



 There are two ways in which we can run an
applet:

 • Executing the applet within a Java-
compatible web browser. 

 • Using an applet viewer, such as the 
standard tool, appletviewer. An applet viewer 
executes our applet in a window. 

 To execute an applet in a web browser, we
need to write a short HTML text file that
contains a tag that loads the applet.

 Here is the HTML file that executes
SimpleApplet:

 <applet code="SimpleApplet" width=200 
height=60> 

 </applet>



 The width and height statements specify the
dimensions of the display area used by the
applet.

 To execute SimpleApplet with an applet
viewer, the following command line will run
SimpleApplet:

 C:\>appletviewer RunApp.html

 Applets do not need a main( ) method.

 User I/O is not accomplished with Java’s
stream I/O classes. Instead, applets use the
interface provided by the AWT or Swing.

 The window produced by SimpleApplet, as
displayed by the applet viewer, is shown in the
following illustration:





 The Applet class defines the methods shown 

in the following table:

Method Description

void destroy( ) Called by the browser just before an 
applet is terminated.

AccessibleContext
getAccessibleContext( )

Returns the accessibility context for 
the invoking object.

AppletContext getAppletContext( ) Returns the context associated with 
the applet.

String getAppletInfo( ) Returns a string that describes the 
applet.

AudioClip getAudioClip(URL url) Returns an AudioClip object that 
encapsulates the audio clip found at 
the location specified by url.



Method Description

AudioClip getAudioClip(URL 
url, String clipName)

Returns an AudioClip object that 
encapsulates the audio clip found at the 
location specified by url.

URL getCodeBase( ) Returns the URL associated with the invoking 
applet.

URL getDocumentBase( ) Returns the URL of the HTML document that 
invokes the applet.

Image getImage(URL url) Returns an Image object that encapsulates 
the image found at the location specified by 
url.

Image getImage(URL url, 
String imageName)

Returns an Image object that encapsulates 
the image found at the location specified by 
url.

Locale getLocale( ) Returns a Locale object that is used by 
various locale sensitive classes and methods.

String getParameter(String 
paramName)

Returns the parameter associated with 
paramName. null is returned if the specified 
parameter is not found.



Method Description

String[ ] [ ] getParameterInfo( ) Returns a String table that describes the 
parameters recognized by the applet.

void init( ) Called when an applet begins execution. It 
is the first method called for any applet.

boolean isActive( ) Returns true if the applet has been started. 
It returns false if the applet has been 
stopped.

static final AudioClip
newAudioClip(URL url)

Returns an AudioClip object that 
encapsulates the audio clip found at the 
location specified by url.

void play(URL url) If an audio clip is found at the location 
specified by url, the clip is played.

void play(URL url, String 
clipName)

If an audio clip is found at the location 
specified by url with the name specified by 
clipName, the clip is played.

void start( ) Called by the browser when an applet 
should start (or resume) execution. 

void stop( ) Called by the browser to suspend 
execution of the applet.



 An applet is a window-based program. First,

applets are event driven. Second, the user
initiates interaction with an applet.

 Applet Skeleton :

 A set of methods that provides the basic

mechanism by which the browser or applet

viewer interfaces to the applet and controls its

execution. Four of these methods, init( ),

start( ), stop( ), and destroy( ), apply to all

applets and are defined by Applet.



 Applet Initialization and Termination :
 When an applet begins, the following methods are

called, in this sequence:
 1. init( ) 

 2. start( ) 

 3. paint( )

 When an applet is terminated, the following
sequence of method calls takes place:

 1. stop( ) 

 2. destroy( )

 init( ) 
 The init( ) method is the first method to be called.

This is where we should initialize variables. This
method is called only once during the run time of
our applet.



 start( ):
 The start( ) method is called after init( ). It is

also called to restart an applet after it has

been stopped. if a user leaves a web page and

comes back, the applet resumes execution at

start( ).

 paint( ):
 The paint( ) method is called each time our

applet’s output must be redrawn. paint( ) is

also called when the applet begins execution.

Whatever the cause, whenever the applet

must redraw its output, paint( ) is called.



 stop( ) :
 The stop( ) method is called when a web

browser leaves the HTML document
containing the applet.

 We should use stop( ) to suspend threads that
don’t need to run when the applet is not
visible. We can restart them when start( ) is
called if the user returns to the page.

 destroy( ) :
 The destroy( ) method is called when the

environment determines that our applet needs
to be removed completely from memory. We
should free up any resources the applet may
be using.



 Applets are displayed in a window, and AWT-

based applets use the AWT to perform input

and output.

 To output a string to an applet, use

drawString( ), which is a member of the

Graphics class.

 Typically, it is called from within either

update( ) or paint( ). It has the following

general form:

 void drawString(String message, int x, int y)



 Here, message is the string to be output

beginning at x,y. In a Java window, the upper-

left corner is location 0,0.

 To set the background color of an applet’s

window, use setBackground( ). To set the

foreground color (the color in which text is

shown), use setForeground( ).

 They have the following general forms:

 void setBackground(Color newColor) 

 void setForeground(Color newColor) 

 Here, newColor specifies the new color. The

class Color defines the constants.



 The following example sets the background
color to green and the text color to red:

 setBackground(Color.green); 
 setForeground(Color.red);

 We can obtain the current settings for the
background and foreground colors by calling
getBackground( ) and getForeground( ),
respectively.

 The following simple example applet that sets
the background color to cyan, the foreground
color to red, and displays a message that
illustrates the order in which the init( ),
start(), and paint( ) methods are called when
an applet starts up:



 /* A simple applet that sets the foreground and 

 background colors and outputs a string. */ 

 import java.awt.*; 

 import java.applet.*; 

 /*<applet code="Sample" width=300 height=50> 

 </applet> */

 public class Sample extends Applet{ 

 String msg; 

 // set the foreground and background colors. 

 public void init() { 

 setBackground(Color.cyan); 

 setForeground(Color.red); 

 msg = "Inside init( ) --"; 

 } 



 // Initialize the string to be displayed. 

 public void start() { 

 msg += " Inside start( ) --"; 

 } 

 // Display msg in applet window. 

 public void paint(Graphics g) { 

 msg += " Inside paint( )."; 

 g.drawString(msg, 10, 30); 

 } 

 }

 This applet generates the window shown in

the following diagram:





 The APPLET tag be used to start an applet

from both an HTML document and from an

applet viewer.

 An applet viewer will execute each APPLET

tag that it finds in a separate window, while

web browsers will allow many applets on a

single page.

 The syntax for a fuller form of the APPLET tag

is shown in following diagram. Bracketed

items are optional.



 < APPLET 
 [CODEBASE = codebaseURL] 
 CODE = appletFile
 [ALT = alternateText] 
 [NAME = appletInstanceName] 
 WIDTH = pixels HEIGHT = pixels 
 [ALIGN = alignment] 
 [VSPACE = pixels] [HSPACE = pixels] 
 > 
 [< PARAM NAME = AttributeName VALUE = 

AttributeValue>] 
 [< PARAM NAME = AttributeName2 VALUE = 

AttributeValue>] 
 . . . 
 [HTML Displayed in the absence of Java] 
 </APPLET>



 CODEBASE :

 CODEBASE is an optional attribute that specifies
the base URL of the applet code, which is the
directory that will be searched for the applet’s
executable class file (specified by the CODE tag).

 CODE :

 CODE is a required attribute that gives the name
of the file containing our applet’s compiled .class
file. This file is relative to the code base URL of
the applet.

 ALT :
 The ALT tag is an optional attribute used to

specify a short text message that should be
displayed if the browser recognizes the APPLET
tag but can’t currently run Java applets.



 NAME :
 NAME is an optional attribute used to specify a

name for the applet instance. Applets must be
named in order for other applets on the same page
to find them by name and communicate with them.

 WIDTH and HEIGHT :
 WIDTH and HEIGHT are required attributes that give

the size (in pixels) of the applet display area.
 ALIGN :

 ALIGN is an optional attribute that specifies the
alignment of the applet. This attribute is treated the
same as the HTML IMG tag with these possible
values: LEFT, RIGHT, TOP, BOTTOM, MIDDLE,
BASELINE, TEXTTOP, ABSMIDDLE, and
ABSBOTTOM.



 VSPACE and HSPACE :
 These attributes are optional. VSPACE specifies

the space, in pixels, above and below the applet.
HSPACE specifies the space, in pixels, on each
side of the applet.

 They’re treated the same as the IMG tag’s
VSPACE and HSPACE attributes.

 PARAM NAME and VALUE :
 The PARAM tag allows us to specify applet-

specific arguments in an HTML page. Applets
access their attributes with the getParameter()
method.

 Other valid APPLET attributes include ARCHIVE,
which lets specify one or more archive files, and
OBJECT, which specifies a saved version of the
applet.


