
Text Book : “The Complete Reference Java”
Herbert Schildt

Prepared by : B.Loganathan

 UNIT I: Introducing classes: class fundamentals –
declaring objects, methods, constructors - this
keyword – Method overloading - garbage
collection - finalize () method. Inheritance:
Inheritance basics – using super – method
overriding – dynamic method dispatch – abstract
class – final keyword. Packages and interfaces:
packages – importing packages – defining
interface – implementing interfaces - extending
interfaces.

 Text Book : Herbert Schildt, “The Complete
Reference Java”, 7th Edition Tata McGraw-Hill
Pub., Company Ltd.

 The class is at the core of Java. It is the

logical construct upon which the entire Java

language is built because it defines the shape

and nature of an object.

 The Class forms the basis for object-oriented

programming in Java. Any concept we wish to

implement in a Java program must be

encapsulated within a class. Because the

class is so fundamental to Java.

 The most important thing to understand about

a class is that it defines a new data type. Once

defined, this new type can be used to create

objects of that type.

 A class is a template for an object, and an

object is an instance of a class.

General Form of a Class :

 When we define a class, we declare its exact

form and nature. we do this by specifying the

data that it contains and the code that

operates on that data.

 A class is declared by use of the class

keyword. The classes that have been used up

to this point are actually very limited examples

of its complete form. Classes can (and usually

do) get much more complex. A simplified

general form of a class definition is shown

here:

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

}

} // class end

 The data or variables, defined within a class

are called instance variables. The code is

contained within methods.

 The methods and variables defined within a

class are called members of the class.

 Variables defined within a class are called

instance variables because each instance of

the class (that is, each object of the class)

contains its own copy of these variables.

 Thus, the data for one object is separate and

unique from the data for another.

A Simple Class :

 Let’s begin our study of the class with a

simple example. Here is a class called Box

that defines three instance variables: width,

height, and depth. Currently, Box does not

contain any methods.

class Box {

double width;

double height;

double depth;

}

 A class defines a new type of data. In this
case, the new data type is called Box.

 To actually create a Box object, we will use a
statement like the following:

 Box mybox = new Box();
 /* create a Box object called mybox */

 After this statement executes, mybox will be
an instance of Box. Thus, it will have physical

Reality.

➢ Each time we create an instance of a class,
we are creating an object that contains its
own copy of each instance variable defined by
the class.

 Thus, every Box object will contain its own

copies of the instance variables width, height,

and depth. To access these variables, we will

use the dot(.) operator.

 The dot operator links the name of the object

with the name of an instance variable. For

example, to assign the width variable of

mybox the value 100, we would use the

following statement:

 mybox.width = 100;

 This statement tells the compiler to assign the

copy of width that is contained within the

mybox object the value of 100.

 Here is a complete program that uses the Boxclass:
 /* A program that uses the Box class.
 Call this file BoxDemo.java
 */
 class Box {
 double width;
 double height;
 double depth;
 }
 // This class declares an object of type Box.
 class BoxDemo {
 public static void main(String args[]) {
 Box mybox = new Box();
 double vol;
 // assign values to mybox's instance variables
 mybox.width = 10;
 mybox.height = 20;
 mybox.depth = 15;
 // compute volume of box
 vol = mybox.width * mybox.height * mybox.depth;
 System.out.println("Volume is = " + vol);
 }
 }

 we should call the file that contains this program

BoxDemo.java, because the main()method is in the

class called BoxDemo, not the class called Box.

When we compile this program, we will find that two

.class files have been created, one for Box and one

for BoxDemo.

 To run this program, we must execute

BoxDemo.class and get the following output:

 Volume is =3000.0

 Each object has its own copies of the instance

variables. This means that if we have two

Boxobjects, each has its own copy of depth, width,

and height. It is important to understand that

changes to the instance variables of one object

have no effect on the instance variables of another.

 // This program declares two Box objects.
 class Box {
 double width;
 double height;
 double depth; }
 class BoxDemo2 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;
 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;
 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;
 // compute volume of first box
 vol = mybox1.width * mybox1.height * mybox1.depth;
 System.out.println("Volume is " + vol);
 // compute volume of second box
 vol = mybox2.width * mybox2.height * mybox2.depth;
 System.out.println("Volume is " + vol); } }

 The output produced by this program is shown here:

 Volume is 3000.0

 Volume is 162.0

 Declaring Objects :
 when we create a class, we are creating a new data

type. We can use this type to declare objects of that

type. However, obtaining objects of a class is a two-

step process.

 First, we must declare a variable of the class type.

This variable does not define an object. Instead, it is

simply a variable that can refer to an object.

 Second, we must acquire an actual, physical copy of

the object and assign it to that variable. we can do

this using the new operator.

 The new operator dynamically allocates (that

is, allocates at run time) memory for an object

and returns a reference to it. This reference

is, more or less, the address in memory of the

object allocated by new. This reference is then

stored in the variable. Thus, in Java, all class

objects must be dynamically allocated.

 In the preceding sample programs, a line

similar to the following is used to declare an

object of type Box:

 Box mybox = new Box();

 This statement combines the two steps just

described.

 Box mybox; // declare reference to object

 mybox = new Box(); // allocate a Box object

 The first line declares mybox as a reference to

an object of type Box. After this line executes,

mybox contains the value null, which indicates

that it does not yet point to an actual object.

 The next line allocates an actual object and

assigns a reference to it to mybox. After the

second line executes, we can use mybox as if

it were a Box object.

 The mybox simply holds the memory address

of the actual Box object.

 Assigning Object Reference Variables :

 Box b1 = new Box();

 Box b2 = b1;

 we might think that b2 is being assigned a
reference to a copy of the object referred to by
b1. That is, we might think that b1 and b2 refer to
separate and distinct objects.

 Instead, after this fragment executes,b1and b2
will both refer to the same object. The assignment
of b1 to b2 did not allocate any memory or copy
any part of the original object.

 It simply makes b2 refer to the same object as
does b1. Thus, any changes made to the object
through b2 will affect the object to which b1is
referring, since they are the same object.

 Introducing Methods :
 Classes usually consist of two things: instance

variables and methods. This is the general form of a
method:

 type name(parameter-list) {
 // body of method
 }
 Here, type specifies the type of data returned by the

method. This can be any valid type, including class
types that we create. If the method does not return a
value, its return type must be void.

 The name of the method is specified by name. This can
be any legal identifier other than those already used by
other items within the current scope.

 The parameter-list is a sequence of type and identifier
pairs separated by commas. Parameters are essentially
variables that receive the value of the arguments
passed to the method when it is called.

 If the method has no parameters, then the parameter
list will be empty.

 /* This program includes a method inside the
box class */

 class Box {

 double width;

 double height;

 double depth;

 // display volume of a box

 void volume() {

 System.out.print("Volume is ");

 System.out.println(width * height * depth);

 }

 }

 class BoxDemo3 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;
 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;
 // display volume of first box
 mybox1.volume();
 // display volume of second box
 mybox2.volume();
 }
 }

 This program generates the following output :
 Volume is 3000.0

 Volume is 162.0

 Look closely at the following two lines of code:
 mybox1.volume();

 mybox2.volume();

 The first line here invokes the volume()method on
mybox1. That is, it calls volume() relative to the
mybox1object, using the object’s name followed by
the dot operator. Thus, the call to mybox1.volume()
displays the volume of the box defined by mybox1,
and the call to mybox2.

 volume() displays the volume of the box defined by
mybox2. Each time volume() is invoked, it displays
the volume for the specified box.

 Returning a Value :
 While the implementation of volume() does move the

computation of a box’s volume inside the Boxclass
where it belongs, it is not the best way to do it.

 For example, A better way to implement volume() is to
have it compute the volume of the box and return the
result to the caller.

 // Now, volume() returns the volume of a box.
 class Box {
 double width;
 double height;
 double depth;
 // compute and return volume
 double volume() {
 return width * height * depth;
 }
 }

Adding a Method that Takes
Parameters :

 While some methods don’t need parameters. Parameters allow a
method to be generalized. That is, a parameterized method can
operate on a variety of data and be used in a number of slightly
different situations. To illustrate this point, let’s use a very simple
example.

 Here is a method that returns the square of the number 10:
 int square()
 {
 return 10 * 10;
 }

 While this method does, return the value of 10 squared, its use is
very limited. However, if we modify the method so that it takes a
parameter, then we can make square() much more useful.

 int square(int i)
 {
 return i * i;
 }

 Now, square() will return the square of whatever
value it is called with. That is, square()is now a
general-purpose method that can compute the
square of any integer value, rather than just 10.

 Here is an example:
 int x, y;
 x = square(5); // x equals 25
 x = square(9); // x equals 81
 y = 2;
 x = square(y); // x equals 4
 In the first call to square(), the value 5 will be

passed into parameter i. In the second call, we
will receive the value 9. The third invocation
passes the value of y, which is 2 in this example.

 As these examples show, square() is able to
return the square of whatever data it is passed.

 Constructors :
 It can be tedious to initialize all of the variables in

a class each time an instance is created. Even
when we add convenience functions like
SetDim(), it would be simpler and more concise to
have all of the setup done at the time the object is
first created.

 Because the requirement for initialization is so
common, Java allows objects to initialize
themselves when they are created. This
automatic initialization is performed through the
use of a constructor.

 Constructor initializes an object immediately
upon creation. It has the same name as the class
in which it resides and is syntactically similar to a
method.

 /* Here, Box uses a parameterized constructor to
 initialize the dimensions of a box.
 */
 class Box {
 double width;
 double height;
 double depth;
 // This is the constructor for Box.
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }
 // compute and return volume
 double volume() {
 return width * height * depth;
 }
 }

 class BoxDemo7 {
 public static void main(String args[]) {
 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box(3, 6, 9);
 double vol;
 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);
 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
 }
 The output from this program is shown here:
 Volume is 3000.0
 Volume is 162.0

 The this Keyword :
 Sometimes a method will need to refer to the object

that invoked it. To allow this, Java defines the ‘this”
keyword. “this” can be used inside any method to
refer to the current object. That is, this is always a
reference to the object on which the method was
invoked. We can use “this” anywhere a reference to
an object of the current class type is permitted.

 To better understand what “this” refers to, consider
the following version of Box():

 // A redundant use of this.
 Box(double w, double h, double d) {
 this.width = w;
 this.height = h;
 this.depth = d;
 }

 Garbage Collection:
 In some languages, such as C++, dynamically

allocated objects must be manually released
by use of a delete operator. Java takes a
different approach and handles deallocation
automatically.

 The technique that accomplishes this is called
garbage collection.

 It works like this: when no references to an
object exist, that object is assumed to be no
longer needed, and the memory occupied by
the object can be reclaimed. It will not occur
simply because one or more objects exist that
are no longer used.

 Sometimes an object will need to perform
some action when it is destroyed. For
example, if an object is holding some non-
Java resource such as a file handle or
character font, then we might want to make
sure these resources are freed before an
object is destroyed.

 To handle such situations, Java provides a
mechanism called finalization. By using
finalization, we can define specific actions
that will occur when an object is just about to
be reclaimed by the garbage collector.

 To add a finalizer to a class, we simply define

the finalize()method.

 Inside the finalize() method, we will specify

those actions that must be performed before

an object is destroyed. The garbage collector

runs periodically, checking for objects that are

no longer referenced by any running state or

indirectly through other referenced objects.

 The finalize()method has this general form:

 protected void finalize()

 {

 // finalization code here

 }

 Here, the key word protected is a specifier
that prevents access to finalize()by code
defined outside its class. It is important to
understand that finalize()is only called just
prior to garbage collection.

 Overloading Methods :
 In Java it is possible to define two or more

methods within the same class that share
the same name, as long as their parameter
declarations are different.

 When this is the case, the methods are
said to be overloaded, and the process is
referred to as “method overloading”.

 Here is a simple example that illustrates method
overloading:

 // Demonstrate method overloading.
 class OverloadDemo {
 void test() {
 System.out.println("No parameters");
 }
 // Overload test for one integer parameter.
 void test(int a) {
 System.out.println("a: " + a);
 }
 // Overload test for two integer parameters.
 void test(int a, int b) {
 System.out.println("a and b: " + a + " " + b);
 }

 // overload test for a double parameter
 double test(double a) {
 System.out.println("double a: " + a);
 return a*a;
 }
 }
 class Overload {
 public static void main(String args[]) {
 OverloadDemo ob = new OverloadDemo();
 double result;
 // call all versions of test()
 ob.test();
 ob.test(10);
 ob.test(10, 20);
 result = ob.test(123.25);
 System.out.println("Result of ob.test(123.25): " + result);
 }
 }

 This program generates the following output:

 No parameters

 a: 10

 a and b: 10 20

 double a: 123.25

 Result of ob.test(123.25): 15190.5625

 The test() is overloaded four times. The first

version takes no parameters, the second

takes one integer parameter, the third takes

two integer parameters, and the fourth takes

one double parameter.

 A variable can be declared as final then
prevents its contents from being modified.

 For example:
 final int FILE_NEW = 1;
 final int FILE_OPEN = 2;
 final int FILE_SAVE = 3;
 final int FILE_SAVEAS = 4;
 final int FILE_QUIT = 5;

 Subsequent parts of our program can now
use FILE_OPEN, etc., as if they were
constants, without fear that a value has been
changed. A final variableis essentially a
constant.

 To inherit a class, we simply incorporate the
definition of one class into another by using the
“extends “ keyword.

 The following program creates a super class
called A and a subclass called B. Notice how the
keyword extends is used to create a subclass of
A.

 // A simple example of inheritance.
 // Create a superclass.
 class A {
 int i, j;
 void showij() {
 System.out.println("i and j: " + i + " " + j);
 }
 } // end A

 // Create a subclass by extending class A.
 class B extends A {
 int k;
 void showk() {
 System.out.println("k: " + k);
 }
 void sum() {
 System.out.println("i+j+k: " + (i+j+k));
 }
 }
 The general form of a class declaration that

inherits a super class is shown here:

 class subclass-name extends superclass-name{
 // body of class
 }

 Whenever a subclass needs to refer to its
immediate superclass, it can do so by use of the
key word “super”.

 The Super has two general forms. The first calls
the superclass’ constructor. The second is used
to access a member of the superclass that has
been hidden by a member of a subclass.

 The subclass can call a constructor defined by its
superclass by use of the following form of super:

 super(arg-list);

 Here, arg-list specifies any arguments needed by
the constructor in the superclass. super() must
always be the first statement executed inside a
subclass’ constructor.

 The super() is used in the improved version of the
BoxWeight()class:

 /* BoxWeight now uses super to initialize its Box
attributes. */

 class BoxWeight extends Box {
 double weight; // weight of box
 /* initialize width, height, and depth using

super() */
 BoxWeight(double w, double h, double d, double

m) {
 super(w, h, d); // call superclass constructor
 weight = m;
 }
 }

 Here, BoxWeight() calls super() with the
arguments w, h, and d. This causes the Box()
constructor to be called, which initializes width,
height, and depth using these values.

 Super() was called with three arguments. Since
constructors can be overloaded, super() can be
called using any form defined by the superclass.

 The second form of super acts somewhat like
this, except that it always refers to the superclass
of the subclass in which it is used. This usage has
the following general form:

 super.member

 Here, member can be either a method or an
instance variable.

 The second form of super is most applicable to
situations in which member names of a subclass
hide members by the same name in the
superclass.

 // Using super to overcome name hiding.
 class A {
 int i;
 }
 // Create a subclass by extending class A.
 class B extends A {
 int i; // this i hides the i in A
 B(int a, int b) {
 super.i = a; // i in A
 i = b; // i in B
 }

 void show() {

 System.out.println("i in superclass: " + super.i);

 System.out.println("i in subclass: " + i);

 }

 }

 class UseSuper {

 public static void main(String args[]) {

 B subOb = new B(1, 2);

 subOb.show();

 }

 }

 This program displays the following:
 i in superclass: 1

 i in subclass: 2

 In a class hierarchy, when a method in a

subclass has the same name and type
signature as a method in its superclass, then

the method in the subclass is said to override
the method in the superclass.

 When an overridden method is called from

within a subclass, it will always refer to the

version of that method defined by the

subclass. The version of the method defined

by the superclass will be hidden.

 Consider the following:

 // Method overriding.

 class A {

 int i, j;

 A(int a, int b) {

 i = a;

 j = b;

 }

 // display i and j

 void show() {

 System.out.println("i and j: " + i + " " + j);

 }

 }

 class B extends A {
 int k;
 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }
 // display k – this overrides show() in A
 void show() {
 System.out.println("k: " + k);
 }
 }
 class Override {
 public static void main(String args[]) {
 B subOb = new B(1, 2, 3);
 subOb.show(); // this calls show() in B
 }
 }

 The output produced by this program is shown here:
 k: 3

 Dynamic Method Dispatch :
 Method overriding forms the basis for one of

Java’s most powerful concepts: dynamic

method dispatch. Dynamic method dispatch is

the mechanism by which a call to an

overridden method is resolved at run time,

rather than compile time.

 Dynamic method dispatch is important

because this is how Java implements run-time

polymorphism. A superclass reference

variable can refer to a subclass object. Java

uses this fact to resolve calls to overridden

methods at run time.

 When different types of objects are referred

to, different versions of an overridden method

will be called. In other words, it is the type of

the object being referred to(not the type of the

reference variable) that determines which

version of an overridden method will be

executed.

 Therefore, if a superclass contains a method

that is overridden by a subclass, then when

different types of objects are referred to

through a superclass reference variable,

different versions of the method are executed.

 Here is an example that illustrates dynamic method dispatch:
 // Dynamic Method Dispatch
 class A {
 void callme() {
 System.out.println("Inside A's callme method");
 }
 }
 class B extends A {
 // override callme()
 void callme() {
 System.out.println("Inside B's callme method");
 }
 } class C extends A {
 // override callme()
 void callme() {
 System.out.println("Inside C's callme method");
 }
 }

 class Dispatch {

 public static void main(String args[]) {

 A a = new A(); // object of type A

 B b = new B(); // object of type B

 C c = new C(); // object of type C

 A r; // obtain a reference of type A

 r = a; // r refers to an A object

 r.callme(); // calls A's version of callme

 r = b; // r refers to a B object

 r.callme(); // calls B's version of callme

 r = c; // r refers to a C object

 r.callme(); // calls C's version of callme

 }

 }

 The output from the program is shown here:

 Inside A’s callme method
 Inside B’s callme method
 Inside C’s callme method

 This program creates one superclass called A
and two subclasses of it, called B and C.
Subclasses B and C override callme()
declared in A. Inside the main()method,
objects of Type A,B, and C are declared.

 Also, a reference of type A, called r, is
declared. The program then in turn assigns a
reference to each type of object to r and uses
that reference to invoke callme().

 Sometimes, we want to create a superclass
that only defines a generalized form that will be
shared by all of its subclasses, leaving it to
each subclass to fill in the details.

 Such a class determines the nature of the
methods that the subclasses must implement.

 We want some way to ensure that a subclass
does, indeed, override all necessary methods.
Java’s solution to this problem is the abstract
method.

 We can require that certain methods be
overridden by subclasses by specifying the
abstract type modifier.

 To declare an abstract method, use this

general form:

 abstract type name(parameter-list);

 As we can see, no method body is present.

Any class that contains one or more abstract

methods must also be declared abstract. To

declare a class abstract, we simply use the

abstract keyword in front of the class keyword

at the beginning of the class declaration.

 Here is a simple example of a class with an

abstract method, followed by a class which

implements that method:

 // A Simple demonstration of abstract.
 abstract class A {
 abstract void callme();
 // concrete methods are still allowed in abstract classes
 void callmetoo() {
 System.out.println("This is a concrete method.");
 }
 }
 class B extends A {
 void callme() {
 System.out.println("B's implementation of callme.");
 }
 }
 class AbstractDemo {
 public static void main(String args[]) {
 B b = new B();
 b.callme();
 b.callmetoo();
 }
 }

 Notice that no objects of class A are declared

in the program. One other point: class A

implements a concrete method called

callmetoo().

 Although abstract classes cannot be used to

instantiate objects, they can be used to create

object references, because Java’s approach

to run-time polymorphism is implemented
through the use of superclass references.

 Thus, it must be possible to create a reference

to an abstract class so that it can be used to

point to a subclass object.

 Packages are containers for classes that are
used to keep the class name space
compartmentalized.

 For example, a package allows us to create a
class named List, which we can store in our
own package without concern that it will
collide with some other class named List
stored elsewhere.

 To create a package is quite easy: simply
include a package command as the first
statement in a Java source file. The package
statement defines a name space in which
classes are stored.

 This is the general form of the package

statement:

 package pkg;

 Here, pkg is the name of the package. For

example, the following statement creates a

package called MyPackage.

 package MyPackage;

 Java uses file system directories to store

packages. For example, the .class files for any

classes we declare to be part of MyPackage

must be stored in a directory called

MyPackage.

 More than one file can include the same
package statement. The package statement
simply specifies to which package the classes
defined in a file belong.

 The general form of a multileveled package
statement is shown here:

 package pkg1[.pkg2[.pkg3]];

 A package hierarchy must be reflected in the
file system of our Java development system.
For example, a package declared as

 package java.awt.image;

 Needs to be stored in java\awt\image in a
Windows environment.

 // A simple package
 package MyPack;
 class Balance {
 String name;
 double bal;
 Balance(String n, double b) {
 name = n;
 bal = b;
 }
 void show() {
 if(bal<0)
 System.out.print("--> ");
 System.out.println(name + ": $" + bal);
 }
 }
 class AccountBalance {
 public static void main(String args[]) {
 Balance current[] = new Balance[3];
 current[0] = new Balance("K. J. Fielding", 123.23);
 current[1] = new Balance("Will Tell", 157.02);
 current[2] = new Balance("Tom Jackson", -12.33);
 for(int i=0; i<3; i++) current[i].show();
 }
 }

 Call this file AccountBalance.java and put it in

a directory called MyPack.

 Next, compile the file. Make sure that the

resulting .class file is also in the MyPack

directory. Then, try executing the

AccountBalance class, using the following

command line:

 java MyPack.AccountBalance

 Remember, we will need to be in the directory

above MyPack when we execute this

command.

 Since classes within packages must be fully

qualified with their package name or names, it

could become tedious to type in the long dot-

separated package path name for every class

we want to use.

 For this reason, Java includes the import

statement to bring certain classes, or entire

packages, into visibility. Once imported, a

class can be referred to directly, using only its

name.

 In a Java source file, import statements occur

immediately following the package statement

(if it exists) and before any class definitions.

 This is the general form of the import

statement:

 import pkg1[.pkg2].(classname|*);

 Here, pkg1 is the name of a top-level package,

and pkg2 is the name of a subordinate

package inside the outer package separated

by a dot (.).

 We specify either an explicit classname or a

star (*), which indicates that the Java compiler

should import the entire package.

 import java.util.Date;
 import java.io.*;

 All of the standard Java classes included with
Java are stored in a package called java. The
basic language functions are stored in a
package inside of the java package called
java.lang.

 This is equivalent to the following line being at
the top of all of our programs:

 import java.lang.*;

 When a package is imported, only those items
within the package declared as public will be
available to non-subclasses in the importing
code.

 Through the use of the interface keyword,

Java allows us to interface one or more

classes can implement. Using interface, we

can specify a set of methods that can be
implemented by one or more classes.

 Using the keyword interface, we can fully

abstract a class interface from its

implementation.

 Interfaces are syntactically similar to classes,

but they lack instance variables, and their

methods are declared without any body.

 To implement an interface, a class must create the
complete set of methods defined by the interface.

 By providing the interface keyword, Java allows us
to fully utilize the “one interface, multiple methods”
aspect of polymorphism.

 An interface is defined much like a class. This is the
general form of an interface:

 access interface name {
 return-type method-name1(parameter-list);
 return-type method-name2(parameter-list);
 type final-varname1 = value;
 type final-varname2 = value;
 // ...
 return-type method-nameN(parameter-list);
 type final-varnameN = value;
 }

 When no access specifier is included, then
default access results, and the interface is only
available to other members of the package in
which it is declared.

 name is the name of the interface, and can be any
valid identifier.

 Notice that the methods that are declared have no
bodies. They end with a semicolon after the
parameter list. They are, essentially, abstract
methods.

 Here is an example of an interface definition. It
declares a simple interface that contains one
method called callback() that takes a single
integer parameter.

 interface Callback {
 void callback(int param);
 }

 Once an interface has been defined, one or
more classes can implement that interface. To
implement an interface, include the
implements clause in a class definition, and
then create the methods defined by the
interface.

 The general form of a class that includes the
implements clause looks like this:

 class classname [extends superclass]
[implements interface [,interface...]] {

 // class-body
 }

 If a class implements more than one interface, the

interfaces are separated with a comma. If a class

implements two interfaces that declare the same

method, then the same method will be used by

clients of either interface.

 Here is a small example class that implements the

Callback interface.

 class Client implements Callback {

 // Implement Callback's interface

 public void callback(int p) {

 System.out.println("callback called with " + p);

 }

 }

 One interface can inherit another by use of the
keyword extends. The syntax is the same as for
inheriting classes.

 When a class implements an interface that
inherits another interface, it must provide
implementations for all methods defined within
the interface inheritance chain.

 Following is an example:
 // One interface can extend another.

 interface A {

 void meth1();

 void meth2();

 }

 /* B now includes meth1() and meth2() -- it
adds meth3() */

 interface B extends A {
 void meth3();
 }
 // This class must implement all of A and B
 class MyClass implements B {
 public void meth1() {
 System.out.println("Implement meth1().");
 }
 public void meth2() {
 System.out.println("Implement meth2().");
 }

 public void meth3() {

 System.out.println("Implement meth3().");

 }

 }

 class IFExtend {

 public static void main(String arg[]) {

 MyClass ob = new MyClass();

 ob.meth1();

 ob.meth2();

 ob.meth3();

 }

 }

 As an experiment, we might want to try

removing the implementation for meth1() in

MyClass. This will cause a compile-time error.

 Any class that implements an interface must

implement all methods defined by that

interface, including any that are inherited from

other interfaces.

