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e .,.Bn_sﬂ Hm of least squares are simple to understand. Fifthly, Q18
Fourthly, the mec mﬂg_ of most other econometric techniques, In fact, as ye
Sl Eﬁﬂw”m exception of the Full Information Maximum Likelihoog
Mn_“mm_ﬁﬂw_ﬁ_ techniques involve the application of the least squares method,
agm_mmuL_ﬂ_nﬂmmnjaﬂﬂmﬁn_m linear regression model, that is, by a relationship
HEMM, :c.o éaﬁ_mw. one dependent and one wxﬁ_gmnoQ, am_mn.ma ,.a:,p” wz
linear function. Subsequently we will examine the multiple .Hmm_:"mm_c: analysis,
which refers to the relationship between more than two variables..

4.1 THE SIMPLE LINEAR REGRESSION MODEL
An example.

We will illustrate the meaning of the method of least squares by nm.mﬁ.::m 2
our earlier example from the theory of supply. The theory of supply in its
$mplest form postulates thy there exists a positive relationship between the 4
quantity supplied of 4 commodity and itg price, ceteris paribus. When the m:w
Tises the quantity of (he commodity supplied increases and vice versa. _uo:.o.fsm
Em tConometric procedyre cutlined in Chapter 2, our first task is the mnmz:E_.
M_:c%mw?:a Supply modei 1y 15, the determination of the dependent F_Ema.(.u,ﬂ_,.n
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Yi=bo+b,X;

This form implies that there is a
and X: price is the cause of change
way around.

The parameters of the supply function are by and by, and our aim is to
obtain estimates of their numerical values, bg and 5, . R

As regards the sign and size of the constant intercept by, we note that it
should be either zero (in which case its meaning is that the quantity is zero when
price is zero) or positive (in which case its meaning is that some quantity is ‘
supplied even.when the price drops to zero). Normally b, M_EEE not be negative
in the case of a supply function. If mc turns up with a :mmm:ﬁ sign im.w:,c‘ﬁ‘_a
ignore the negative part of the supply function, since a :mmu:.ﬁ quantity gc.am
ot make sense in economics. However, the sign of by is crucial in determining
the price elasticity of su ply, as we will presently see.

xmwﬁ&:m the value om. m: ,we note that in the mm:saﬁ. case of a %ﬁmwﬂﬁ Y
function we expect the sign of b, to be positive (b, > 0), since a supply ¢
normally upward-sloping. . ; fokte of

It is wavw:ma ﬁowxwm_a:m the _.m,_m:o:m:% between Emmmmm_mm%wmw_mﬁa il
Supply and the coefficients bq and b, . Recall that the elasticity
eXpression

One-way causation between the varia bles Y
s in the quantity supplied, but not the other
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Given that by > 0 1t follows that
; i i Zl) if by is negative cwc <0)
the supply will be w_mm:o?u Do s ivy
%W the supply will be inelastic (np < :._:m.o,_m positive (by > 0)
(iii) the supply with have unitary elasticity if & = 0.
Thus the elasticity of a supply curve (with positive slope) depends on the sign of

the constant intercept, bo.
(4) The above form of the supply function implies that the relationship

between quantity and price is exact, that is that all the variation in Y is due
solely to changes in X, and that there are no other factors affecting the
dependent variable. If this were true all the points of price—quantity pairs, il
plotted on a two-dimensional plane, would fall on a straight line. However, if
we gather observations on the quantity actually supplied in the market at
various prices znd we plot them on a diagram we see that they do not fall dna
straight line (or any other smooth curve for that matter). Suppose that we have
the ten pairs of observations on X and ¥ shown in table 4.1. The scatter

# Quantiry
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, { these observations shows that th i :
Jiagram © . at the relationship hey :
quantity w:nm__nm has a form roughly similar to 3 st s,wrw_m“mﬁ,m: price and
The deviations of the observations from the line may be m:n_%“ﬂa%._ g
S ed to

mn&:_._. factars.
(1) Omission of variables from the function

[n economic reality each variable is influcnced by a very large numb
factors. For instance, the consumption pattern of a family is aﬁa::_”_mmﬁm
family incame, prices, the composition by age and sex of the family, the <
levels of the family income, tastes, religion, social and educational z_m:._n &
wealth, and so on. One could compile an almost non-ending list of such fa t
jjowever, not all the factors influencing a certain variable can be included Mno:.
the function for various reasons. (a) Some of the factors may not be known
even to the person maost aquainted with the relationship cm:.& studied. This lack
of knowledge is to a great extent due to incomplete theory about the variation
of economic variables in general. (b) Even when known to be relevant, some
factors cannot be measured statistically. These are mainly psychological
factors, or, in general, qualitative faciors (tastes, expectations, religion) which
cannot even be approximated satisfactorily with dummy variables. (c) Some
factors are random, appearing in an unpredictable wav and time, so that their
influence cannot be taken satisfactorily into account (e.g. epidemics, earth-
quakes, wars). (d) Some factors may have, each individually, a very small
influence on the dependent variable. Thus their parameter is so small that it
cannot be measured in a reliable way (due to rounding errors of the computa-
tions). All these factors together, however, may account for a considerable
part of the variation of the dependent variable. (¢) Even if all factors are known,
the available data most often are not adequate for the measurement of all
factors influencing a relationship. This is particularly so when we use time
series, which are usually short. Thus in most cases only the most important
three or four variables are explicitly included in the function. The lack of

Table 4.1

Number of Y X
observations Quantity EN Frice

1 69 9

2 76 12

3 52 6

4 56 10

5 57 9

6 77 10

7 58 7

8 55 8

9 67 12

10 53 4

72 11

8
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The economic phenomena are much more comp]

1. no matter how many explanatory varip|.. :S
y variables are m_:_c:mzwocm_w anﬁaﬁm:ma by a
O any equations, For example price determines and is deter.
gystem containing n.ﬂ supplied. Under such circumstances if we attempt (g Study
mined by the ewﬁ.,\_m_hm %mmﬁ.ﬁcm:o: model, we are bound to commit ay ﬁ_u:o.w
mﬂ_%m_” wﬂw_ﬂm the waﬁsﬁmmunﬁm&:o: of the form of the model, that ;_._
of the M_Hacnwmm%mwmwwz. We often use aggregate data (aggregate
SM_Uammﬂ aggregate income), in which we maa magnitudes referring (o
individuals whose behaviour is dissimilar. _.: this case we say .z;mﬁ variables
expressing individual RS:EEQ are missing. For S.EEEP in a production
function for an industry we add together the factor inputs and outputs of dis.
similar entrepreneurs. Changes in the distribution of total output among firms
are important in the determination of total output. However, such distributional
variables are often missing from the function. There are other types of agprega-
tion which introduce error in the relationship. For example, aggregation over
lime, spatial aggregation, cross section aggregation, and so on.

(5) Errors of measurement. The deviations of the points from the line may
be due to errors of measurement of the variables, which are inevitable due to
the methods of collecting and processing statistical information.

The first four sources of error render the form of the equation wrong, and
Mmﬂ Mhm.ﬂwzm_w_hwmwoasﬁ as error in the equation or error of omission. The
usual of S_.,a.m to E{mnwowr mﬂdw c\. Smnm:...mswxm. ol o.w.om..wqun:en. :. _w

In order 10 take into acen Mm.._ ;.Em of error simultaneously in the function.
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“and is called error ropy o 5, aafzmc_n which is usually aonowna. by the le ;
?:3; s0 called %S,%S andom disturbance term or stochastic term & the
i Which i assumed (g oo _PPOSEd to ‘disturb” the exact linear relatior
variable in the function ;Hw = jz_%n: Xand Y. By introducing this randorm
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scatter of observations represents the true relationship between ¥ and X. The
line represents the exact part of the relationship and the deviations of the
observations from the line represent the random component of the relationship.
were it not for the errors in the model, we would observe the points on the line
Y;, Y3, ..., Yy, comesponding to X,, X, ..., X,. However, because of the
random disturbances, we observe Y, Y,
These points diverge from the regression line by quantities uy, u,, . . ., u,, where
u; is the random error associated with Y. In other words the values of Y corres-
ponding to a value of X will on the average fall on a line, but each individual ¥;
will deviate from the line depending on the value of ;. Hence each
Y,(i=1,2,..., n) canbe expressed in terms of two components, one component

due to X; and a second component due to the influences included in the random
term u;

v\m = Uc + U—Lﬁ-. + ;
N— —
Variation | _ _|ww2m5m:n 4 Random
in Y, | variation variation
or ,u.,//.,
Variation] _ | Explained i Unexplained
inY; variation variation

The first component in brackets is the part of the varation in ¥ explained by
the changes in X and the second is the part of the variation not explained by
any specific factor, that is to say the variation in Y is dug to the random
influence of i,

Seen in this light the random term u seems to have a meaning related to the
ceteris paribus clause of economic theory. Economic theory assumes that the
functional relationships between variables are exact under the ceteris paribus
clause. For example, the demand function D = bo + b, P postulated by

1. ..., Y, corresponding to Xy, X2, ..., X,
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| commodity is equal (o Xy, 10 . )
assume any value between Y, and Y|, depending on the value of u in this
period. If, for instance, thre is @ strike of lorry drivers, or a power cut, which

delays the delivery of the commodity (these situations being examples of
chance events), the quantity will not be Yy, as the linear equation suggests, but
2 smaller quantity Y. due to the above factors which give a valuc uf to E.n
aﬁa_oa term, If, however, there is a rumour of a fall in prices of substitutes or
of a new product being developed, the supplier may offer all the stock, which

anothe
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, ASSUMPTIONS OF THE LINEAR STOCHASTIC REGRESSION MODEL

The linear regression model is based on certain assumptions, some of whi

er to the distribution of the random variable «, some to Em.ua_m:o”mrf M:

d the explanatory variables, and finally some refer to the Hu__m:csmr.ﬁ s
cen the explanatory variables themselves. We will group ﬂrzm assum _ﬂ
tegories, (a) stochastic assumptions, (b) other assumptions -

4.

ref
(i an
betw
intwo €a

2.1. STOCHASTIC ASSUMPTIONS OF ORDINARY LEAST SQUARES

These are assumptions about the distribution of the values of u. They are
crucial for the estimates of the parameters and will be explained in detail in
subsequent chapters (see Chapters 9—12). [t is these assumptions about the
random term u that adapt the least squares method. which is a statistical
method, to the stochastic nature of economic phenomena. At this stage we
will state these assumptions without attempting to explain their implications

for the parameter estimates.

4,

Assumption 1 u;is a random real variable.

- ,_.rm. ‘.._&:n EEm: u; may assume in any one period depends on chance; it may
| positive, :a.mm:ﬁ or zero. Each value has a certain probability of being
assumed by u in any particular instance.

Assumption 2 The mean value of u in any particular period is zero.

mawﬁww _ﬂ_w”nw that for each value of X, u may assume various values, some
A 20%:& some mn.zw:o_. than zero. but if we considered all the
R e E:F“nm of u, ».o.q any given <m_=.n of X, they would have an average
s M o‘NnHo..i_E this assumption we may say that ¥; =bo + b X;
s the relationship between X and Y on the average, that is, when X

the u's after the estimation of the

1
As we shall see readily, we can get an estimate of
iztions of the observations from

Tegressi i ; z
:mu =M_%.._ line and the computation of the residual dev
1
g SMWM. om___.ﬁzwbon of the u’s measures the way in which the u's of different periods tend
&Rn_.a:w.. he covariance of u’s and X°s measures the way in which the values of u's of
periods tend to vary with the values of X in these periods. (See Appendix L)
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Assumption 3 The variance of &; is constant in each period

The variance of u; about its mean is constant at all vajye fXx
words for all values of X, the w’s will show the same &%Eﬂ.oo ~ In othe
mean. In figure 4.3 this assumption is denoted by the facy ,E.z E:_:_, thej;
u may assume lie within the same limits, irrespective of the ,,H_H e valy
u can assume any value within the range AB; for X,, u can iy ue of x:
within the range CD which is equal to A8 and so'on, HIme drgy

Assumption 4 The variable ; has a normal distribution

The values of « (for each X;) have
7 a bell-shape ical distril
about their zero mean. h I S
The above four assumptions i
I about the behaviour (distribution’) of
of u may be summarised by the expression i -

u~N(Q0,ol)

on

and are pictured in figure 4 4.

E(rYeby+bx

; with any other u; are €qU2 it
ed in one period does not d¢P<"
riod.

S e .

Ly

- simple Linear Regression Model 57

umption 6
urbance term is not correlated with the explanatory variable(s). The
X’s do not tend to vary together; their covariance is zero. Symbolically

cov(Xu) = E{[X; — F(X)] [u; — E(u))]} =0

owever, conceptually easier and computationally more convenient to
ternative assumption which ensures zero covariance of the u's and X's

- u is independent of the explanatory variable(s).
As
The dist

:.m hw_._n.— the

Itis, h

make an al
imption 64 The X;’s are a set of fixed values in the hypothetical process

Assi . , - :
sampling which underlies the linear regression model.

of Rﬁmmﬁnn_
This means that, in taking a large number of samples on Y and X, the X;
values are the same in all samples, but the u; values do differ from sample to
sample, and 50 of course do the values of ¥;. For example, assume that every
Jav in a market we choose the same prices X'y, X5, ..., X,,, and we record the
E_..S::mm Y,'s sold each day at these prices. The X’s do not vary, they are a set
of fixed values; while the Y;’s vary for each day due to different random
influences. Clearly, under these conditions the covariance of the (fixed) X’s and

the s is zero. Because
cov(Xu) = E{[X; — E(X})] [u; — E(uy)]}
= E{[X,; — E(X)]u;} given E(u;) =0
= E(Xju;) — E(X)Ew;)
3 m.ﬁ.x...r...v
= XiE(u;)
=0
[n the remainder of this book we will mostly use Assumption 6A, that the
explanatory variables are fixed.
Assumption 7 The explanatory variable(s) are measured without error.

H u m.vmo&m the influence of omitted variables and possibly errors of measure-
%m:w\ in the ¥7s. That is, we will assume that the regressors are error-free, while
1€ T values may or may not include errors of measurement.

given that the X,’s are fixed

2
422, OTHER ASSUMPTIONS OF ORDINARY LEAST SQUARES

Assumption 8 The explanatory variables are not perfectly linearly correlated.

" If there is more than one explanatory variable in the relationship it is assumed
mr.: they are not perfectly correlated with each other. Indeed the regressors
ould not even be strongly correlated, they should not be highly multicollinear.

A .
Sumption 9 The macrovariables should be correctly aggregated.

- .Cm_.._m:w the variables X and Y are aggregative variables, representing the sum
individual items, For example, in a consumption function C=bo + b,V +u, C
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43 THE DISTRIBUTION OF THE DEPENDENT VARIABLE y
| ? this section we will establish that the dependent variable y j,

distribution with mean

45 2 o
E(Y)=bo + b, X, (41

and variance
o N
va(Y;) = E(Y; — E(Y})] = E(¥) = o} (4.2)
Proof 1. The meanof Y;=E(Y) = b, + b, X;.
By definition the mean of ¥; is its expected value,
Given m\mu_va+~w. b\_.+t~.
Taking expected values we find
E(Y) =, + b X+ u;]
=L(by + b, X)) + Eu;)

o:mﬁﬁ:;ww, wz_ b, are parumeters and by Assumption 6A the values of X;’s are
Umbers {in the process of hypothetical repeated sampling)

Elb, + F.ﬁ.v =b, + v_ ¥

_.5_5:_2".. by EEEESH_ 2

;ﬂnmo.ﬁa. m.mﬂ_.v =0

200! =b, + b, X;
5:55:» =g}

us
D= by + b, X; in the definition of the variance

Froof The var;
g ar ¥
Substity g NM:Mn ol=p [

i =En
| o b Xitu—p —b,X;]* = B(uy)*
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] %Nm b- L] : -
7 Assumption 3, the u;'s are homoscedastic, that is, they have the constant variance g2
by

Brh E(u}) = 6% constant

w_.nn‘anmq
a var(¥y) = E[Y; - E(Y)]? = ol

The distribution of ¥ is normal. .

?é:,muuwn of the distribution of Y is determined by the shape of the distribution of uj,

..:_a, normal by Assumption 4. Clearly b, and b,, being constants, do not affect the
;__:p..z s ion of ¥;. Furthermore the values of the explanalory variable, X, are a set of con-
disibutl y Assumplion 6A and therefore do not affect the shape of the distrib ution of Y.

znt values

THE LEAST SQUARES CRITERION AND THE ‘NORMAL' EQUATIONS

OF OLS
Thus far we have completed the work involved in the first stage of any

_anometric application, namely we have specified the model and stated
mrow itly its assumptions. The next step is the estimation of the mode!, that is,
Mhammav: tation of the numerical values of its parameters.

nd.n linear relationship ¥; = by + b, X; + u; holds for the population of the
values of X and Y, so that we could obtain the numerical values of b, and b,
only if we could have all the conceivably possible values of X, ¥, and u which
form the population of these variahles. Since this is impossible in _uEr,,:nF we get
a sample of observed values of ¥ and X, we specify the distribution of the u’s
and we try to get satisfactory estimates of the Lrue parameters of the relation-
ship. This is done by fitting a regression line through the observations of the
sample, which we consider as an approximation to the true line. The true
relationship between X and Y is

Yi=bo + b, X; +u,

44.

the true regression line is
E(Y;))=bo+ b, X,
the estimated relationship is
A A
uﬁ."@@ +@—N...+Nn.
and the estimated regression line is
A A A
Yi=bo t by X,
where ¥ = estimated value of Y, given a specified value of X
wo =estimate of the true intercept b,

w_ = estimate of the true parameter b,
€ = estimate of the true value of the random term u.

The true and the estimated regression lines are shown in mm.:.n 4.5 Inour
¢Xample of the supply function, in order to compute the numerical values of the
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" U\ \mm:_.:o_n_u regressiogy ling
L]
r| EN) byt by i
frue regression e
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0 Figure 4.5
4 and by we should have all the conceivable vajyeg of
e pase oL ot al conceivable prices, which of course j IMPOssible,
quantities SUPP e 1 sample of observed prices and quantities solq qye,
Consequently We 2d we attempt to obtain the best possible estimate of th
€

some period of ume 4

Iy function. . : y
Eﬂw snag in (his procedure is that from a given sample we may Obtain ap

nfinite number of estimated mmmamm.on lines, by mmﬁm:msm Qmmawamﬂ.: values to
the parameters b and by. I figure 4.6 we have n_..m*s.: two such lines, 44’ and
88" When we assign to the parameters the <m_.=mm bg and b¥ we get ﬁn line
AA4"= b7 + /X while if the parameters are given the values , and b, the
line will be 88" = 5, + b, X' and s0 on. It is clear, however, that the deviatjong
of the actuz! sampie observations from each line are different. For example
point 2 is closer to line A4, while point z' is nearer to line BB’ In other words
if we choose the upper line * = 53 + p* ¥ point z will deviate by e, while if

we take the line BB ‘:\umo 1 m_ X), the same point z will deviate from it by a
greater distance equal to ¢'(¢' > e).

§
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Clearly the %SM_MO_.; omq Eo.cdmﬁ...w:o:m from the lines depend on their
c::m.m:_ :‘:mann?. o)an ”.rm: slope (b1). The choice among all possible lines
is done on the basis of whal is called the jegs, Squares criterion. The rationale of
this criterion Is casy to understand, It is intuitively obvious that the smaller the
Jeviations from the line, the better the fit of the line to the scatter of observa-
ijons. Consequen :w.:oq_ all possible lines we choose the one f
Jeviations of the points is 5.m smallest possible. The legsr squar
requires that Ew regression line be drawn (ie.
2 way as to minimise the sum of the squares o
from it. ) .
The first step is Lo draw the line so that the sum of the simple deviations of
the observations Is Zero - some observations will lie above the line and will
have a positive deviation, some will lie below the line, in which case they will
have a negative deviation, and finally the points lying on the line will have a
sero deviation. In summing these deviations the positive values will offset the
negative values, so that the final algebraic sum of these residuals will equal zero
by definition (Ze = 0). This of course does not mean that the deviations
disappear when we fit the least squares line, but that their algebraic sum is by
construction equal to zero. How then, can one minimise a quantity which is by
definition zero? The best solution is to square the deviations and minimise the
sum of the squares, (Ze?). The reason for calling this method the least squares
method should now be clear: the method seeks the minimisation of the sum of
the squares of the deviations of the actual observations from the line.

Our next task is to express the residual deviations (e's) in terms of the
observed values of ¥ and X in our sample, In figure 4.7 the estimated line is
w.nwa + w_ X. As already mentioned the sign (*) on top of the dependent
variable indicates the estimated (predicted) value of the dependent variable. as
distinguished from the observed value of this variable, which is represented by

es criterion
Its parameters be chosen) in such
f the deviations of the observations
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-
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are numerically known, from the 2:_:5_3

1‘ ﬁ.l; - 1eh ».:_QM" . G e »
| the sim Hﬁu_“;wwr_.n:d: of , :m,._ﬁ_ﬁw.muz_.«_ﬁm“n,_.._wﬂ_ﬁw Mw_m\::c of the
Jine we cdn :I,_:.Z.;.E,.: o b ..w ondi wv_. = oxEm:m_oQ
Jependent VI : for each given &, :wm EH:.M? daing ' lies on the line,
variable . » csumes the value X;. the equation predicts thyy the
hen X as . the (estimated) value ¥;. However, the actually

. ale W

For example ¥ » will assume i

dependent _.:_.:“._r.,, dependent variable which corresponds to X, is Y. and
~Jue of IR ! - s .

observed ..:_. _,., predicts. In other words, the actual observations of y may

not ¥, a5 the _,_,.”:E:d fine. It is m%.,_,:..,_: that the equation does noy Predicy

pot lie an the es! endent variable with perfect accuracy. We haye denoteg by

¢ values of the dep 8 Y; and its esti v
muz:, gifference between the observed value I; imated value Y;, that i
€ L

Snumlm.v

N e
Substituting ¥; we fin .
o= Yi-Bo =i X,

Squaring these deviations and taking their sum we obtain

o=

m..m%nh.umn Cﬁ.|wo Jw_\ﬂ.vu

t4=

At

i HA
The sum of squared residual deviations is to be minimised with respect to 5,
and ;. Following the minimisation procedure we get the normal equations

4.3)

IY=nby + B, 2X
(4.4)

TXY=B,LX+5,ZX?

Formal derivation of the rormal equations
We have to minimise the function
A FaY .
A Mm_.uuMﬁu.lwe lv_\ﬁ.vu
with respegt 1 3
&a_m:hn ,h 0 by and b, The necessary condition for 2 minimum is that the first
s o the functipn pe equal to zero

3Le? aXe?
. ={ -
nmu and .lw.u_&.q 0

70 abtain ghe above degiyq
a ; vat ‘ . . jation.
According (g gy e if nﬂm._swzmum@ .M_J function of a function’ rule of differentiation
= Aﬂv ¢

then
Y_dy dw
In gnﬁso:ﬁmg d dw- gy
¥e functiy
P nwelet (y. a
Tig/ dertvafye with — S\w % M.. ~b, \Su = W. Thus we have:
[}
Y

2E(y._A A
% b~bX). 1=¢
4 5)

The Simple Linear Regression Model
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: frativ Ty 5
Partial derivative with respect g0 b,

wmw._«u ) @uﬁw;fm&vfﬂ 0
22y, -3, -3, XV exy =i
Maﬂkmi\wok.iw_ X7 <0
Combining equations (4.5) and (4.,6) ang performing the Summations we get e
LV-Z8, -3bx, -y
VX, - Zh,x; - 2B =0

Applying the usual summation rules (see Appendix I) we obtain the ‘nomal’ equations

of OLS
Mu\h. nwca +®_ M.n._.
IYX, u\woM.S;\m_ 7

- )
Solving the normal equations for 4 and , we obtain the least squares

k 1
estimates 3 = TX*IY-TXIXY
T arxT-(zxy? i)
nXXY-IXzY
- (4.8)

-~
b = Tx? ~{ZX)*

It is clear that ma and w_ can be estimated by substituting the termsn, £X, &
TXYand £X 2, whose values can be obtainéd from the sample observations.
The above formulae are expressed in terms of the original sample observations
on X'and Y. It can be shown that the estimates 5, and B, may be obtained by
the following formulae which are expressed in deviations of the variables from

=Y-5, X (4.9)

Zx}

their means:
(4.10)

Bo
B,

Proof
(1) In Chapter 3 we established that Zx;y;=(nZXY - ZXZY)/n. (Thisis the
EXpression 3.5 an p.37)
(2) Similarly we have proved (expression 3.6 of Chapter 3) that
_nZX*-(Zx

Zx} = .

aMHw‘..M_,»‘M%

-z

3) m:au:.n:::w in the expression for m_ we find
, (nZXY-ZXZY)n_

A _Zxpy; _
b =Tt T wEXT-(CXn nT

btained by theu
ts which is conce

_ se of various ..:S__oww
I The solution of a system of equations may ca ] ® lly the psdine
oﬂ. M_szn.:_! I1 we explain the method of determinan
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= S W on o 1 )
¢ | m U ~l M (=3 1{.‘. m.. .,,\rg o ...\n m w| o Lividing the (irst normal equation theoagh by nowe sbitanm
~ e — v S - wy . o T - A
el Eod g = Lo S n o LY b R
. — _ _.)14 " # i
e o \
ﬂ..D! o Wi ] o
+ BTﬁﬁMﬁmﬁ_BEU.\. o
& BRNESSEgpnes Bl |
(v n R mn e w m...“ .\.L....“\._ it
Ll
——— A rr_,
N -
> I P
wm m_M =T~ N mm we subatitute the computed viloes from table 4,2 into the fonmulse _:L:. and b,
m . - I T (1) Ustrig the oriina! varple oliservatfons
Vore g ¥
= g | == o g LLATEY (LX)EXY) (1,020)(T56) (10K (6,960) 19440 o,
8 T ——— 0 HLXY (LX) CE2)00,020) (18" 576
m o S e o, o P :th Xxvy (12)(6,960)  (T56)(10k) I H72 . 3.28
2 = nE T eI ogvng e« u_w YTt Lyt (20,0205 (10K 576
d oA
.m ———— il (2) Using the deviations af the variables from thelr means
= = Ly 156
= g i R T
= \ [~ i . = .
= { +,+0HJ._H:_JM..._..P1 Y oEx? 48
@ g 5 S
z| 72 e b= ¥ B, X =63-(325(9)= 3375
= = — Thus the estimated supply function js
c Fal
2 _ ¥i=33.75+ 325X,
a | I |2 m =~ v dwv oo oo - ,w
g 7ITT R .
- | ok b N N N N
o T L]
< = o ﬁ\u - PR — ) g
2 o) 4.5 ESTIMATION OF A FUNCTION WHOSE INTERCEPT 1S ZERO
- RS P X | === Y B
3 2 In some cases economic theary postulates relationships which have a zero
- - ' . b ‘
§| = |SeSD82RES3xER DN constant intercept, that is, they pass through the origin of the XV plane.
£ ’ CaMR g nY RN e For exarple linear production functions of manufactured products should
.m B - . normally have zero intercept, since output is zero when the factor inputs are
= m zero. In this event we should estimate the function
i " o~ e =
- = M“%w oummﬂ“u.ﬁ.ﬁ N @ ._v.n,_ Y=botbh Xtu
- - - = = ! = bl
— —e i p Y A . P
m - w0 impasing the restriction by = 0. The formula for the estimation of &, then
g S ey becomes
o A it
o 3]
- A which involves the actual values of the variables, and not their deviations, as in
e o “ the case of unrestricted value of bo.
.'.“ n i " " . ' .
~ER .S ! & it the li = . : = 0, This is
- m S |3e i ool ol o a3 | o .ﬁ..«-wc._m.,_»._n EuE.S._.:.:.F line ¥ = b, + .o._ N_ +u, subject to the restriction b, si
&= Wu. stricted minimisation problem: we minimisc
—T | et = E(Y b, — B, X)*
= AT G o - - e ™ |__..
=
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68 ained from a sample of
) have been ghtaine ; ple of 11 o ,
4. The ?:_mzh_ﬂm ﬂw_“_ﬁ_hm firm and the corresponding prices (X). mn:;_cc:m
ol s e
BAHES 7=s1o18 ¥=21782
v.kwu w._mh.m& TX;Y; = 1,296,836 Mu\..u = mwo,m_w

ession line of sales on price and interpret the regy]y

o rerimate the 185 A T .
Estima { the variation in sales which is not explained by the

{ii) What is the part 0
, 9

egression line: A
_ m::_ Tgtimate the price elasticit . |
5 The following (able gives the quantities of commodity z wo:mr_ .

year from 19611970 and the corresponding prices.

y of sales.

—
——

—_— 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

Year

——

Quantity
Qutlv g s 730 795 800 805 810 820 840 g5

Price

fin ) 16 15 1S 12 10 10 7 9 ¢

(1) Estimate the linear demand function for commodity z.
(u) Calculate the price elasticity of demand.

m ) mEﬂEﬁ the demand at the mean price of the sample.
(iv) Forecast the demand at P = 20.

Note. Additional exercises are included in Appendix III.

5 Statistical Tests of Significance
[east Squares Estimates: of the
First-Order Tests

In Chapter 4 we developed the formulae for the estimation of the parameters of
economic relationships by using the method of least squares. The next stage is |
10 establish criteria for judging the ‘goodness’ of the parameter estimates ﬂ_u
divide the available criteria into three groups: theoretical a prior criteria,
statistical criteria and econometric criteria. The theoretical criteria are mm.ﬁ by
cconomic theory and refer to the sign and size of the coefficients. They are
defined in the first stage of econometric research, that is in the stage of the
specification of the model (see Chapter 2). In this chapter we shall develop the
statistical criteria ot first-order tests for the evaluation of the parameter
estimates. The econometric criteria or second-order tests will be examined in
subsequent chapters.

The two most commonly used tests in econometrics are the following:

The first is the square of the correlation coefficient, r* . which is used for
judging the explanatory power of the linear regression of ¥ on X. We will
prove that r* is a measure of the goodness of fit of the regression line to the
observed sample values of ¥ and X.

The second test is based on the standard errors of the parameter estimates
and is applied for judging the statistical reliability of the estimates af the
regression coefficients Bo and B,. It provides a measure of the degree of
confidence that we may attribute to the estimates Bo and B, . It enables the
researcher to decide how .\mGoa. estimates of the true parameters of the
(population) relationship 5, and B, are.1n Chapter 8 we shall develop an
alternative statistical technique for judging the significance of the OLS results,
the Analysis of Variance technique.

5.1. THE TEST OF THE GOODNESS OF FIT WITHr*

5.1.1. DEFINITION OF »?

After the estimation of the parameters
Squares regression line, we need to know how ‘g
sample observations of Y and X, that is (o say we need to measure the
dispersion of observations around the regression line. This knowledge s
tssential, because the closer the observations to the line, the vﬁ.ﬁ_ the .
8o0dness of fit, that is the better is the explanation of the variations of YDy
e changes in the explanatory variables.

We will prove that a measure of the goodness
cOtrelation coefficient, >, which shows the perce

69

nd the determination of the least
ood’ is the fit of this line to the

of fit is the square of :F.. -
ntage of the total variation of

e —
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i we &ye perpendiculans through the pomnts of these m, Sﬂnu_.

Fagmze 5.1

Bofrmgeime ¥=%, 8, Y we 1y 10 obtain the explanation of the
etnns of e dependent varable Y produced by the changes of the
SPang ., viravie X Howewsr the fact that the observations deviate from

e cmmgned ine fow Bar the regreviion hine explains only a part of the totd
weaEon f Be tepmadest arable. A part of the varation defined as
&=*Y - ¥ wmars Sripiammed

‘1) We may comore the total variation of the dependent variable by
LT S i of ¥ 10 the mean value Y and addmg all the ressitng

A ’.Yunhxﬁngo«?isﬂﬁﬁnﬂgﬂ!%‘

Mol nnstion m ¥) = £,7 = £, - ¥ 60
Neone N - i i
"”n wder 1o find the total variation of the *Ju‘ﬂ%ﬁ&i
Womd ity . 18I0 the sum of the simple deviations of amy vansbE

3 —_— Ll
HN-T)=3y-0
ia : i
“ Weak of © st
gt 8¢ varante TR Y me st define the basis of IETENE " o ned by
¢ .Mﬂzuuawrip.,vﬁs,_&amnﬂﬂnh_u mpae amy other value that u..u_.ﬂnwnn..mou vl
g-: .u:o..._.n!n”_ﬁu:nnaw:rnnﬂlh May take the origin (Y = 0) of ; and coBP® “
Santhe 10 take p, B8, e1c) However, it is customary yariaiios
M of the gpy, :.ﬂ-un_.om«ﬂnlnnﬂ._.lninn_ininvn.o-t

n?l.!n.i the Yy from the i son

(7) In the same way we define, .w..\.‘\un.-g\:.« A the epsrwed [t u the

“ ed from the hne) values. Vs {1om the mesn vibae 5 = ¥, - This s
nﬁ-ﬂﬁﬂnl the tutal vaniatum A Y, whah n explamed by the g ime
e P37 7 o of the ¥j sares o thew dengvms n the v eephaned by the
‘ :n yariatiom A the dependent varigie

= ¥ A
[Explained Variation| = m.\.u = Uy, - 4 (5.2)
We have already defined the reudual e, s the diflerencs e = ¥ - ¥,
..u_. rt of the variation of the dependent varable whach 8 8or s1gimned
e 0 1o the exmtence of the dustwbance
oy

= .—IF - the s ‘\ﬁ the EEW& rential g the 1t \._..‘tn.i.i
aacﬁ! of the uhﬂnw\unw; vawable Y womnd s mean
varan

s amd 1 attnhe -ﬂ\
the regreyson ine a d n attnibuted

- -
[Unexplained Varmation| u."Mﬁ.u nmaxlmwu (53)

In summary -
uu%_lmugdioaclgaﬂxm—oaﬁnﬁﬂgi
Muﬂnlﬁ = deviation of ¥, from its mean i
m”nmtﬂ = deviation of the regremed value ¥, from the mean

n%_rnﬂninlstngg ) _
Y=y,+Y and Y=y +Y
Substituting in the exprewsions of the residuals we find
n.n-\_.vﬂ‘l—‘u_#a\w

&=Yi~ Vs
and Y= yite;

(5.4)

(5.5)

This equation shows that each deviation of the i%i%?aﬂ.ﬁ
mean consists of two components: nxmawcu‘%wwﬁniﬂﬂi
line variation and the wecond is the unexplained vanation. This relationship
shown in figure 5.1,

Substituting 5.5 into 5.1 we obtamn

w...&wn wh%.;ewu
=S+ Ze +~.Mw.n-

But m“.ﬂhu. =0.
This can be proved as follows

(a) We know that y; = ﬂ.. - ¥. But W. .num- - m.h‘.'ln;ﬂmn w.- ...h.ﬁ.u‘nh..lh

w.nnsnm_.lm.;_x..me;.Smm.Fib- oXis Where
u‘ﬂﬂg"g.i-hﬂ.."&ml ,u.‘__ll_ - - ,

Eﬂqa M‘m&- "Em-ﬂmv$|“-hwulb-m*n‘- h.— MH”-




ﬁdca.q_.mmh:.tz £ACCEY. TRECONINAC Linegr z@mﬁﬁom .
m.....O.J;:
0gy)

= M.%-..f._._\ M\.R”

1h - -
w”ﬁn.?qa we may write 50

oyiei =%, HMRC__}. = Mkwv =0

Therefore X
yi= Zi + Ze}
_ (3.5)
i Total | _ _mxﬁ._mm.:ma + ﬂ:axﬁmw:ma
Variation | [ Vaniation (residual) Variation

The explained variation n%amw&wmmnmaﬂ:mmao:o,m:m:m:os w
2192
M.vmwmw u.w_x. Substituting we find
2 %
P B0 3, Tx?

Mu\n Mw_ 1 M..Yu

Given that B, = Txy/Zx?, we get

3 _CExy) Ex) . (Exp)’
oyt (Zx?)? Iyt (ExPNZy?)

Comparing this result with the formula of the correlation coefficient
developed in Chapter 3 we see that

(5.0

since

Thus ' determines the proportion of the variation in Y which is explained
by varlationsin X. For this reason /2 is sometimes called the coefficient of
determination. Fot example, if ry.x = 090, this means that the regression line
wﬂw wwm_womﬁ % the observed %:P since Lhis line explains 90 per cent of the
of the tota) ,,MM. ?m w(.m_.cmw around their mean. The remaining 10 per _nma
e ;M m; in x_m unaccounted for by the regression line and is
factors included in the disturbance variable wu.
.12, UMiming VALUES O

T eant THE COEFFICIENT OF UMHRZZ—Z>.—._OZ_ r
_ can be Proved that the

lying between 2810 ang g, n%m:,_.nai y e e e -

C,that is to say
Proof we h N N

4VE proveq Mw_w =Ly Yo e
.H. e? D?._Ggm ;:.D:m: by Mu\u we get
1= !Ml‘f_lw Mmu 4
AT o =g 2
Ty B e
v
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fore P2
ther® Zy?

4t Ter/Ty? is the propertion of th : ;

-]l that Zet /Ty ) '1on of the unexplained i ;
._u.nBrMus . 1f all the observations lie on the re P variation of the ¥'s around
ﬁ.—._n:.

s i gression line, there will be 2
G in other words the total variation of ¥ is chy. tiseiyrigled
Huo__.— !

explained complete i
ession 1inc, and ooinwcms:w there will be no unexplained %E,.E_,Mwwﬁwwﬂ ”.,..,m:_:&on
Hnmwnﬁu\n - 0and hence r* = 1, Ou the other hand, if the regression line explains only
[ of the variation in ¥, there will _u.n some unexplained variation, (Ze? Xy? > ).
%u_.”.nqw?qn #* will be smaller than 1. Finally if the regression line does not explain any

s . 2 = =}
part of the variation of ¥, Ze?/Zy? = 1, because Zy* = Fo¥ Thereore in this case

= 0.
5 1.3. RELATIONSHIP BETWEEN r* AND THE SLOPE 5,

The relationship between the square of the correlation coefficient, 72, and
the slope of the regression line is given by the formula

ﬁunw_wﬂ.w

>y (5.8)
Proof. We found that

= _EoP
(Zx*)(Zy?)

Rearranging slightly we obtain

_ @) (Zxy)
(Zx*) (Zy*)

But Zxy/Zx* n\_w,,. Hence r? =B, . (Zxy/T)?).

.-..._.

In summary, ¥* may be computed in various ways

Hp - n MHN _u.
(Zx*)(Zy?)
Ze? s Xxy oy X"
SN e 1=h,.== or r=bt.;
Tyt 00 T T gy L gy

~ Example. The coefficient of determination of the supply function estimated
in Chapter 4 is found as follows.

¥,=13375+325 X,

Zey= 38398
M.\E._. = mo&
Thug
me
ryx=1"53
Mw:

1

0-570
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| exfablish (¢ following wesulis
CAIAREN

»,rﬁL D (5.9)
| L
PO B = BB~ Bal” = O oy (5.10)
) T
1) Mean of &y - )
| \ E(B) = by. i
(4) Varianee of by
\ < X l
.,._;v_uuiw_..?_un Ou 3,2 (5.12)
. -y
(5) Estimate of the variance of
v,2
A - &0
TheK (5.13)

where & = total number of parameters estimated from the regression.

5.2.2. THE MEAN OF ,

gagwﬂn_ﬁmmwﬁs_a draw repeated samples of size n f rom :..w} population of Y

Known a5 Eﬁshmmmm_“é_n we estimate the parameters b, and &, . This is

a2 (aken, ther, {he cal repeated sampling procedure. If all the possible \mmanhmm
emeanvalue of b will be jts expected value: (mean b;) =

m@; Tofindy
: he va F R :
Of Yand X we yogi hﬂoﬂoﬁm mean in terms of the observations of our sample

We Established thyy
2, Zx;y:
b, = llu|.<
-
m._gz_ﬁsm Yi=(¥,- ¥)we obtaj x
n
A F
by =2X _ Zx(Y ~ P Y
But Ixt z 1 ) = Mw,bﬂ - 5
) S%?z_ : = .
e, 0n the gy of the h .

t deviatione " g
'ations of a variable from its mean is

e, Ty -
12 =, Therefore
34t Appen D wdXE
, x| AL fectad 1.5 (RS
s wmw Y, (5.14)
i

Sivt

paption oA ol e e o ot loast sapniaren, the vibies of X are aosel of
vl whin e do ot climnge fron swinple tommple Consequently the

wl Vi H

e Vol b vontant broan smmple formple, o 18 we denote this

fly Asn

I \ o".. W

[ N ,
.____“.., by k Ve witte the extiimate by i the tonm
il

iy =X\ Y,
Bstning e valoe of Y= by 00 X and renrranging the factons in the
{ exprosslon we il

N

N.- - w”b_ﬂﬁ__- t \_. _fﬁ_ ] :hv

(LR
(eanttan

l?: u._.*_ t 5-_ ua.»._.—_-. | M._.\::-

{ A, = Oand 3 19 (LA B

Ih
LA { ‘ LSPE T
Moot i u..:, _ M -X)Y 0 ol
D xp Y4
froof 2 - \ v Yyvi_PYy
o oy =Xl 2X X IX[-S2,
e L % X} Tx}
given ¥} = Tx} — X LX; (see Chapter 3, expression 3.6).
Therefore Tx 1)

Bi=b, +Shiuy=by + ——
Zx;

Taking expected values, and noting that by Assumption 6A the Xj’s are fixed,

we obtain

M“R__.t_ﬂ M.ﬂ..‘m.ﬁtn.v
=FE(b,) +
x? 1) Tx?

E(by)=E(b,)+E

Since by, the true population parameter is constant, £(b,) = b, . Furthermore by
Assumption 2 the mean value of u is zero (E(u;) = 0), so that the second term in
the right-hand side vanishes and we have

Mean of &, = E(b,) = b,.

The mean of the ordinary least squares estimate m. is equal to the ::.n value
of the population parameter b, . This result has been established by making use

of Assumption 2 and Assumption 6A.

5.2.3. THE VARIANCE OF b,
It can be proved that
|

var(B,) = £(B, —EB ) = (b, —bi)? = 0] B
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[t can be proved that

E(bo) = bo

Proaf. We have established in Chapter 4 (expression 4,9) that
3,-7-b.%
mﬁgﬁnuﬂgm‘y = M_r._, ﬁ. we obtain

mnuﬂlwwkmwm_ H Mw\

Taking ¥; 252 commeon factor we may write

- XZk;Y;

n

A

by = wl Xk; |Y;

(5.19)
Taking expepieq values

_m.nwov =3 Wl
n
1ant from sample 1o sample,
on 4,1) we established that

_ Xk; [ECY)
uﬁm tatn, § 304 kj are ¢ong _
ULin Chaper 4 (express;

Therefope E(Y)) = by + b, X;

EBy=y|1 -
° M:Ik.rmnlh_wa....uﬂ*b
AL )

by s 2K, X
ﬂ&c,v&Hle.M.l,

uaristica! Tests of Significance of the OLS Estimgges

- 0 and Zk; X; = 1 (see page 75). Therefore
sin R
E(b,) = b,
A
525 THE VARIANCE OF b,
S
It can be proved that
b3 = . oy 2
var(hy) = E[bo — E(bo))* = E[b, ~bo)? = o2

Proof. we established in 5.15 that

TXx?
nZx?

B, =3| L

= —Xk; |v;
n

I
Therefore

var(B,) = var| T WIWF.V ¥

i =
=z == Xk [ var(Yy)

But var(Y;) = of, (see Chapter 4 (expression 4.2)).

Therefore
2 2Xk, _
varBy) = ok B2 - 25, pae
n n
1 ;
Since Zk; = 0 and Tk} = T3 - We obtain
AL 1. x| MHH‘ +nX?
vax(bo) = ai n' x| % nZxf
Now Zx} = Z(X; — X)* = ZX? —nX? Therefore
ZX?
,..E.Awau = ay, 3Mhn

Another convenient expression for the variance of b, is

A1 X2

S AT R
“\n M.xm
3.2.6. THE VARIANCE OF THE RANDOM VARIABLE «

The formulae of the variance of bo and B, involve the variance of the .
Tandom term u, ow. However, the true variance of u; cannot be computed since

the va) in an unbiased estimate of
o ues of u; are not observable. But we may obtain a
u Irom the expression

f_.NHAm.-V =¥

S 2
A2 _ th—‘
Yu™ =2
Wi _ ES A A
rﬁmmmlﬁlfmuﬁlwo\?km hich we obtain
. we
Mf__aom. We use the device of repeated (hypothetical) sampling, through whic

. i A d find the
Possible samples uf size 72, compute a regression line for o Eﬂﬂmrﬂr (e;=Yi- %)

Values of the residuals ¢; from each regression. The variance of m—_mqqoa il i

's defined as the expected value of the squared differences of ;s It

var(e) = Ele; — E(e))? = E@]
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Convequently the expected valune of the sum of squares of the tosiduals becomes by

subatitntton:

3#"., e » _._:... + u_... .4:... ={n u..:....

from which we get

= AL
A o

20 we may write
BB - ol
the true variance of u,

Defining a_.._ - Xe'lin
N (s an unblased estimate of

,m‘?:n N..\-::

"7 THE SAMPLING DISTRIBUTION OF THE | FAST SQUARES FSTIMATES

est We hve found expressions for the mean and varance of the least squares
Smates. Given that by Assumption 4 the random vartable i is nonmally
“an be proved that the distribution of the estimates hgand n. 15

distributed ¢
Al i o " | |
150 normal (see R L. Anderson and T. A. Bancroft, Statistical Theory in

Research, New York; McGraw-Hill, 1952, pp. 63 4).
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™o e aomen 3y and 8 are obtamed from a sample of

~hng errors are inevitable in all estimates,
sicanee in order to measure the size of the
comee o0 contidence in the validity of the estimates.

x cer s s curpos?, In the present section we will

o = e oswreiy e standard error test which is popular in

: Thus 5 hetps usTo decide whether the estimates
== 7rom zero, i.e. whether the sample from

: . ==l = ght have come from a population whose true
T T & = w=l=zxk =0)2 Formally we test the null hypothesis

MNINT A3

M.NH,HU..HG

- h.._.m””&h.wmo

S . 7 = 2uthined as follows. From the formulae MH,
© 77 Fenised inthe preceding section, we compy

. ol . ) jyalent
= - : "= "rat the standard error test is ?%&E.EE&
which1s
u.m_.:b.

“#y%zr % we deal with Lhe F statistic, Wi g
% 47 sty of significance, ie. tests of the

for the

T

' Fpreralined 1o allow for any a priort value

al Tests of Significance of the OLS FEstimgres

Sransie 81

rd errofr
Ly standa
theif 3

s(b) =vVvar(B)) =

lm.b uz;.u;mo,_

( compare the standard deviations with the numerical values of mo i
~rror 1s smaller than half the et ; P

—ﬁ.:—n. .w_.w:r‘_r:h_ nd._mr —...m.r.._f tau = aﬂ ,_.._ﬁ n.u” numeric .u_, value of the parameter
 Thmate (that s 1t s(P) < (802 L We cong ude that this estimare is statistically
...,..;_.r,::. This means that we reject the aull hypothesis (we EiEiERs )
_%r sthesis that the true m..on:_.:_c: parameter F =0), which is equivalent to

. H,,,2:; that the true population parameter b, is different from zero. If. on
accepitis . - - i ; =2
he other hand. the u:_auﬁ RER of the F..:.;...:EE estimate is greater than

halt its numerical value (thatisif s(&;) > (5,/2). we conclude that the least
quares estimate is not statistically significant. This means that we accept the
s s
aull hypothesis that the true parameter by = 0. In arriving at the conclusion
rezarding the significance or nonsignificance of & we have been using a two-tail
test at the 5 per cent level of significance (see Appendix 1).

We neN

Economic interpretation o f the srandard-<error rest’

The E?.mu.,ﬁm s:E:ma above provides a rule of thumb for deciding whether
the estimates by and’'p, are statistically reliable. The acceptance or rejection of the
null hypothesis has a definite economic meaning. Namely the acceptance of
the null hypothesis &y, = 0 implies that the explanatory variable to which this
estimate relares does not in fact influence the dependent variable ¥ and should
not be included in the function, since the conducted test provided evidence that
changes in X' leave Y unaffected. In other words acceptance of H, implies that
the relationship between Y and X is in fact Y= by +(0)0(X) = by. i.2. there is no
relationship between ¥ and X!

Geometric interpretation of the ‘standard-error test’

We said that b is the intercept of the regression line on the Y-axis, and by
measures the slope of the regression line.

(1) If, when conducting the above test, we find that s(Bo) > Bo/2 and
accept the null hypothesis b, = 0, then the regression line passes through the
origin of the axes (figure 5.3), since the relationship between ¥ and X'is
actually

Y;=0+5,X;=b,4;

(2) Similarly, if from the test we find s(5,)>B,/2. we would accept the
null hypothesis that b; = 0. This would imply that the relationship between ¥

1 > <
Note that in this section we assumed a two-tail test of significance. conducted at the 3

me”mi level of significance; that is, we allowed our conclusion to be wrong five times out
¢ hundreqd, See Appendix I, p. 563.
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different from zero at the § per cent level of
o significance).

S

staal sgnificance of the estimates with one of the
 The estimates are significantly different trom

'O SSUTINS are Statictiion s o e ..

e *an statistically significant: or (3) we reject the

*¢ slatements must be accompanied by the
7 the decision is made (see section 5.2.9. and
b g EASTSQUARES FSTIMATES
Al = < on e M”.w. u. ¥ :
o s e NomalDisbuon or Gauss St
' 15 applicable only if (a) the population

 cinal To0S of Significance of the OLS Estimates
sarisi .
« knowi, or () the population variance is unknown
« with which we work is sufficiently large (n > 30)
the U2 pfitled we apply the student’s ¢ test, which is exp

«and provided {hay
If these conditions
Xplained in the nex

Ui TULR

In econometric applications the population variance of ¥ is the variance of

3 which is unknown. However, it we have a large sample (n>30)w

i, ......:: use the Standard Novmal Distribution and perform the N._n:: % i
o .,:x,__:._:._: since the sample estimate of the variance 57 is 3 ﬁ.:,z.mn_cQ
;._.__;__:..._:.,: to the unknown population variance, 0*, for large » (see

Appendin . ) .
ihe Z test may be outlined as follows. We want to test the null hypothesis

Ho : 5;=0
¢ the alternative hypothesis
Hy: b #0
We have established that under certain assumptions regarding the values

of u (namely & ~ N0, al)) the least squares estimates by and b, have the
following normal distributions

(aprt

agains

A /
b@ ~N ?Q.QA-Muw =

A -l
by ~N &_,Qﬁm.gl ay s

The normal distributions above can be standardised, that is they can be
transtormed into the units of the standard normal variable Z, which has zero
mean and unit variance, Z ~ V(0. 1). through the transformation formula

m_.nkﬂmumeipz

where X, = the value of the variable which we want to normalise (transform
into standard Z units)
# = the mean of the distribution of the variable
0 = the standard deviation of the variable. /

= <
" In the case of the distribution of the least squares estimates bo and by, the
0w transformation formula assumes the form:

anoluo ~N(@,1)  for Bo
0%,

an_ —b, ~N(0. 1) for B,
9%,

hy With the above transformation formulae we may conduct tests w_ m&. -
Pothesis concerning the true value of the population parameter b. SUppo
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- that the true parameter b, g el
& oothesis tha 1 is equal
wanl 10 test ﬂﬂw w”ma_w ma wish to test the null hypothesis 2
we * Forl
i W Ho: by = b
. thesis
native hyp@
against the alter’ i il b
: ve formula, and given the estj

ute by =57 10 et Z* value mate b, ang it

We substitu(€ 21771 mpute the

error G, » %
standard ® Nulw_ -p¥
Ob, )

g e value’ or ‘observed value’ of 7 *

Given ﬁww“ﬁmﬁﬁ_aﬂm% Nm“wn_sa distribution table on E.m% Mm _.J_HQEQ
wﬁ&wﬂw%_q“:n:,nm the estimate m, if our basic hypothesis (b, = bY)is true,
3 ﬁ%ﬂw%m level of significance’ for deciding whether to accept or reject gy
hypothesis. 1t is customary 'n econometric research to n:oﬁ.uwm the 5 Per cent or
the | per cent level of significance. This means ::wﬁ n Bﬂ.mc:m our decision we
allow .:c_maa:.;.m rimes out of a hundred to be ‘wrong’, that is, to reject the
hypothesis when it 1§ actually true.

In applied conometric work it has become customary to perform a two-tail
tes” That is we choose as our critical region (C.R.) both tails of the Standard
Normal distribution. and in particular that part of each tail which corresponds
o half the probability of the chosen level of significance. For example, if we
choose the § per cent level of significance, each tail will include the arca
(probability) 0.023 (figure 5.5). From the Standard Normal distribution table
(01 p. 3%) we find the critical values of Z, which correspond to the probability
0023 atesch end of the curve (Z, = ~1.96 and Z, = 1.96). Our final step is 10
“ompare the empinical (observed) Z* with the above critical values of Z..

Hihe empurical Z* fals in the critical region, (that is if Z* > 1:96 of

m.-i.. . .

.....ma_. %r_..ﬁ H_m_as our hypothesis that the true value of b is b*, becausé

< prodanihty of ohserwi = : s e)l1s

wy ¢ _maumﬂoﬂﬁzsj_maza empirical Z* (if our hypothesis were :mev_u_a

that such 7% o111 0-025). Or, to put it in another way, it is impro

the contrary M.%:a 5 observed,, if our basic hypothesis, Ho, were true. ._ e
~o e sample value of Z* falls outside the chosen critical region

Lewe] af

- 0t

Sinificance is he

o eiecting the ?...?wwﬂwcw_w of making the ‘wrong’ n_mnw_.oa_”_r “”_ﬂ _ommsn
ml “okilce Appendiy _wz NATAE ALY E e IS
sen o.,ﬂ__nmwﬁc..w Plies no  priori knowledge regarding the sigh Mﬁm:a
B Tity o?nc_.._w-m:%m.ﬁo@ stmxoﬁ a one-tail test éocE e mﬂoﬁ
- Witha pripy; expe ic applications, since economic theory

Ctalions regarding the sign of the coefficients of

ical Tests of Significance of the OLS Estimatey
sralt 85

If the observed value Z* falls in the shaded area we reject the null hypothesis
sis H, .

[Figure 5.5. A two-tail test at the S per cent level of significance,

s ~1.96 < 7% < 1-96) we %n%ﬁ our basic hypothesis, Hy(b, = b7), because the
robability of observing mf* (if the hypothesis is true) is large.

£ For example, suppose¢ 8 =2948, O,y = 36-0 and we want (0 test the

hypothesis £ : b1 = 25:0. From the Z transformation formula we get

b, ~by_29-48-250
,) 360

Since Z* does not fall in the critical region (£* < 1-96) we accept our
hypothesis that b = 25-0, because the probability of observing such a value of
Z*is large (larger than 0-05).

In applied econometrics it has become customary to test the hypothesis
that the true population parameter is zero. That is, the typical form of the null
hypothesis in econometrics is

Z¥=

=0-12

Hy: b;=0
and is tested against the alternative hypothesis
Hy b #0

The meaning and implications of this hypothesis have been examined in the
preceding section. We may summarise the discussion as follows. If we reject the
null hypothesis, we say that the empirical coefficient b is statistically significant,
mﬂ..: is significantly different from zero. I we accept the null hypothesis, :_E.-
by is not significant and there is probably no linear relation between X and Yin
the population.

To carry out the test of the above null hypothesis we set & =0 in the Z
transformation formula

N* ”.@.1&“.@1@“]@1

Tih) ORI O]
. ~ 2 m
H:E in the case of the test for the null hypothesis Ho : by =0 the procedure 0

: ; the
'€ Z test reduces to the simple step of dividing the S:EM.:Q_ é:_ﬂ“_w:.w_m 7%
Pérameter (p, ) by its standard deviation and then comparing the FEstE
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Correlan® SEE mawz.:...:z ;?s; n_.a:::.i Tests of Significance of the gy 5 Estimates
es of Z,which define the o0 - , o 87
sretical :,.W.:_.:“.,M..M_“_,% obtained from the w_h:r_“__h_nm_ "gion In econometric %Eﬁﬁ_::m the true variances of the estimate,
cnical values rd ?253 o unknown. _..n.n..:mm they mvolve the 170 Variance of the g 4 .ama and om:
ol of significance (or the 95 “.-r_r.: ﬁump,n.:?q.‘_ﬁ c:ra._:sw.ﬂ._. We may, however, use the an;”_ﬂaauﬂ_fw:. %.
e © per cent leve .. S ake thie .w? cent confj, 3 =%e'l(n -K) Ea.:_u?:m_ m..:::m?.m of the vatiances of (he . .w,:.dn:u
B alve.of 2 190, we-CRnl Take s eritioay gy, - 00 “a If the sample is sufficiently large (n > 3 * Seificients
, 1 the rough test which was outlined j a3 APpry, and mwﬁ L [ the 7 forrm, — V) Gm.,m ESUMates ae ae s
14 gh e » : N the L. - the application o ¢ £ transformation. ::imé_._ru\;: . €yuale
ey equal 19T he explained in some detail. We said there that i ..HE..",? ufficiently large. When the sample is smuy i ;Sm nmswﬁ the sample js
prevous S0 2E S il hypothesis. From the Precaring discussion we ; HW_q. : ?:ﬁ:ﬁz of the parameters is normgl, xm.nusmmw?msc b
6i ) > "L 5 we reject the null _J..ﬁozama_.. _4 hese twe Statemen,, = nﬂamma on the Student’s ¢ u;:&::on\_mmm Appendix | ,‘LL]rLEHE:._u‘
aoncluded 0 from the formula Z° = bif0(5,) 1 iS obvious thay ze . " general formula which transformsthe valyes of any vanap)
gre entica ,_.....w,,.;. ‘__r.a qumerator b; is at _nmmﬂ twice :_m value of the N be s :m::.%: to the Z _E.:ﬂ.o::m:o:. :cwﬂtﬁw:m_cm Qammmaw;mwm«u__ﬂs M.
preater 1T < 0 = anly il & > 2005y, 01 0/2 > O, )- Thus the Statements- the number of degrees of freedom and it includes the variance .f;fs._m.m‘_w: .
denomunatol X null hypothesis if 2% > 2.and E instead of the true variance. (See Appendix 1) In the Fetiiation of ,:w ,.v MHM: .
W e null hypothesis if 0(3) < b2 the true vaniance 0 is eliminated and we are left with a formula which Emmﬂw
() we r n wavs of saying the same thing. We stress that these Slatemenys its unbiased estimate qk.,ﬁmwﬁ. Yamane, Statistics, Pp-517-19.) The transfor-
- ..“;w_ . 1est conducted at the § per cent level of significance mation formula (7 statistic) is :
psume § W o4 e e L
Exgmple Suppost that we have estimated the following supply function from a sample of l p= N.M —Hu with n - | degrees of freedion
700 observations (n = 700) &
P ”ww:. m__,mm& where  p = value of the population mean
, . . sk = sample estimate of the papulation variance
We will conduct the Z-iest fot the slope estimate b, = 4, given its standard error 1.5,

Sencr the wmple 1 large, the estimated standard deviation of the parameters is a good
spprovsmation of the true standard deviation of these parameters. Therefore we may apply

~

the [ 1ext (or fimdimg the statistical significance of the estimates b, and m._ (see Appendix I).

%= 206 - X)(n - 1)

n =sample size.
Null Hy pothesis: b, =0 /
Alternative Hypothesis: b, # 0

The sampling distribution in this case, that is the distribution of the sample
Computing the 7* value, we find

means, is X ~ V(y, s%) and the transformation statistic is (X - w53 /n, and
et il 2.66 has a ¢ distribution with (n— 1) degrees of freedom.

o,y I3 The 1 distribution is always symmetric, with mean equal to zero and
w._..a the theoretical (tabular) value of Z (af the § per cent level of significance) is 1-96, variance (n ~ 1)/(n - 3), which approaches unity when n is large. Clearly as n
ks Increases, the  distribution approaches the Standard Normal distribution

e evidence of our sample we conclude that it is highly improbable that the true

$ope Z~N0,1).

The probabilities of the 7 distribution have been tabulated by W. S. Gosset,
who wrote under the pseudonym Student which gave the name to the w -
distribution. The ¢ distribution is reproduced in table 2 of Appendix IV (p. 080).

AEE,\PE_& test we must (a) define the null and alternative

# “9al o zeto. Our segression estimate is statistically significant.

h.
3200 T m?cmzﬂmlmmq
We saig that the

; - N . cent

. . hypothes . - desired Tevel of significance (5 per cent or I per cen
3 W the true v.%_,._r_:m.xz cén be applied in the following cases os_u_\..rm_\awnnﬂ.o:&v._ ncmoamﬂmw_uﬁwvommmﬁ ﬁ“m”%ﬂﬂwﬂmwmmﬁm of freedom. With this information
R 2 UL i oy oo s KOW, intespective of the sample size. A _ itical values of 1 which divide the
L T 2 oSpeCiY — mple We can define the critical regjon, that is the critical values ‘hict .
[ o) Sl 1 Of e extirinaTes 1o : e of the sa critical region, sntion TegitiL
(e ntly 13 : 1s unknown, provided the siz total . . N ncadiitl theTaRe

¥anance j %. 8¢ (n > 30), because in this case th le estimate af the : % set of values of 7 in two regions, the accep O e wa want to est the
5 " Wfactoey PProximation of o, Ll lation variance- € can define the acceptance region for f as follows. s
(75 b on of the unknown populati null hy pothesis

v T. Yamane

¥y .,m.nnln_z.n.q 2 : = to

P , sendeg, Harper & Row, Japan 1967, pp. 514-16. Ho )
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i (A

repdy DOCT

mentioned that the Z distnibution may be employed
se standard deviation 0gg,. o1 when we have a large
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For a test of the R in multiple regression see Chapter 8.
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a greater importance when the purpose of the research is the explanation
(analysis) of economic phenomena and the estimation of reliable values of
particular economic parameters.
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5.6 SUMMARY OF THE ESTIMATION PROCEDURE OF OL3 APPLIED TO
THE TWO-VARIABLE MODEL
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utations involved.

steps, which greatly simplify the comp



