Unit -II

• Growth rate: simple and compound –depreciation – methods of calculating depreciation- time value of money- future and present value- compounding and discounting – Annuities.

Introduction

What is Interest?

> When you borrow Money from someone
> Or use somebody else's Money
> You have to pay a service charge to him.
> This amount is paid back to the Lender along with the original amount borrowed.
> This is sometimes known as the cost of Money which doesn't belong to you, but you have used it.

Introduction

What is Interest?

- > This extra amount is called the "INTEREST"
- The original amount borrowed is known as the "PRINCIPAL" or "CAPITAL" in different situations
- > The sum of both Principal and the interest is known as "AMOUNT"

Types of Interest

There are basically TWO types of Interest
They are:

> SIMPLE INTEREST

> COMPOUND INTEREST

31-Jul-2013

Simple interest

Simple Interest

- Simple Interest is dependent on:
- Rate of Interest
- > Time Period
- Principal

> And the Principal remains the same at the beginning of all the Periods

It means that the accrual of Interest is linear

Compound....

Compound Interest

- It means that the Principal plus Interest of one period becomes the Principal for the next period
- > This goes on till the total time period for which the compound interest is calculated
- This Period is called the period of compounding or the compounding interval

Simple interest

Formula for Interest Calculation

- Let's assume:
- > Principal = P
- > Amount = A
- Total Interest = I
- Interest Rate = i expressed in % pa
- > Time Period = t expressed in Years
- Frequency of Compounding = n expressed in no. Of times in a Year

31-Jul-2013

Compound interest

Formula for Compound Interest

- > Pls note that the "Simple Interest" CAN be directly calculated, but the "Compound Interest" CAN'T be directly calculated.
- First the Amount is calculated and then the difference of Amount & Principal is the "Interest"
- > A = P + I
- > I = A P

Depreciation

- Depreciation is an accounting method of allocating the cost of a tangible or physical asset over its <u>useful life</u> or life expectancy. Depreciation represents how much of an asset's value has been used up.
- Depreciating assets helps companies earn revenue from an asset while expensing a portion of its cost each year the asset is in use. If not taken into account, it can greatly affect <u>profits</u>.
- Depreciation is used to account for declines in the <u>carrying value</u> over time. Carrying value represents the difference between the original cost and the accumulated depreciation of the years.

Methods ...

- Straight-Line Depreciation.
- Declining Balance Depreciation.
- Sum-of-the-Years' Digits Depreciation.
- Units of Production Depreciation.

Annuity

Annuity

 Annuity is a sequence of periodic payments paid or received at equal time intervals.

Simple

Simple Annuity

Simple Annuity is an annuity whose payment interval is the same as the conversion period m.

Classification

Classification of Simple Annuity

- Ordinary Annuity (most commonly used) an annuity whose periodic payments are made at the end of each payment interval.
- Annuity Due an annuity whose periodic payments are made at the beginning of each payment interval.
- Deferred Annuity an annuity whose first payment is to start at some future date.

Cotn..

Ordinary Annuity

 Ordinary annuity – is a sequence of equal periodic payments due at the end of each period.

TYPES

- Fixed annuities,
- variable annuities,
- fixed-indexed annuities,
- Lifetime Annuities
- immediate annuities
- Leasehold estate
- Free hold estate
- Sinking fund and deferred annuities.

Formula

Formulas in solving problems involving Ordinary Annuity

Required	Formulas
Present Value	$A = R\left[\frac{1 - (1 + i)^{-n}}{i}\right]$
Amount	$S = R\left[\frac{(1+i)^n - 1}{i}\right]$
Periodic payment given the amount of an ordinary annuity	$R = \frac{Si}{(1+i)^n - 1}$
Periodic payment given the present value of an ordinary annuity	$R = \frac{Ai}{1 - (1 + i)^{-n}}$
Cash price Where DP=down payment	CP = DP + A

Formula

Formulas in solving problems involving Annuity due.

Required	Formulas
Present Value	$A_{due} = R \left[\frac{1 - (1 + i)^{1 - n}}{i} + 1 \right]$
Amount	$S_{due} = R \left[\frac{(1+i)^{1+n} - 1}{i} - 1 \right]$
Periodic payment given the amount of an ordinary annuity	$R = \frac{S_{due}(i)}{(1+i)^{n+1} - 1 - i}$
Periodic payment given the present value of an ordinary annuity	$R = \frac{A_{due}(i)}{1 - (1 + i)^{1 - n} + i}$
Cash price Where DP=down payment	$CP=DP + A_{due}$

References ..

- <u>https://www.slideshare.net/hisema/simple-and-compound-interest-</u> 24834757
- https://www.slideshare.net/reycastro1/basic-concept-of-annuity