
WIRELESS SENSOR NETWORKS
(18MCA55E)

UNIT – V
“SENSOR NETWORK PLATFORMS AND TOOLS”

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,

Government Arts College (Autonomous), Coimbatore – 641 018.

CONTENT

 Sensor Network Platforms and Tools

 Sensor Node Hardware

 Berkeley Motes

 Sensor Network Programming Challenges

 Node-Level Software Platforms

 Operating System: TinyOS

 Imperative Language: nesC

 Dataflow-Style Language: TinyGALS

 Node-Level Simulators

 The ns-2 Simulator and its Sensor Network Extensions

SENSOR NETWORK PLATFORMS AND TOOLS

 Sensor networks, including sensing and estimation, networking, infrastructure

services, sensor tasking, and data storage and query.

 There are two types of programming for sensor networks, those carried out by

end users and those performed by application developers.

 An end user may view a sensor network as a pool of data and interact with the

network via queries.

 The end users should be shielded away from details of how sensors are

organized and how nodes communicate.

 On the other hand, an application developer must provide end users of a sensor

network with the capabilities of data acquisition, processing, and storage.

 Unlike general distributed or database systems, collaborative signal and

information processing (CSIP)

 software comprises reactive, concurrent, distributed programs running on ad

hoc, resource-constrained, unreliable computation and communication platforms.

Developers at this level have to deal with all kinds of uncertainty in the real

world.

SENSOR NODE HARDWARE

 Sensor node hardware can be grouped into three categories, each of which

entails a different set of trade-offs in the design choices.

1. Augmented general-purpose computers: Examples include low power PCs,

embedded PCs (e.g., PC104), custom-designed PCs(e.g., Sensoria WINS NG nodes),1

and various personal digital assistants (PDA). These nodes typically run off-the-shelf

operating systems such as Win CE, Linux, or real-time operating systems and use

standard wireless communication protocols such as Bluetooth or IEEE 802.11.

 Because of their relatively higher processing capability, they can accommodate a wide

variety of sensors, ranging from simple microphones to more sophisticated video

cameras.

 Compared with dedicated sensor nodes, PC-like platforms are more power hungry.

 However, when power is not an issue, these platforms have the advantage that they can

leverage the availability of fully supported networking protocols, popular programming

languages, middleware, and other off-the-shelf software.

2. Dedicated embedded sensor nodes: These platforms typically use commercial

off-the-shelf (COTS) chip sets with emphasis on small form factor, low power

processing and communication, and simple sensor interfaces. Because of their COTS

CPU, these platforms typically support at least one programming language, such as C.

However, in order to keep the program footprint small to accommodate their small

memory size, programmers of these platforms are given full access to hardware but

barely any operating system support. A classical example is the Tiny OS platform and

its companion programming language, nesC.

3. System-on-chip (SoC) nodes: Examples of SoC hardware include smart dust [109],

the BWRC picoradio node [187], and the PASTA node.3 Designers of these platforms

try to push the hardware limits by fundamentally rethinking the hardware architecture

trade-offs for a sensor node at the chip design level. The goal is to find new ways of

integrating CMOS, MEMS, and RF technologies to build extremely low power and

small footprint sensor nodes that still provide certain sensing, computation, and

communication capabilities. Since most of these platforms are currently in the

research pipeline with no predefined instruction set, there is no software platform

support available.

BERKELEY MOTES

 The Berkeley motes are a family of embedded sensor nodes sharing roughly the

same architecture.

A COMPARISON OF BERKELEY MOTES

1. The main microcontroller (MCU), an Atmel ATmega103L, takes care of regular

processing. A separate and much less capable coprocessor is only active when

the MCU is being reprogrammed. The ATmega103L MCU has integrated 512 KB

flash memory and 4 KB of data memory.

2. Given these small memory sizes, writing software for motes is challenging.

Ideally, programmers should be relieved from optimizing code at assembly level

to keep code footprint small.

3. However, high-level support and software services are not free. Being able to

mix and match only necessary software components to support a particular

application is essential to achieving a small footprint.

MICA MOTE ARCHITECTURE

 The memory inside the MCU, a MICA mote also has a separate 512 KB flash
memory unit that can hold data. Since the connection between the MCU and
this external memory is via a low-speed serial peripheral interface (SPI) protocol,
the external memory is more suited for storing data for later batch processing
than for storing programs.

 The RF communication on MICA motes uses the TR1000 chip set (from RF
Monolithics, Inc.) operating at 916 MHz band. With hardware accelerators, it can
achieve a maximum of 50 kbps raw data rate. MICA motes implement a 40 kbps
transmission rate.

 The transmission power can be digitally adjusted by software though a
potentiometer (Maxim DS1804). The maximum transmission range is about 300
feet in open space

 MICA motes support a 51 pin I/O extension connector. Sensors, actuators, serial

I/O boards, or parallel I/O boards can be connected via the connector.

 A sensor/ actuator board can host a temperature sensor, a light sensor, an

accelerometer, a magnetometer, a microphone, and a beeper.

 The serial I/O (UART) connection allows the mote to communicate with a PC in

real time. The parallel connection is primarily for downloading programs to the

mote.

POWER CONSUMPTION OF MICA MOTES

It is interesting to look at the energy consumption of various components on a MICA mote.

 A radio transmission bears the maximum power consumption. However, each

radio packet (e.g., 30 bytes) only takes 4 ms to send, while listening to incoming

packets turns the radio receiver on all the time.

 The energy that can send one packet only supports the radio receiver for about

27 ms.Another observation is that there are huge differences among the power

consumption levels in the active mode, the idle mode, and the suspend mode of

the MCU.

 It is thus worthwhile from an energy-saving point of view to suspend the MCU

and the RF receiver as long as possible.

SENSOR NETWORK PROGRAMMING CHALLENGES

Traditional embedded system programming interface

 Sensor networks, the application programmers need to explicitly deal with

message passing, event synchronization, interrupt handing, and sensor reading.

 As a result, an application is typically implemented as a finite state machine (FSM)

that covers all extreme cases: unreliable communication channels, long

delays, irregular arrival of messages, simultaneous events, and so on.

 In a target tracking application implemented on a Linux operating system and

with directed diffusion routing, roughly 40 percent of the code implements the

FSM and the glue logic of interfacing computation and communication

 For resource-constrained embedded systems with real-time requirements,
several mechanisms are used in embedded operating systems to reduce code
size, improve response time, and reduce energy consumption.

 Microkernel technologies modularize the operating system so that only the
necessary parts are deployed with the application.

 Real-time scheduling allocates resources to more urgent tasks so that they can
be finished early.

 Event-driven execution allows the system to fall into low-power sleep mode
when no interesting events need to be processed.

 At the extreme, embedded operating systems tend to expose more hardware
controls to the programmers, who now have to directly face device drivers and
scheduling algorithms, and optimize code at the assembly level.

 Although these techniques may work well for small, stand-alone embedded

systems, they do not scale up for the programming of sensor networks for two

reasons.

 Sensor networks are large-scale distributed systems, where global properties are

derivable from program execution in a massive number of distributed nodes.

Distributed algorithms themselves are hard to implement, especially when

infrastructure support is limited due to the ad hoc formation of the system and

constrained power, memory, and bandwidth resources.

 As sensor nodes deeply embed into the physical world, a sensor network should

be able to respond to multiple concurrent stimuli at the speed of changes of the

physical phenomena of interest.

 examples of sensor network software design platforms. We discuss them in

terms of both design methodologies and design platforms.

 A design methodology implies a conceptual model for programmers, with

associated techniques for problem decomposition for the software designers.

 There is no single universal design methodology for all applications. Depending

on the specific tasks of a sensor network and the way the sensor nodes are

organized, certain methodologies and platforms may be better choices than

others.

NODE-LEVEL SOFTWARE PLATFORMS

 A node-level platform can be a node centric operating system, which provides

hardware and networking abstractions of a sensor node to programmers, or it

can be a language platform, which provides a library of components to

programmers.

 A typical operating system abstracts the hardware platform by providing a set of

services for applications, including file management, memory allocation, task

scheduling, peripheral device drivers, and networking.

 Tiny OS and Tiny GALS are two representative examples of node-level

programming tools

OPERATING SYSTEM: TINY OS

 Tiny OS aims at supporting sensor network applications on resource

constrained hardware platforms, such as the Berkeley motes.

 To ensure that an application code has an extremely small footprint, Tiny OS

chooses to have no file system, supports only static memory allocation,

implements a simple task model, and provides minimal device and networking

abstractions.

 Tiny OS organizes components into layers. Intuitively, the lower a layer is, the

“closer” it is to the hardware; the higher a layer is, the “closer” it is to the

application.

 Tiny OS has a unique component architecture and provides as a library a set of

system software components.

 A component specification is independent of the component implementation.

Although most components encapsulate software functionalities, some are just

thin wrappers around hardware.

 Tiny OS application example—Field Monitor, where all nodes in a sensor field

periodically send their temperature and photo sensor readings to a base station

via an ad hoc routing mechanism.

THE FIELD MONITOR APPLICATION FOR SENSING AND

SENDING MEASUREMENTS

Blocks represent Tiny OS components and arrows represent function calls among them. The

directions of the arrows are from callers to callees.

 This component is designed to work with a clock, which is a software wrapper

around a hardware clock that generates periodic interrupts. The method calls of

the Timer component are shown in the figure as the arrowheads.

 An arrowhead pointing into the component is a method of the component that

other components can call.

 An arrowhead pointing outward is a method that this component requires

another layer component to provide.

 The absolute directions of the arrows, up or down, illustrate this component’s

relationship with other layers.

 For example, the Timer depends on a lower layer HWClock component. The

Timer can set the rate of the clock, and in response to each clock interrupt it

toggles an internal Boolean flag, evenFlag, between true (or 1) and false (or 0).

 If the flag is 0, the Timer produces a timer0Fire event to trigger other

components; otherwise, it produces a timer1Fire event. The Timer has an init()

method that initializes its internal flag, and it can be enabled and disabled via the

start and stop calls.

 A program executed in Tiny OS has two contexts, tasks and events, which

provide two sources of concurrency. Tasks are created (also called posted) by

components to a task scheduler.

 The default implementation of the Tiny OS scheduler maintains a task queue and

invokes tasks according to the order in which they were posted. Thus tasks are

deferred computation mechanisms. Tasks always run to completion without

preempting or being preempted by other tasks. Thus tasks are nonpreemptive.

 The scheduler invokes a new task from the task queue only when the current

task has completed. When no tasks are available in the task queue, the scheduler

puts the CPU into the sleep mode to save energy.

 The ultimate sources of triggered execution are events from hardware: clock,

digital inputs, or other kinds of interrupts. The execution of an interrupt handler

is called an event context.

 A split-phase execution, sending a packet will block the entire system from

reacting to new events for a significant period of time. In the Tiny OS

implementation, the send() command in the AM component returns immediately.

 When the packet is indeed sent, the AM component will notify its caller by a

sendDone() method call.

IMPERATIVE LANGUAGE: NESC

 nesC is an extension of C to support and reflect the design of Tiny OS v1.0 and

above.

 It provides a set of language constructs and restrictions to implement Tiny OS

components and applications.

COMPONENT INTERFACE

 A component in nesC has an interface specification and an implementation. To

reflect the layered structure of Tiny OS, interfaces of a nesC component are

classified as provides or uses interfaces.

 A provides interface is a set of method calls exposed to the upper layers, while a

uses interface is a set of method calls hiding the lower layer components.

Methods in the interfaces can be grouped and named. For example, the Timer

component

The interface definition of the Timer component in nesC.

module TimerModule {

Provides {

interface StdControl;

interface Timer01;

}

uses interface Clock as Clk;

}

interface StdControl {

command result_t init();

}

interface Timer01 {

command result_t start(char type, uint32_t interval);

command result_t stop();

event result_t timer0Fire();

event result_t timer1Fire();

}

interface Clock {

command result_t setRate(char interval, char scale);

event result_t fire();

}

COMPONENT IMPLEMENTATION

 There are two types of components in nesC, depending on how they are

implemented: modules and configurations. Modules are implemented by

application code (written in a C-like syntax). Configurations are implemented by

connecting interfaces of existing components.

 The implementation part of a module is written in C-like code. A command or

an event bar in an interface foo is referred as foo.bar. A keyword call indicates

the invocation of a command. A keyword signal indicates the triggering by an

event.

The Implementation Definition of the Timer Component in nesC

module Timer {

provides {

interface StdControl;

interface Timer01;

}

uses interface Clock as Clk;

}

implementation {

bool evenFlag;

command result_t StdControl.init() {

evenFlag = 0;

return call Clk.setRate(128, 4); //4 ticks per second

}

event result_t Clk.fire() {

evenFlag = !evenFlag;

if (evenFlag) {

signal Timer01.timer0Fire();

} else {

signal Timer01.timer1Fire();

}

return SUCCESS;

}

...

}

 nesC also supports the creation of

several instances of a component by

declaring abstract components with

optional parameters. Abstract

components are created at compile

time in configurations.

Concurrency and Atomicity
• The language nesc directly reflects the tiny OS execution model through the notion

of command and event contexts.
• The implementation definition of the TimerC configuration in nesC.

configuration TimerC {

provides {

interface StdControl;

interface Timer01;

}

}

implementation {

components TimerModule, Clock;

StdControl = TimerModule.StdControl;

Timer = TimerModule.Timer;

TimerModule.Clk -> HWClock.Clock;

}

A section of the implementation of senseandsend, illustrating the handling of

concurrency in nesC.

module SenseAndSend{

provides interface StdControl;

uses interface ADC;

uses interface Timer:

uses interface Send;

}

implementation {

bool busy;

norace uint16_t sensorReading;

command result_t StdControl.init() {

busy = FALSE;

}

event result_t Timer.timer0Fire() {

bool localBusy;

atomic {

localBusy = busy;

busy = TRUE;

}

if (!localBusy} {

call ADC.getData(); //start getting sensor reading

return SUCESS;

} else {

return FAILED;

}

}

task void sendData() { // send sensorReading

adcPacket.data = sensorReading;

call Send.send(&adcPacket, sizeof

adcPacket.data};

return SUCESS;

}

event result_t ADC.dataReady(uinit16_t data) {

sensorReading = data;

post sendData();

atomic {

busy = FALSE;

}

return SUCCESS;

}

...

}

 nesC, code can be classified into two types:

 Asynchronous code (AC): Code that is reachable from at least one interrupt handler.

 Synchronous code (SC): Code that is only reachable from tasks.

DATAFLOW-STYLE LANGUAGE: TINYGALS

 Dataflow languages are intuitive for expressing computation on interrelated data

units by specifying data dependencies among them.

 A dataflow program has a set of processing units called actors. Actors have ports

to receive and produce data, and the directional connections among ports are

FIFO queues that mediate the flow of data.

 Actors in dataflow languages intrinsically capture concurrency in a system, and

the FIFO queues give a structured way of decoupling their executions. The

execution of an actor is triggered when there are enough input data at the input

ports.

 The globally asynchronous and locally synchronous (GALS) mechanism is a way

of building event-triggered concurrent execution from thread-unsafe

components. TinyGALS is such a language for Tiny OS.

 One of the key factors that affects component reusability in embedded software

is the component composability, especially concurrent composability.

 TinyGALS addresses concurrency concerns at the system level, rather than at

the component level as in nesC. Reactions to concurrent events are managed by

a dataflow-style FIFO queue communication.

TINYGALS PROGRAMMING MODEL

 TinyGALS supports all Tiny OS components, including its interfaces and module

implementations.

 All method calls in a component interface are synchronous method calls—that is,

the thread of control enters immediately into the callee component from the

caller component.

 An application in TinyGALS is built in two;

 steps: (1) constructing asynchronous actors from synchronous components,

 5 and (2) constructing an application by connecting the asynchronous components

though FIFO queues. An actor in TinyGALS has a set of input ports, a set of output

ports, and a set of connected Tiny OS components. An actor is constructed by

connecting synchronous method calls among Tiny OS components.

 The TinyGALS programming model has the advantage that actors become

decoupled through message passing and are easy to develop independently.

However, each message passed will trigger the scheduler and activate a receiving

actor, which may quickly become inefficient if there is a global state that must be

shared among multiple actors.

 TinyGUYS (Guarded Yet Synchronous) variables are a mechanism for sharing

global state, allowing quick access but with protected modification of the data.

 TinyGUYS have global names defined at the application level which are mapped

to the parameters of each actor and are further mapped to the external

variables of the components that use these variables.

 The external variables are accessed within a component by using special

keywords: PARAM_GET and PARAM_PUT.

 The code generator produces thread-safe implementation of these methods

using locking mechanisms, such as turning off interrupts.

TINYGALS CODE GENERATION

 TinyGALS takes a generative approach to mapping high-level constructs such as

FIFO queues and actors into executables on Berkeley motes. Given the highly

structured architecture of TinyGALS applications, efficient scheduling and event

handling code can be automatically generated to free software developers from

writing error-prone concurrency control code.

 Given the definitions for the components, actors, and application, the code

generator automatically generates all of the necessary code for

 (1) component links and actor connections,

 (2) application initialization and start of execution,

 (3) communication among actors, and

 (4) global variable reads and writes.

NODE-LEVEL SIMULATORS

 Node-level design methodologies are usually associated with simulators that

simulate the behavior of a sensor network on a per-node basis. Using simulation,

designers can quickly study the performance (in terms of timing, power,

bandwidth, and scalability) of potential algorithms without implementing them on

actual hardware and dealing with the vagaries of actual physical phenomena.

 A node-level simulator typically has the following components:

 Sensor node model: A node in a simulator acts as a software execution platform, a

sensor host, as well as a communication terminal. In order for designers to focus on

the application-level code, a node model typically provides or simulates a

communication protocol stack, sensor behaviors (e.g., sensing noise), and operating

system services. If the nodes are mobile, then the positions and motion properties of

the nodes need to be modeled. If energy characteristics are part of the design

considerations, then the power consumption of the nodes needs to be modeled.

 Communication model: Depending on the details of modeling, communication may

be captured at different layers. The most elaborate simulators model the

communication media at the physical layer, simulating the RF propagation delay and

collision of simultaneous transmissions. Alternately, the communication may be

simulated at the MAC layer or network layer, using, for example, stochastic processes

to represent low-level behaviors.

 Physical environment model: A key element of the environment within which a

sensor network operates is the physical phenomenon of interest. The environment can

also be simulated at various levels of detail. For example, a moving object in the

physical world may be abstracted into a point signal source. The motion of the point

signal source may be modeled by differential equations or interpolated from a

trajectory profile. If the sensor network is passive—that is, it does not impact the

behavior of the environment—then the environment can be simulated separately or

can even be stored in data files for sensor nodes to read in. If, in addition to sensing,

the network also performs actions that influence the behavior of the environment,

then a more tightly integrated simulation mechanism is required.

 Statistics and visualization: The simulation results need to be collected for analysis.

Since the goal of a simulation is typically to derive global properties from the

execution of individual nodes, visualizing global behaviors is extremely important. An

ideal visualization tool should allow users to easily observe on demand the spatial

distribution and mobility of the nodes, the connectivity among nodes, link qualities,

end-to-end communication routes and delays, phenomena and their spatio-temporal

dynamics, sensor readings on each node, sensor node states, and node lifetime

parameters (e.g., battery power).

 A sensor network simulator simulates the behavior of a subset of the sensor

nodes with respect to time. Depending on how the time is advanced in the

simulation, there are two types of execution models: cycle-driven simulation and

discrete-event simulation.

CYCLE-DRIVEN

 A cycle-driven (CD) simulation discretizes the continuous notion of real time

into (typically regularly spaced) ticks and simulates the system behavior at these

ticks.

 Sensing and computation are assumed to be finished before the next tick.

Sending a packet is also assumed to be completed by then. However, the packet

will not be available for the destination node until the next tick. This split-phase

communication is a key mechanism to reduce cyclic dependencies that may

occur in cycle-driven simulations.

𝑦𝑘 = 𝑓 (𝑥𝑘)
𝑥𝑘 = 𝑔(𝑦𝑘)

THE NS-2 SIMULATOR AND ITS SENSOR

NETWORK EXTENSIONS

 The simulator ns-2 is an open-source network simulator that was originally

designed for wired, IP networks. Extensions have been made to simulate

wireless/mobile networks (e.g., 802.11 MAC and TDMA MAC) and more

recently sensor networks.

 SensorSim aims at providing an energy model for sensor nodes and

communication, so that power properties can be simulated

 The key advantage of ns-2 is its rich libraries of protocols for nearly all network

layers and for many routing mechanisms. These protocols are modeled in fair

detail, so that they closely resemble the actual protocol implementations.

Examples include the following:

 TCP: reno, tahoe, vegas, and SACK implementations

 MAC: 802.3, 802.11, and TDMA

 Ad hoc routing: Destination sequenced distance vector (DSDV) routing, dynamic

source routing (DSR), ad hoc on-demand distance vector (AODV) routing, and

temporally ordered routing algorithm (TORA)

 Sensor network routing: Directed diffusion, geographical routing

 (GEAR) and geographical adaptive fidelity (GAF) routing.

THE SIMULATOR TOSSIM

 TOSSIM is a dedicated simulator for Tiny OS applications running on one or

more Berkeley motes.

 The key design decisions on building TOSSIM were to make it scalable to a

network of potentially thousands of nodes, and to be able to use the actual

software code in the simulation.

 To achieve these goals, TOSSIM takes a cross-compilation approach that compiles

the nesC source code into components in the simulation. The event-driven

execution model of Tiny OS greatly simplifies the design of TOSSIM.

 TOSSIM has a visualization package called TinyViz, which is a Java application that

can connect to TOSSIM simulations.

 TinyViz also provides mechanisms to control a running simulation by, for

example, modifying ADC readings, changing channel properties, and injecting

packets.

 TinyViz is designed as a communication service that interacts with the TOSSIM

event queue.

 The exact visual interface takes the form of plug-ins that can interpret TOSSIM

events. Beside the default visual interfaces, users can add application-specific ones

easily.

PROGRAMMING BEYOND INDIVIDUAL NODES:

STATE-CENTRIC PROGRAMMING

 Many sensor network applications, such as target tracking, are not simply generic

distributed programs over an ad hoc network of energy-constrained nodes.

 Deeply rooted in these applications is the notion of states of physical

phenomena and models of their evolution over space and time.

 A distinctive property of physical states, such as location, shape, and motion of

objects, is their continuity in space and time.

 Their sensing and control is typically done through sequential state updates.

 System theories, the basis for most signal and information processing algorithms,

provide abstractions for state update, such as:

𝑥𝑘 + 1 = 𝑓 (𝑥𝑘, 𝑢𝑘)

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘)

COLLABORATION GROUPS

 A collaboration group is a set of entities that contribute to a state update.

 These entities can be physical sensor nodes, or they can be more abstract

system components such as virtual sensors or mobile agents hopping among

sensors. In this context, they are all referred to as agents.

 Collaboration group provides two abstractions: its scope to encapsulate network

topologies and its structure to encapsulate communication protocols.

 The scope of a group defines the membership of the nodes with respect to the

group.

 The structure of a group defines the “roles” each member plays in the group, and

thus the flow of data.

EXAMPLES OF GROUPS

 Combinations of scopes and structures create patterns of groups that may be

highly reusable from application to application.

 The goal is to illustrate the wide variety of the kinds of groups, and the

importance of mixing and matching them in applications.

GEOGRAPHICALLY CONSTRAINED GROUP.

 A geographically constrained group (GCG) consists of members within a

prespecified geographical extent.

 Since physical signals, especially the ones from point targets, may propagate only

to a limited extent in an environment, this kind of group naturally represents all

the sensor nodes that can possibly “sense” a phenomenon.

 There are many ways to specify the geographic shape, such as circles, polygons,

and their unions and intersections.

N-HOP NEIGHBORHOOD GROUP

 An n-hop neighborhood group (n-HNG) has an anchor node and defines that all

nodes within n communication hops are members of the group.

 Since it uses hop counts rather than Euclidean distances, local broadcasting can

be used to determine the scope.

 Usually, the anchor node is the leader of the group, and the group may have a

tree structure with the leader as the root to optimize for communication.

PUBLISH/SUBSCRIBE GROUP

 A group may also be defined more dynamically, by all entities that can provide

certain data or services, or that can satisfy certain predicates over their

observations or internal states.

 A publish/subscribe group (PSG) comprises consumers expressing interest in

specific types of data or services and producers that provide those data or

services.

 Communication among members of a PSG may be established via rendezvous

points, directory servers, or network protocols such as directed diffusion.

ACQUAINTANCE GROUP

 An even more dynamic kind of group is the acquaintance group (AG), where a

member belongs to the group because it was “invited” by another member in

the group.

 The relationships among the members may not depend on any physical

properties at the current time but may be purely logical and historical.

USING MULTIPLE TYPES OF GROUPS

 Mixing and matching groups is a powerful technique for tackling system

complexity by making algorithms much more scalable and resource efficient

without sacrificing conceptual clarity.

 One may use highly tuned communication protocols for specific groups to

reduce latency and energy costs.

 There are various ways to compose groups. They can be composed in parallel to

provide different types of input for a single computational entity.

PIECES: A STATE-CENTRIC DESIGN FRAMEWORK

 PIECES (Programming and Interaction Environment for Collaborative Embedded

Systems) is a software framework that implements the methodology of state-

centric programming over collaboration groups to support the modeling,

simulation, and design of sensor network applications. It is implemented in a

mixed Java-Matlab environment.

PRINCIPALS AND PORT AGENTS

 PIECES comprises principals and port agents.

 A principal is the key component for maintaining a piece of state. Typically, a principal maintains

state corresponding to certain aspects of the physical phenomenon of interest.

PRINCIPAL GROUPS

 Principals can form groups. A principal group gives its members a means to find

other relevant principals and attaches port agents to them. A principal may

belong to multiple groups.

 A port agent, however, serving as a proxy for a principal in the group, can only be

associated with one group.

 The creation of groups can be delegated to port agents, especially for leader-

based groups.

MOBILITY

 A principal is hosted by a specific network node at any given time. The most

primitive type of principal is a sensing principal, which is fixed to a sensor node.

 A sensing principal maintains a piece of (local) state related to the physical

phenomenon, based solely on its own local measurement history.

 Mobile principals bring additional challenges to maintaining the state. For

example, a principal should not move while it is in the middle of updating the

state.

 To ensure this, PIECES imposes the restriction that whenever an agent is

triggered, its execution must have reached a quiescent state.

 Such a trigger is called a responsible trigger. Only at these quiescent states can

principals move to other nodes in a well-defined way, carrying a minimum

amount of information representing the phenomena.

PIECES SIMULATOR

 PIECES provides a mixed-signal simulator that simulates sensor network

applications at a high level.

 The simulator is implemented using a combination of Java and Matlab. An event-

driven engine is built in Java to simulate network message passing and agent

execution at the collaboration-group level.

 A continuous-time engine is built in Matlab to simulate target trajectories, signals

and noise, and sensor front ends. The main control flow is in Java, which

maintains the global notion of time.

MULTITARGET TRACKING PROBLEM REVISITED

 Using the state-centric model, programmers decouple a global state into a set of

independently maintained pieces, each of which is assigned a principal.

 To update the state, principals may look for inputs from other principals, with

sensing principals supporting the lowest-level sensing and estimation tasks.

 The tracking of two crossing targets can be decomposed into three phases:

 When the targets are far apart, the tracking problem can be treated as a set of single-

target tracking subproblems.

 When the targets are in proximity of each other, they are tracked jointly due to signal

mixing.

 After the targets move apart, the tracking problem becomes two single-target tracking

subproblems again.

 The distributed multi-object tracking

algorithm as implemented in the

state-centric programming model,

using distributed principals and

agents as discussed in the text.

Notice that the state-centric model

allows an application developer to

focus on key pieces of state

information the sensor network

creates and maintains, thus raising

the abstraction level of

programming.

SIMULATION RESULTS

THANK YOU
THE CONTENTS IN THIS E-MATERIAL IS TAKEN FROM THE TEXTBOOKS AND

REFERENCE BOOKS GIVEN IN THE SYLLABUS

