Internet of Things 18 MCA 5 4 E

FACULTY

Dr. R. A. ROSELINE M.Sc., M.Phil., Ph.D.,

Associate Professor and Head, Post Graduate Department of Computer Applications, Government Arts College (Autonomous), Coimbatore – 641 018.

UNIT - III

Web of Things and Cloud of Things

- Term used to describe approaches, software architectural styles and programming patterns that allow real-world objects to be part of the WWW
- Provides an Application Layer that simplifies the creation of Internet of Things applications
- Rather than re-inventing completely new standards, Web of Things reuses existing and wellknown Web standards

Web of Things Architecture

Web of Things Vs. Internet of Things

- Firstly distinguish the difference between the Internet and the World Wide Web
- Internet is the term used to identify massive interconnection of computer networks around world
- Physical connection of the paths between two or more computers
- World Wide Web is the general name for accessing the Internet via HTTP
- It is just one of the connection protocols that is available in the Internet

Web of Things Vs. Internet of Things

- Internet is the large container and the web is a part within the container
- To be technically precise, if Internet is restaurant, the web is the most popular dish on the menu
- However, it's the dishes that make the Internet popular, useful to everyone and powerful

Two Pillars of the Web

Java-Based Application Servers

Platform Middleware for WOT

- Communication middleware and platform middleware are closely related with each other
- Platform Middleware or Application Frameworks or Three- Tiered Application Server
- Goal is to bring the IOT applications to the World Wide Web
- According to WOT/ IOT vision, everyday objects will be connected with each other and with Internet
- These will form a distributed network with sensing capabilities

Platform Middleware for WOT

- Observation is that many software architectures & technologies are already using term *object* such as,
 - Object- Oriented Design
 - Object- Oriented Software Engineering And Programming
 - CORBA (Common Object Request Broker Architecture)
 - DOM (Document Object Model)
 - POJO (Plain Old Java Object)
 - COM (Component Object Model) & DCOM (Distributed COM)
 - OPC (Object Linking and Embedding for Process Control)
 - OID (Object Identification)
 - SOAP (Simple Object Access Protocol)
 - JSON (JavaScript Object Notation) and so on

- SOA/EAI versus SODA/MAI
 - WOT/ IOT applications should inherit and enhance the existing data formats and protocols
 - SOAP (simple object access protocol) is a protocol framework specification for exchanging structured information in the implementation of web services
 - It relies on XML for its message format
 - Usually hypertext transfer protocol (HTTP), simple mail transfer protocol (SMTP), Java messaging services (JMS)
 - SOA is a set of principles and methodologies for designing and developing software in the form of interoperable services, usually over the Internet

- SOA requires metadata (unified WoT architecture also needs metadata)
- Web services description language typically describes the services, while the SOAP protocol describes the communication protocols
- Combination of existing SOA and EAI (Enterprise Application Integration) technologies is a good foundation for WOT/ IOT applications
- Service- Oriented Device Architecture (SODA) is proposed to enable device connection to an SOA

- Core of SODA standard is DDL (device description language) based on XML encodings
- DDL classifies devices into three categories: sensors, actuators, and complex devices

• Example of Device Description Language of SODA

```
<Sensor>
<Description>...</Description>
<Interface>
<Signal id = "ADC1">...</Signal>
<Reading id = "Temp 1">
<Type>Physical</Type>
<Measurement>Temperature</Measurement>
<Unit>Centigrade</Unit>
<Computation>
<Type>Formula</Type>
<Expression> Temp 1 = (((ADC1/1023 * 3.3)-0.5)*
(1000/10) </Expression>
</Computation>
</Reading>
</Interface>
</Sensor>
```

- OSGi: The Universal Middleware
 - Open Services Gateway initiative
 - Module system and service platform for the Java programming language that implements complete and dynamic component model

Multi-tiered IoT Middleware				IoT Graphics/HMI RAD Tools, Reporting, Trending, Data Mining, Decision Support, etc.	
			Service Oriented Middleware Layer	Business Oriented Component (BPM, Workflow/Rule Engine, Content Management, multi- tenancy, SOA/EAI, etc.	
		Basic Middleware Component Layer	Application Server (Websphere, WebLogic, Jboss, .NET Framework/IIS, etc.) OSGi Framework, etc.)		
	IoT Connectivity Middleware Layer	M2M Gatev	ay, JCA/Adaptors (OPC, GPRS, Field-bus, etc.) MQ/ESB/JMS, open API, etc.		
DBMS Layer	Database (Oracle, IBM, SQL Server, mySQL, etc.) Real-time Databases, etc.				
	Hardware, OS (L	inux, Unixes, Wi	ndows, etc.) and	Networks	

WOT Portals and Business Intelligence

- Web portal website that functions as a point of access to information in the World Wide Web
- Portal presents information from diverse sources in a unified way
- Examples of public web portals include Yahoo, AOL, Excite, MSN
- Apart from standard search engine feature, web portals offer other services such as e- mail, news, stock prices, information, databases and entertainment

WOT Portals and Business Intelligence

- Categorizations of portals:
 - Horizontal Portals cover many areas
 - Vertical Portals focused on one functional area
- WOT portals are vertical portals
- When huge amount of data are collected in a IOT system, data mining can be conducted to acquire business intelligence (BI)
- Data mining deals with finding patterns in data that are by user definition, interesting and valid
- Interdisciplinary area -databases, machine learning, pattern recognition, statistics, visualization, etc.

WOT Portals and Business Intelligence

- BI technologies provide historical, current, and predictive views of business operations
- Common functions of BI technologies are
 - extract, transform, and load
 - reporting, online analytical processing, analytics
 - data mining, process mining, complex event processing
 - business performance management, benchmarking, text mining, predictive analytics, and so on

Cloud of Things

- Internet of Things (IOT) and cloud computing
- Internet of Things is not as popular as cloud computing
- Because IOT is referred to by different terms such as machine- to- machine (M2M), connected world, smarter planet, smart grid, etc.
- But machine to machine is a more popular term than cloud computing
- Both IOT and cloud computing can be categorized as distributed computing

Cloud of Things

- Have many things in common or closely related:
 - Both are a type of distributed computing that relies heavily on communication networks
 - Cloud computing is an enabling technology of the IOT

Cloud of Things Architecture

Deployment Models

Public NoT/lo){	ommunity IoT	Hybrid	
ematics	Fleet Management	Smart Grid	Smarter Planet	Environmental	
gistics	Energy Efficiency	Healthcare	Transportation	Oil & Gas	
ources	Industrial Automation	Retail	Home Automation	Food Safety	

Buildings

Consumer

Electronics

Utilities

Broad Vertical Applications

1

Res

Agriculture

	Ubiquitous Connectivity					
Essential Features	Monitoring	Controlling	Alerting	Location Services	Scheduling	
	Dispatching	Maintenance	Patching	Security	Reporting	
	Dashboard	Decision Support	Services	Data Mining	Graphics	

Security

Surveillance

Technologies	1	M2M	RFID	W5N	SCADA	
Unified Architecture	Devices Sensors, Actuators, Controllers, etc.		Connect Internet/Netwo Wireline/Wirel	orks ess Apj	Manage Web based, Integrated, Applications	
102111111211211211112	EPC	Sensor Technologies	Mobile Terminals	Actuators	Controllers	
Foundational Enablers	HMI	Web Technologies	Middleware	Networking	GPS/Compass	
	XML	Cloud Technologies	SOA/Web Services	ERP/MES/DCS	GIS/POI	

Mobile Cloud Computing

- Potential of cloud computing doesn't stop at turning the personal computer into a thin client
- Mobile application market is about to change radically due to the emergence of widgets, most compelling of mobile cloud applications
- Much has been made of mobile application phenomenon popularized by Apple's iconic iPhone
- Smartphones are becoming thin clients of cloud services
- Apple's iCloud services, announced in June 2011 that run on Amazon Web Service and Microsoft Azure IaaS, symbolize the start of Cloud Phones

Mobile Cloud Computing

- Currently, most widgets downloaded from app stores or Android markets are not cloud applications by definition
- Because they do not receive services from the cloud during runtime
- Large number of them are cloud applications such as LBS applications, data synchronization, weather forecast, bank client, etc., applications
- In fact, a large percentage of Android and iPhone widgets are already cloud services based
- This is real mobile cloud computing (mCC)

Cloud Computing

- It starts with the premise that the data services and architecture should be on servers
- They should be in a 'cloud' somewhere
- And that if you have the right kind of browser or the right kind of access, it doesn't matter
 - whether you have a PC or a Mac or
 - A mobile phone or a BlackBerry or what have you—or
 - New devices still to be developed—you can get access to the cloud
- Term *cloud* was used as a metaphor for the Internet

Cloud Hierarchy

Software as a Service

Platform as a Service

Infrastructure as a Service

Cloud Platform

Hardware

• Like IOT, cloud computing system is also a multi tiered architecture built on a middleware stack

- As an example, VAMOS [242], built by IBM, is a novel middleware architecture that runs its middleware modules at the hypervisor level
- Reduces I/O virtualization overhead by cutting down on the overall number of guest/hypervisor switches for I/O intensive workloads
- Applying VAMOS to a database application improved its performance by up to 32 percent
- Here, the middleware concept is extended to include software that does IPC not necessary over a network

- At the cluster computing or grid computing level, many types of work are done by middleware
- Parallel computing environments such as PVM and MPI are middleware by definition
- Hadoop system and the job scheduler such as Condor, LoadLeveler, and others are all middleware
- A number of grid middleware initiatives have been formed
- Some of those middleware are aggregately referred to as grid middleware

- Various grid middleware are
 - Low-level middleware
 - MPI, Open MPI
 - PVM (parallel virtual machine)
 - POE (parallel operating environment, IBM)
 - Middleware for file systems and resources
 - MPI-IP
 - PVFS/GPFS (parallel virtual file system/general parallel file system IBM)
 - Sector-Sphere

- Condor/PBS/LoadLeveler (IBM)
- High-level middleware
- Beowolf
- Globus Toolkit
- Gridbus
- Legion
- Unicore
- OSCAR/CAOS/Rocks
- OpenMosix/NSA/Perceus

Cloud Standards

- Cloud model is composed of the following:
 - Three service models: IaaS, PaaS, and SaaS
 - Four deployment models: private cloud, public cloud, community cloud, and hybrid cloud
 - Five essential characteristics: on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service.

THANK YOU

The material for this course is taken from the Text Books and Reference Books prescribed in the Syllabus.