
TCP/IP-(18MCA45E)

UNIT-III

‘Group Management – IGMP Message ’

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head,

Post Graduate and Research Department of Computer

Applications,

Government Arts College (Autonomous), Coimbatore – 641

018.

Position of IGMP in the network layer

Unicast – one-to-one relationship

Multicast – one-to-many relationship – IGMP helps facilitate
that one-to-many relationship

Like ICMP, IGMP is a companion to IP

IGMP is NOT a multicast routing protocol – but rather a
protocol that manages the group membership

IGMP gives the multicast routers info about the membership status
of hosts (routers) connected to the network. .

IGMP is a group management protocol. It

helps a multicast router create and update a

list of loyal members related to each router

interface.

(Visualize a set of “multicast” routers amongst a set of “unicast”

routers – and IGMP’s job is to facilitate this communication and info

amongst the “multicast” routers”)

Note:

IGMP MESSAGES

IGMP has three types of messages: the query, the membership

report, and the leave report. There are two types of query messages,

general and special.

IGMP message format

Shows the type of
message

Amount of time a
query must be
answered in –
10ths of a second
units

Checksum over the
entire 8-byte
message

0 for general
query: contains
group id for special
query,
membership
report and leave
report messages

IGMP OPERATION

A multicast router connected to a network has a list of multicast

addresses of the groups with at least one loyal member in that

network. For each group, there is one router that has the duty of

distributing the multicast packets destined for that group.

The topics discussed in this section include:

Joining a Group

Leaving a Group

Monitoring Membership

IGMP operation

A multicast router connected to a network has a list of multicast

addresses of the groups with at least one loyal member in that

network. For each group, there is one router that has the duty of

distributing the multicast packets destined for that group.

Routers R1, R2 and R
list of groupids are
mutually exclusive

A host can have a membership in a group
– this means one of that host’s processes
receives a multicast packet

A muticast router can have a membership in
a group – this means one of that router’s
interfaces receives a multicast packet

Membership report – Joining A Group
A host or router can join a group

A host maintains a list of processes that have group membership

If a process wants to join a group, the host adds process and the
desired group to its list

If it is the first time entry, the host sends a “membership report”
message to the distributing router (in order to receive multicast
packets fro that desired group)

A router can join a group

A router maintains a list of interfaces that have group membership

If an interface wants to join a group, the router adds the interface and the
desired group to its list

If it is the first time entry, the router sends a “membership report” message.
The message is sent out of all interfaces other than one from which the new
interest comes

In IGMP, a membership report is sent

twice, one after the other.

(if the first is lost or damaged, the

second one should make it.)

Note:

Leave report
When a host (or router) sees that no process is interested in a specific
group, it sends a leave report

After receiving a
leave report, the
router doesn’t
automatic remove
the groupid – there
could be other
interested hosts or
interfaces –
therefore the router
sends a special
query message – if
no feedback is
received in a
specified amount of
time – it then
purges the groupid
from the list

General query message

What about the case when there is only 1 host interested in a particular
groupid and that host goes down ? Does the router maintain that
groupid or what ?

The router periodically
sends “general query”
messages – the general
query message queries
for membership
continuation for all
groups (not just one) –
if no response is
received for a particular
groupid (it is removed)
– if more than one
host/router are
interested in the same
group – only one
host/router responds –
cuts down on traffic

Delayed Response

If more than one host/router are interested in the same group –
only one host/router responds – cuts down on traffic – how is
this implemented ? Delayed Response

Each router needing to
send a response has
randomly generated
wait times before
sending a report FOR
EACH group – because
the reports are
broadcasted – the
router will know if
some other router has
already sent a report
regarding the groupid
(therefore relinquishing
it from having to send a
report

Imagine there are three hosts in a network as shown below.

Example 1

A query message was received at time 0; the random delay

time (in tenths of seconds) for each group is shown next to

the group address. Show the sequence of report messages.

Solution

The events occur in this sequence:

Example 1 (Continued)

a. Time 12: The timer for 228.42.0.0 in host A expires and a membership report is sent,

which is received by the router and every host including host B which cancels its timer for

228.42.0.0.

b. Time 30: The timer for 225.14.0.0 in host A expires and a membership report is sent,

which is received by the router and every host including host C which cancels its timer for

225.14.0.0.

c. Time 50: The timer for 238.71.0.0 in host B expires and a membership report is sent,

which is received by the router and every host.

d. Time 70: The timer for 230.43.0.0 in host C expires and a membership report is sent,

which is received by the router and every host including host A which cancels its timerfore

230.43.0.0.
Note that if each host had sent a report for every group in its

list, there would have been seven reports; with this strategy only

four reports are sent.

Encapsulation of IGMP packet
The IGMP message is encapsulated in an IP datagram, which is itself

encapsulated in a frame.

Because the IGMP occurs within the physical LAN, the TTL of the IP is

set to 1 – guarantees the message doesn’t leave the LAN

Regarding the data link layer:

Because the IP packet has a MULTICAST address, ARP can’t be used in

finding the physical address and forwarding – therefore, the data link

layer (or underlying technology) must support multicast addressing

Mapping class D to Ethernet physical address

Ethernet supports physical multicast addressing

If the first 25 bits indicate this pattern, then the
remaining 23 bits can take on a group

The router extracts the least significant 23 bits of the class D
– however, the class D is 28 bits – therefore, 25 (32) multicast
addresses are mapped to a single multicast address at the IP
level

Therefore, the host must check the IP and discard any packets
that do not belong to it.

An Ethernet multicast physical

address is in the range

01:00:5E:00:00:00

to

01:00:5E:7F:FF:FF.

Note:

Change the multicast IP address 230.43.14.7 to an

Ethernet multicast physical

Example 2

Solution

We can do this in two steps:

a. We write the rightmost 23 bits of the IP address in

hexadecimal. This can be done by changing the rightmost 3

bytes to hexadecimal and then subtracting 8 from the leftmost

digit if it is greater than or equal to 8. In our example, the result

is 2B:0E:07.

b. We add the result of part a to the starting Ethernet multicast

address, which is (01:00:5E:00:00:00). The result is

01:00:5E:2B:0E:07

Change the multicast IP address 238.212.24.9 to an

Ethernet multicast address.

Example 3

Solution

a. The right-most three bytes in hexadecimal are D4:18:09. We need

to subtract 8 from the leftmost digit, resulting in 54:18:09..

b. We add the result of part a to the Ethernet multicast starting

address. The result is

01:00:5E:54:18:09

Tunneling

Most WANs do not support physical multicast addressing –
therefore tunneling is used – the multicast packet is
encapsulated in the unicast packet and sent through the
network

We use netstat with three options, -n, -r, and -a. The -n option gives

the numeric versions of IP addresses, the -r option gives the routing

table, and the -a option gives all addresses (unicast and multicast).

Note that we show only the fields relative to our discussion.

Example 4

$ netstat -nra

Kernel IP routing table

Destination Gateway Mask Flags Iface

153.18.16.0 0.0.0.0 255.255.240.0 U eth0

169.254.0.0 0.0.0.0 255.255.0.0 U eth0

127.0.0.0 0.0.0.0 255.0.0.0 U lo

224.0.0.0 0.0.0.0 224.0.0.0 U eth0

0.0.0.0 153.18.31.254 0.0.0.0 UG eth0

Any packet with a multicast address from 224.0.0.0 to 239.255.255.255 is

masked and delivered to the Ethernet interface.

UDP

Introduction

 Responsibilities of Transport Layer

 to create a process-to-process communication

 using port numbers in case of UDP

 to provide a flow-and-error control mechanism at the transport
level

 But, no flow control mechanism and no acknowledgment for
received packets in UDP

 If UDP detects an error in the received packets, it silently
drops it.

 to provide a connection mechanism for the processes

 sending streams of data to the transport layer by process

 making the connection, chopping the stream into
transportable units, numbering them and sending them one
by one

Introduction (cont’d)

 Normally, at the receiving end, waiting until all the
different units belonging to the transport layer have
received, checking, passing those that are error free and
delivering them to the receiving process as a stream

 But, UDP

 does not do any of the above

 can only receive a data unit from the process and deliver
it, unreliably, to the receiver

 data unit must be small enough to fit in a UDP packet

 UDP is called a connectionless, unreliable transport protocol

 providing process-to-process communication instead of host-
to-host communication

 performing very limited error checking

Introduction (cont’d)

 If UDP is so powerless, why would a process want

to use it ?

 very simple protocol using a minimum of

overhead

 if a process wants to send a small message

and does not care much about reliability, it

can use UDP

 if it sends a small message, taking much

less interaction between the sender and

receiver than it does using TCP

Introduction (cont’d)
Position of UDP in the TCP/IP protocol suite

11.1 Process-to-process

communication

 IP is responsible for communication at the computer level

(host-to-host communication)

 UDP is responsible for delivery of the message to the

appropriate process

Process-to-process

communication (cont’d)

 The domain of IP and UDP

Process-to-process

communication (cont’d)

 Port Numbers

 used in client-server paradigm

 used for defining processes

 integers between 0 and 65,535

 The client program defines itself with a port number, chosen

randomly by the UDP software running on the client host

 the ephemeral port number

 But, the server process must also define itself with a port

number that is not randomly chosen

 using well-known port number

Process-to-process

communication (cont’d)

 Example : Daytime process

 for client, an ephemeral (temporary) port number 52,000

and for server, the well-known (permanent) port number

13.

Process-to-process

communication (cont’d)

 IP addresses versus port numbers

Process-to-process

communication (cont’d)
 IANA (Internet Assigned Numbers Authority)

 port numbers divided into 3 ranges

 well-known ports : ranging from 0 to 1,023

 registered ports : ranging from 1,024 to 49,151

 They are not controlled by IANA. But they can only be
registered with IANA to prevent duplication.

 dynamic ports : ranging from 49,152 to 65,535

 neither controlled nor registered

 can be used any process.

 are ephemeral ports

 Ranges Used by Other Systems

 Other operating system may use ranges other than IANA’s for

the well-known and ephemeral ports

 BSD Unix has 3 ranges: reserved, ephemeral, and non-privileged

Process-to-process

communication (cont’d)

 IANA ranges

Process-to-process

communication (cont’d)
 Well-known Ports for UDP

 Some port numbers can be used by both UDP and TCP

• Well-known ports used with UDP

Process-to-process

communication (cont’d)

Process-to-process

communication (cont’d)
 Socket Address

 the combination of an IP address and a port number

User Datagram

 User datagram format

User Datagram

 Source port number
 In case of the client (a client sending a request), having ephemeral port

number requested by the process

 In case of the server (a sever sending response), having a well-known port
number

 Destination port number
 Used by the process running on the destination host

 Length
 Defining the total length of the user diagram, header + data

 Minimum 8 bytes. (header + no data)

 the length of data : 0 to 65,507 (65,535 – 20 – 8) bytes

 UDP length = IP Length – IP header’s length

 Checksum
 used to detect errors over the entire user datagram

Checksum

 UDP checksum calculation is different from the

checksum for IP and ICMP

 It includes as follows.

 pseudoheader : part of the header of the IP packet

 UDP header

 data from the application layer

Checksum (cont’d)
 Pseudoheader added to the UDP datagram

Checksum (cont’d)

 Checksum Calculation at Sender

1. Add the pseudoheader to the UDP datagram

2. Fill the checksum field with zeros

3. Divide the total number of bytes into 16-bit words

4. If the total number of bytes is not even, add one byte of

padding (all 0s)

5. Add all 16-bit sections using one’s complement arithmetic.

6. Complement the result, and insert it in the checksum field

7. Drop the pseudoheader and added padding

8. Deliver the UDP user datagram to the IP software for

encapsulation

Checksum (cont’d)

 Checksum Calculation at Receiver

1. Add the pseudoheader to the UDP user datagram

2. Add padding if needed

3. Divide the total bits into 16-bit sections

4. Add all 16-bit sections using one’s complement arithmetic

5. Complement the result

6. If the result is all 0s, drop the pseudoheader and any

added padding and accept the user datagram.

Checksum (cont’d)

UDP Operation

 Connectionless Services

 each user datagram sent by UDP is an

independent datagram

 each user datagram can travel a different

path

UDP Operation (cont’d)

 Flow and error control

 no flow control, hence no windowing mechanism

 The receiver may overflow with incoming messages

 no error control mechanism except for the checksum

 the sender does not know if a message has been lost

or duplicated

 So, the process using UDP provides these mechanism

UDP Operation (cont’d)

 Encapsulation and Decapsulation

UDP Operation (cont’d)

 Queuing

 The queues function as long as the process is running.

 If an outgoing queue is happened overflow, the operating
system can ask the client process to wait before sending any
more messages.

 When a message arrives for a client, check an incoming queue.
If there is no such incoming queue, UDP discard the user
datagram and ask the ICMP protocols to send a port
unreachable message to the server.

 At the server, the queues remain open as long as the server is
running

 An outgoing queue can overflow. If this happens, the
operating system asks the server to wait before sending any
more messages

UDP Operation (cont’d)

UDP Operation (cont’d)

 Multiplexing

 At the sender site, there may be several

processes that need to send user datagrams

 differentiating by their assigned port

numbers

 Demultiplexing

 At the receiver site, there is only one UDP

 UDP receives user datagrams from IP.

 After error checking and dropping of the

header, UDP delivers each message to the

appropriate port based on the port numbers

UDP Operation (cont’d)

 Multiplexing and Demultiplexing

11.5 Use of UDP

 The following lists some uses of the UDP protocols

 suitable for a process that requires simple request-response

communication and with little concern for flow and error

control

 not used for a process that needs to send bulk data, such

as FTP

 suitable for a process with internal flow and error control

mechanisms

 TFTP process including flow and error control

 suitable transport protocol for multicasting and broadcasting

 multicasting and broadcasting capabilities are embedded

in the UDP software, but not in the TCP software

Use of UDP (cont’d)

 used for management protocol such as SNMP

 used for some route updating protocol such as RIP

UDP Design

Involving 5 components

a control-block table, input queues, a control-block module, an

input module, and an output module

UDP Design (cont’d)
 Control-Block Table

 Keeping track of the open ports

 Each entry having 4 field: the state, which can be FREE or

IN-USE, the process ID, the port number and the

corresponding queue number

 Input Queues

 One for each process

 Control-block Module

 Responsible for management of the control-block table

 When a process starts, it asks for a port number from the OS

 OS assigns well-known port numbers to servers and

ephemeral port number to clients

UDP Design (cont’d)

UDP Design (cont’d)

 Input Module

UDP Design (cont’d)

 Output Module

UDP Design (cont’d)

 Examples

 Control block table at the beginning of examples

UDP Design (cont’d)

 Example 1

 Arrival of a user datagram with destination port number

52,012

 The input module searches for this port number and

finds it.

 The input module sends the data to queue 38

 The control block table does not change.

UDP Design (cont’d)

 Example 2

 A process starts

 Asking the OS for a port number and is granted port

number 52,014

 Sending process ID (4,978) and the port number to the

control-block module to create an entry in the table

 Taking the first FREE entry

 No queue number assigned

 No user diagrams have arrived for this destination

UDP Design (cont’d)

UDP Design (cont’d)

 Example 3,

 A user datagram now arrives 52,011

 Input module checks the table and finds that no queue

has been allocated for this destination

 since this is the first time a user datagram has arrived for

this destination

 the module create a queue and gives it a number (43)

UDP Design (cont’d)

UDP Design (cont’d)

 Example 4

 After a few seconds, a user datagram arrives for port

52,222.

 Cannot find the entry for the this destination

 Dropping datagram and sending to the source ICMP

message such as “unreachable port”

 Example 5

 After few seconds, process needs to send a user

datagram. It delivers the data to the output module

which adds the UDP header

65

TCP

66

1. Error Recovery

 In section 1, we first discuss where packet losses should be

dealt with.

 In sections 2 and following we will discuss how this is

implemented in the Internet in detail

67

The Philosophy of Errors in a Layered

Model
 The physical layer is not completely error-free – there is always some bit

error rate (BER).

Information theory tells us that for every channel there is a capacity C such that

 At any rate R < C, arbitrarily small BER can be achieved

 At rates R ¸ C, any BER such that H2(BER) > 1 – C/R is achievable, with H2(p) = entropy= – p
log2(p) – (1 – p) log2(1 – p)

 The TCP/IP architecture decided

 Every layer ¸ 2 offers an error free service to the upper layer:

SDUs are either delivered without error or discarded

 Example: MAC layer

 Q1. How does an Ethernet adapter know whether a received Ethernet frames has
some bit errors ? What does it do with the frame ?

 WiFi detects errors with CRC and does retransmissions if needed
Q2. Why does not Ethernet do the same ?

solution

68

The Layered Model Transforms Errors into Packet

Losses
 Packet losses occur due to

 error detection by MAC

 buffer overflow in bridges and
routers

 Other exceptional errors may
occur too
Q. give some examples

 Therefore, packet losses must be
repaired.

 This can be done using either of the
following strategies:

 end to end : host A sends 10 packets to
host B. B verifies if all packets are
received and asks for A to send again
the missing ones.

 or hop by hop: every router would do
this job.

Which one is better ? We will discuss
this in the next slides.solution

A R1 R2 B
P1

P1
P1

P2
P2

P2
P3

P4
P4

P4
P3 is missing

P3
P3

A R1 R2 B
P1

P1
P1

P2
P2

P2
P3

P3
P3

P3

P3 is missing

P4
P4P3

P4

69

 There are arguments in favour of the end-to-end strategy. The keyword

here is complexity:

 The TCP/IP architecture tries to keep intermediate systems as simple as

possible. Hop by hop error recovery makes the job of routers too

complicated.

 Needs to remember some information about every packet flow -> too much

processing per packet

 Needs to store packets in case they have to be retransmitted -> too much

memory required

 IP packets may follow parallel paths, this is incompatible with hop-by-hop

recovery. R2 sees only 3 out of 7 packets but should not ask R1 for retransmisison

The Case for End-to-end Error Recovery

R2 BA

R3

R4R1

14 23567

70

* The Case for Hop-By-Hop Error Recovery

 There are also arguments in favour of hop-by-hop strategy. To

understand them, we will use the following result.

 Capacity of erasure channel: consider a channel with bit rate R that either

delivers correct packets or loses them. Assume the loss process is stationary,

such that the packet loss rate is p2[0,1]. The capacity is R£(1-p)

packets/sec.

This means in practice that, for example, over a link at 10Mb/s that has a packet loss rate of 10%

we can transmit 9 Mb/s of useful data.

The packet loss rate (PLR) can be derived from the bit error rate (BER) as follows, if bit errors are

independent events, as a function of the packet length in bits L:

PLR = 1 – (1 – BER)L

71

* The Capacity of the End-to-End Path

 We can now compute the capacity of an end-to-end path with both error

recovery strategies.

 Assumptions: same packet loss rate p on k links; same nominal rate R. Losses are

independent.

 Q. compute the capacity with end-to-end and with hop by hop error recovery.

A

R1 R1 R1 R1 R1 R1

B

Loss probability p

k links

solution

72

* End-to-end Error Recovery is Inefficient when

Packet Error Rate is high

 The table shows the capacity of an end-to-end path as a function of the packet

loss rate p

 Conclusion: end-to-end error recovery is not acceptable when packet loss rate is

high

 Q. How can one reconcile the conflicting arguments for and against hop-by-hop

error recovery ?

k Packet loss
rate

C1 (end-to-
end)

C2 (hop-
by-hop)

10 0.05 0.6 £ R 0.95 £ R

10 0.0001 0.9990 £ R 0.9999 £ R

solution

73

Conclusion: Where is Error Recovery located in

the TCP/IP architecture ?

 The TCP/IP architecture assumes that

1. The MAC layer provides error—free packets to the network layer

2. The packet loss rate at the MAC layer (between two routers, or between a

router and a host) must be made very small. It is the job of the MAC layer to

achieve this.

3. Error recovery must also be implemented end-to-end.

 Thus, packet losses are repaired

 At the MAC layer on lossy channels (wireless)

 In the end systems (transport layer or application layer).

74

2. Mechanisms for Error Recovery

 In this section we discuss the methods for repairing packet
losses that are used in the Internet.

 We have seen one such method already:
Q. which one ?

 Stop and Go is an example of packet retransmission
protocol. Packet retransmission is the general method used
in the Internet for repairing packet losses. It is also called
Automatic Repeat Request (ARQ).

 TCP is an ARQ protocol

solution

75

ARQ Protocols
 Why invented ?

 Repair packet losses

 What does an ARQ protocol do ?

1. Recover lost packets

2. Deliver packets at destination in order, i.e. in the same order as
submitted by source

 How does an ARQ protocol work ?

Similar to Stop and Go but:

 It may differ in many details such as

 How packet loss is detected

 The format and semantics of acknowledgements

 Which action is taken when one loss is detected

 Practically all protocols use the concept of sliding window, which we
review now.

76

Why Sliding Window ?

 Why invented ?

 Overcome limitations of Stop and

Go

Q. what is the limitation of Stop

and Go ?

solution

 What does it do ?

1. Allow mutiple transmissions

But this has a problem: the

required buffer at destination may

be very large

2. This problem is solved by the

sliding window. The sliding window

protocol puts a limit on the

number of packets that may have

to be stored at receive buffer.

P0

A1

P1

P2

A2

Pn

P0 again

Pn+1

P1

P1 P2

P1 P2 ... Pn

P1 P2 ... Pn+1

Receive

Buffer

77

How Sliding Window Works.

Usable Window

P = 1

A = 0

P = 0

A =2

P = 2

P = 3

P = 4

A =1

P = 5

P = 6

P = 7

P = 8

P = 9

A =3

P = 10

A =4

A =5

A =6

A =7

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

Legend

Maximum

Send Window

=

Offered Window

(= 4 here)

78

On the example, packets are numbered 0, 1, 2, ..

The sliding window principle works as follows:

- a window size W is defined. In this example it is fixed. In general, it may vary
based on messages sent by the receiver. The sliding window principle
requires that, at any time: number of unacknowledged packets at the
receiver <= W

- the maximum send window, also called offered window is the set of packet
numbers for packets that either have been sent but are not (yet)
acknowledged or have not been sent but may be sent.

- the usable window is the set of packet numbers for packets that may be sent
for the first time. The usable window is always contained in the maximum
send window.

- the lower bound of the maximum send window is the smallest packet number
that has been sent and not acknowledged

- the maximum window slides (moves to the right) if the acknowledgement for
the packet with the lowest number in the window is received

A sliding window protocol is a protocol that uses the sliding window principle.
With a sliding window protocol, W is the maximum number of packets that
the receiver needs to buffer in the re-sequencing (= receive) buffer.

If there are no losses, a sliding window protocol can have a throughput of 100%
of link rate (overhead is not accounted for) if the window size satisfies: W
b / L, where b is the bandwidth delay product, and L the packet size.
Counted in bytes, this means that the minimum window size for 100%
utilization is the bandwidth-delay product.

79

An Example of ARQ Protocol with Selective Repeat

A=1

P=0
P0; 3

Upper Bound
Maximum Send
Window

Retransmission
Buffer

P=1

P=2

P=3 A=2

A=3Timeout

Timeout

P=0

P=2
A=0

A=2P=4

P=5

P=6

P0; P13

P0; P23

P0; P2; P33

P0; P23

P25

P2; P45

P2; P4; P55

P4; P5; P67

Resequencing
Buffer

Lowest
Expected
Packet Number

P1 0

P1; P2 0

P1; P2; P3 0

P0;P1;P2;P3 0

deliver
P0 ... P3

4

4

P4 4
deliver P4

5A=4
P5 5

deliver P5

6

0

80

The previous slide shows an example of ARQ protocol, which uses the
following details:

1. packets are numbered by source, staring from 0.

2. window size = 4 packets;

3. Acknowledgements are positive and indicate exactly which packet is
being acknowledged

4. Loss detection is by timeout at sender when no acknowledgement has
arrived

5. When a loss is detected, only the packet that is detected as lost is re-
transmitted (this is called Selective Repeat).

Q. Is it possible with this protocol that a packet is retransmitted
whereas it was correctly received?

solution

81

*An Example of ARQ Protocol with Go Back N

Lowest
unacknowledged
packet number
V(A)

Retransmission
Buffer

P=0

Next Expected
Packet Number
V(R))

0

Next Sequence
Number for
Sending
V(S)

P0; 10

P0; P120

A=0

deliver P0
1

P=1

P0; P1; P230
P=2

P0; P1; P2; P340
P=3 deliver P12

deliver P23

deliver P34

A=1

P=0
P0; P1; P2; P310

discard
4

A=2

A=3
P0; P1; P2; P320

P=1

P0; P1; P2; P330
P=2

P0; P1; P2; P340
P=3

discard
4

discard
4

discard4

P0; P1; P2; P300

P2; P342 P=2

82

The previous slide shows an example of ARQ protocol, which uses the following details:

1. window size = 4 packets;

2. Acknowledgements are positive and are cumulative, i.e. indicate the highest packet
number upt to which all packets were correctly received

3. Loss detection is by timeout at sender

4. When a loss is detected, the source starts retransmitting packets from the last
acknowldeged packet (this is called Go Back n).

Q. Is it possible with this protocol that a packet is retransmitted whereas it was correctly
received?

Solution

Go Back n is less efficient than selective repeat, since we may unneccesarily retransmit a
packet that was correctly transmitted. Its advantage is its extreme simplicity:

 (less memory at destination) It is possible for the destination to reject all packets
other than the expected one. If so, the required buffer at destination is just one
packet

 (less processing) The actions taken by source and destination are simpler

Go Back n is thus suited for very simple implementations, for example on sensors.

83

*An Example of ARQ Protocol with Go Back N and

Negative Acks

Retransmission
Buffer

P=0

V(R)

0

V(S)

P0; 10

P0; P120 deliver P0
1

P=1

P0; P1; P230
P=2

P0; P1; P2; P340
P=3

NACK, A=0

P1; P2; P341

discard1

deliver P1
2

deliver P2
3

A=1

A=0

P=4

P1; P2; P3; P451

P1; P2; P3; P411 P=1

P1; P2; P3; P421 P=2

NACK, A=0 discard1

discard1

V(A)

84

The previous slide shows an example of ARQ protocol, which uses the

following details:

1. window size = 4 packets;

2. Acknowledgements are positive or negative and are cumulative. A

positive ack indicates that packet n was received as well as all packets

before it. A negative ack indicates that all packets up to n were

received but a packet after it was lost

3. Loss detection is either by timeout at sender or by reception of negative

ack.

4. When a loss is detected, the source starts retransmitting packets from

the last acknowldeged packet (Go Back n).

Q. What is the benefit of this protocol compared to the previous ?

solution

85

Where are ARQ Protocols Used ?

 Hop-by-hop

 MAC layer

Modems: Selective Repeat

WiFi: Stop and Go

 End-to-end

 Transport Layer:

 TCP: variant of selective repeat with some features of go back

n

 Application layer

 DNS: Stop and Go

86

Are There Alternatives to ARQ ?

Coding is an alternative to ARQ.

 Forward Error Correction (FEC):

 Principle:

Make a data block out of n packets

 Add redundancy (ex Reed Solomon codes) to block and

generate k+n packets

 If n out of k+n packets are received, the block can be

reconstructed

 Q. What are the pros and cons ?

solution

 Is used for data distribution over satellite links

 Other FEC methods are used for voice or video (exploit the fact

that some distortion may be allowed – for example: interpolate a

lost packet by two adjacent packets)

87

FEC may be combined with ARQ

 Example with multicast, using digital fountain codes

 Source has a file to transmit; it sends n packets

 A destination that misses one packet sends a request for

retransmission; source uses a fountain code and sends

packet n+1

 If this or another destination still does not has enough,

sources codes and sends packets n+2, n+3, … as necessary

 All packets are different

 Any n packets received by any destination allows to

reconstruct the entire file

 Used for data distribution over the Internet.

88

3. Flow Control

 Why invented ?

 Differences in machine performance: A may send data to B much
faster than B can use. Or B may be shared by many processes and
cannot consume data received at the rate that A sends.

 Data may be lost at B due to lack of buffer space – waste of
resources !

 What does it do ?

 Flow control prevents prevent buffer overflow at receiver

 How does it work ?

 Backpressure, or

 Credits

Flow Control Congestion control
congestion control is about preventing too many losses inside the network

89

Backpressure Flow Control

 Destination sends STOP (= PAUSE)

or GO messages

 Source stops sending for x msec

after receiving a STOP message

 Simple to implement

 Q. When does it work well ?

solution

 Where implemented ?

 X-ON / X-OFF protocols inside

a computer

 Between Bridges in a LAN

 Issues

 Loops in feedback must be

avoided (otherwise deadlock)

P=0

P0

P=1

P=2

P=3
STOP

P1

P2

P3

STOP

GO

P=5

P=6

P=7

P=4

90

Can we use Sliding Window for Flow Control ?

 One could use a sliding window for flow control, as

follows

 Assume a source sends packets to a destination using an ARQ

protocol with sliding window. The window size is 4 packets and the

destination has buffer space for 4 packets.

 Assume the destination delays sending acks until it has enough free

buffer space. For example, destination has just received (but not

acked) 4 packets. Destination will send an ack for the 4 packets only

when destination application has consumed them.

Q. Does this solve the flow control problem ?

solution

91

Credit Flow Control

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

P = 1

A = -1, credit = 2

P = 0

P = 2

P = 3

P = 4

A = 0, credit = 2

P = 5

P = 6

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 2, credit = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 0, credit = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 4, credit = 2

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 12 A = 6, credit = 0

0 1 2 3 4 5 6 7 8 9 10 11 12

A = 6, credit = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

P = 7

92

 The credit scheme solves the issue with using the sliding window alone for flow control.
Credits are used by TCP, under the name of “window advertisement”.

 With a credit scheme, the receiver informs the sender about how much data it is willing
to receive (and have buffer for). Credits may be the basis for a stand-alone protocol or, as
shown here, be a part of an ARQ protocol. Credit schemes allow a receiver to share buffer
between several connections, and also to send acknowledgements before packets are
consumed by the receiving upper layer (packets received in sequence may be ready to be
delivered, but the application program may take some time to actually read them).

 The picture shows the maximum send window (called “offered window” in TCP) (red
border) and the usable window (pink box). On the picture, like with TCP, credits
(= window advertisements) are sent together with acknowledgements. The
acknowledegements on the picture are cumulative.

 Credits are used to move the right edge of the maximum send window. (Remember that
acknowledgements are used to move the left edge of the maximum send window).

 By acknowledging all packets up to number n and sending a credit of k, the receiver
commits to have enough buffer to receive all packets from n+1 to n+k. In principle, the
receiver(who sends acks and credits) should make sure that n+k is non-decreasing, namely,
that the right edge of the maximum send window does not move to the left (because
packets may have been sent already by the time the sdr receives the credit).

 A receiver is blocked from sending if it receives credit = 0, or more generally, if the
received credit is equal to the number of unacknowledged packets. By the rule above, the
received credits should never be less than the number of unacknowledged packets.

 With TCP, a sender may always send one byte of data even if there is no credit (window
probe, triggered by persistTimer) and test the receiver’s advertized window, in order to
avoid deadlocks (lost credits).

93

Credits are Modified as Receive Buffer Space Varies

A = 4, credit = 2

P = 1

A = -1, credit = 2

P = 0

P = 2

P = 3

P = 4

A = 0, credit = 2

P = 5

P = 6

A = 2, credit = 4

A = 0, credit = 4

A = 6, credit = 0

A = 6, credit = 4

P = 7

3 4 5 6

5 6

7 8 9 10

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

3 4 5 6

3 4 5 6

3 4 5 6

7 8 9 10

0 1

0 1

1 2

-2 -1-3

-2 -1-3

-2 -1 0 -3

-2 -1 0 -3

-2 -1 0 1-3

-2 -1 0 1-3 2

-2 -1 0 1-3 2

-2 -1 0 1-3 2 3

-2 -1 0 1-3 2 3 4

-2 -1 0 1-3 2 3 4 5

-2 -1 0 1-3 2 3 4 5 6

-2 -1 0 1-3 2 3 4 5 6

free buffer, or unacked data

data acked but not yet read

94

 The figure shows the relation between buffer occupancy and the credits

sent to the source. This is an ideal representation. TCP implementations

may differ a little.

 The picture shows how credits are triggered by the status of the receive

buffer. The flows are the same as on the previous picture.

 The receiver has a buffer space of 4 data packets (assumed here to be

of constant size for simplicity). Data packets may be stored in the buffer

either because they are received out of sequence (not shown here), or

because the receiving application, or upper layer, has not yet read

them.

 The receiver sends window updates (=credits) in every

acknowledgement. The credit is equal to the available buffer space.

 Loss conditions are not shown on the picture. If losses occur, there may

be packets stored in the receive buffer that cannot be read by the

application (received out of sequence). In all cases, the credit sent to

the source is equal to the buffer size, minus the number of packets that

have been received in sequence. This is because the sender is expected

to move its window based only on the smallest ack number received.

95

4. The Transport Layer

Reminder:

 network + link + phy carry packets end-to-end

 transport layer makes network services available to programs

 is in end systems only, not in routers

 In TCP/IP there are two transport layers

 UDP (User Datagram Protocol): offers only a programming interface,

no real function

 TCP (Transmission Control Protocol): implements error recovery +

flow control

96

Why both TCP and UDP ?

 Most applications use TCP rather than UDP, as this avoids re-inventing

error recovery in every application

 But some applications do not need error recovery in the way TCP does

it (i.e. by packet retransmission)

 For example: Voice applications

Q. why ?

solution

 For example: an application that sends just one message, like

name resolution (DNS). TCP sends several packets of overhead

before one single useful data message. Such an application is

better served by a Stop and Go protocol at the application layer.

 For example: multicast (TCP does not support multicast IP

addresses)

97

UDP Uses Port Numbers

Host

IP addr=B

Host

IP addr=A

IP SA=A DA=B prot=UDP

source port=1267

destination port=53

…data…

process

sa

process

ra

UDP

process

qa

process

pa

TCP

IP

1267

process

sb

process

rb

UDP

process

qb

process

pb

TCP

IP

53

IP network

UDP Source Port UDP Dest Port

UDP Message Length UDP Checksum

data

IP header

UDP datagramIP datagram

98

 The picture shows two processes (= application programs) pa, and pb, are
communicating. Each of them is associated locally with a port, as shown in the
figure.

 In addition, every machine (in reality: every communication adapter) has an IP
address.

 The example shows a packet sent by the name resolver process at host A, to the
name server process at host B. The UDP header contains the source and
destination ports. The destination port number is used to contact the name
server process at B; the source port is not used directly; it will be used in the
response from B to A.

 The UDP header also contains a checksum the protect the UDP data plus the IP
addresses and packet length. Checksum computation is not performed by all
systems. Ports are 16 bits unsigned integers. They are defined statically or
dynamically. Typically, a server uses a port number defined statically.

 Standard services use well-known ports; for example, all DNS servers use port 53
(look at /etc/services). Ports that are allocated dynamically are called
ephemeral. They are usually above 1024. If you write your own client server
application on a multiprogramming machine, you need to define your own server
port number and code it into your application.

99

The UDP service

 UDP service interface

 one message, up to 8K

 destination address, destination port, source address, source port

 UDP service is message oriented

 delivers exactly the message or nothing

 several messages may be delivered in disorder

 Message may be lost, application must implement loss recovery.

 If a UDP message is larger than MTU, then fragmentation occurs at the

IP layer

100

UDP is used via a Socket Library

 The socket library provides a
programming interface to TCP
and UDP

 The figure shows toy client and
server UDP programs. The client
sends one string of chars to the
server, which simply receives
(and displays) it.

 socket() creates a socket and
returns a number (=file
descriptor) if successful

 bind() associates the local port
number with the socket

 sendto() gives the destination IP
address, port number and the
message to send

 recvFrom() blocks until one
message is received for this port
number. It returns the source IP
address and port number and the
message.

client

socket();

bind();

sendto();

close();

server

socket();

bind();

rcvfrom();

% ./udpClient <destAddr> bonjour les amis

%

% ./udpServ &

%

101

How the Operating System views UDP

id=3 id=4

buffer buffer

port=32456 port=32654

program

UDP

IP
address=128.178.151.84

socketsocket

102

5. TCP basics
 Why invented ?

 Repair packet losses

 Save application from doing it.

 What does TCP do ?

 TCP guarantees that all data is delivered in sequence and without loss, unless the
connection is broken;

 TCP should work for all applications that transfer data, either in small or large
quantities

 TCP does not work with multicast IP addresses, UDP does.

 TCP also does flow control

 TCP also does congestion control (not seen in this module)

 How does TCP work ?

 first, a connection (=synchronization of sequence numbers) is opened between
two processes

 then TCP implements ARQ (for error recovery) and credits (for flow control)

 in the end, the connection is closed

103

The TCP Service

 TCP offers a stream service

 A stream of bytes is accepted for transmission and delivered at destination

 TCP uses port numbers like UDP eg. TCP port 80 is used for web server.

 TCP requires that a connection is opened before data can be transferred.

A TCP connection is identified by: srce IP addr, srce port, dest IP addr, dest

port

104

TCP views data as a stream of bytes

 TCP-PDUs are called TCP segments

 bytes accumulated in buffer until sending TCP decides to create a segment

 MSS = maximum “segment“ size (maximum data part size)

 “B sends MSS = 236” means that segments, without header, sent to B should not
exceed 236 bytes

 536 bytes by default (576 bytes IP packet)

 Sequence numbers based on byte counts, not packet counts

 TCP builds segments independent of how application data is broken

 unlike UDP

 TCP segments never fragmented at source

 possibly at intermediate points with IPv4

 where are fragments re-assembled ?

TCP dataTCP hdr

IP data = TCP segmentIP hdr

prot=TCP

105

TCP is an ARQ protocol

 Basic operation:

 sliding window

 loss detection by timeout at sender

 retransmission is a hybrid of go back and selective repeat

 Cumulative acks

 Supplementary elements

 fast retransmit

 selective acknowledgements

 Flow control is by credit

 Congestion control

 adapt to network conditions

106

TCP Basic Operation
8001:8501(500) ack 101 win 6000

101:201(100) ack 8501 win 14000

8501:9001(500) ack 201 win 14247

9001:9501(500) ack 201 win 14247

9501:10001(500) ack 201 win 14247

(0) ack 8501 win 13000

8501:9001(500) ack 251 win 14247
201:251(50) ack 8501 win 12000

251:401(150) ack 10001 win 12000

10001:10501(500) ack 401 win 14247

Timeout !

1

2

3

4

5
6

7

8

9

10

deliver

bytes

...:8500

deliver

bytes

8501:10000

deliver

bytes

10001:10500

A B

Reset timers

for packets

4, 5, 6

107

 The picture shows a sample exchange of messages. Every packet carries the
sequence number for the bytes in the packet; in the reverse direction,
packets contain the acknowledgements for the bytes already received in
sequence. The connection is bidirectional, with acknowledgements and
sequence numbers for each direction. Acknowledgements are not sent in
separate packets (“piggybacking”), but are in the TCP header. Every
segment thus contains a sequence number (for itself), plus an ack number
(for the reverse direction). The following notation is used:

 firstByte”:”lastByte+1 “(“segmentDataLength”) ack” ackNumber+1 “win”
offeredWindowSise. Note the +1 with ack and lastByte numbers.

 At line 8, a retransmission timer expires, causing the retransmission of data
starting with byte number 8501 (Go Back n principle).Note however that
after segment 9 is received, transmission continues with byte number
10001. This is because the receiver stores segments received out of order.

 The window field (win) gives to the sender the size of the window. Only
byte numbers that are in the window may be sent. This makes sure the
destination is not flooded with data it cannot handle.

 Note that numbers on the figure are rounded for simplicity. Real examples
use non-round numbers between 0 and 232 -1. The initial sequence number
is not 0, but is chosen at random using a 4 µsec clock.

 The figure shows the implementation of TCP known as “TCP SACK”, which is
the basis for current implementations. An earlier implementation (“TCP
Tahoe”) did not reset the pending timers after a timeout; thus, this was
implementing a true Go Back n protocol; the drawback was that packets
were retransmitted unnecessarily, because packet losses are usually simple.

108

Losses are Also Detected by “Fast Retransmit”

 Why invented: retransmission

timeout in practice often very

approximate thus timeout is

often too large. Go back n is less

efficient than SRP

 What it does

 Detect losses earlier

 Retransmit only the missing

packet

 How it works

 if 3 duplicate acks for the same

bytes are received before

retransmission timeout, then

retransmit

Q. which ack is sent last on the

figure ?

solution

P1 P2 P3 P4

A1 A2 A2

P5 P6

A2 A2

retransmit

P3

A ?

P7

109

Selective Acknowledgements

 Why invented ?

 Fast retransmit works well if there is one isolated loss, not if there are a

few isolated losses

 What does it do ?

 Acknowledge exactly which bytes are received and allow their selective

retransmission

 How does it do it ?

 up to 3 SACK blocks are in TCP option, on the return path; a SACK block

is a positive ack for an interval of bytes; first block is most recently

received

 Sent by destination when : new data is received that does not increase

ack field

 source to detect a loss by gap in received acknowledgement

 If gap detected, missing bytes are retransmitted

110

TCP uses Connections

 TCP requires that a connection (= synchronization) is opened before

transmitting data

 Used to agree on sequence numbers

 The next slide shows the states of a TCP connection:

 Before data transfer takes place, the TCP connection is opened

using SYN packets. The effect is to synchronize the counters on

both sides.

 The initial sequence number is a random number.

 The connection can be closed in a number of ways. The picture

shows a graceful release where both sides of the connection are

closed in turn.

 Remember that TCP connections involve only two hosts; routers in

between are not involved.

111

TCP Connection Phases

SYN, seq=x
syn_sent

SYN seq=y, ack=x+1

ack=y+1established
established

snc_rcvd

listen

FIN, seq=u

ack=v+1

ack=u+1

FIN seq=v

fin_wait_2

time_wait

close_wait

last_ack

closed

application

active open passive open

application close:

active close

fin_wait_1

C
o
n
n
e
c
t
i
o
n

S
e
t
u
p

D
a
t
a

T
r
a
n
s
f
e
r

C
o
n
n
e
c
t
i
o
n

R
e
l
e
a
s
e

112

code bit meaning

urg urgent ptr is valid

ack ack field is valid

psh this seg requests a push

rst reset the connection

syn connection setup

fin sender has reached end of byte stream

paddingoptions (if any)

srce port dest port

sequence number

ack number

hlen windowcode bitsrsvd

urgent pointerchecksum

segment data (if any)

TCP

header

(20 Bytes +

options)

IP header (20 B + options)

<= MSS bytes

113

*TCP Segment Format
The next slide shows the TCP segment format.

l the push bit can be used by the upper layer using TCP; it forces TCP on the sending
side to create a segment immediately. If it is not set, TCP may pack together several
SDUs (=data passed to TCP by the upper layer) into one PDU (= segment). On the
receiving side, the push bit forces TCP to deliver the data immediately. If it is not set,
TCP may pack together several PDUs into one SDU. This is because of the stream
orientation of TCP. TCP accepts and delivers contiguous sets of bytes, without any
structure visible to TCP. The push bit used by Telnet after every end of line.

l the urgent bit indicates that there is urgent data, pointed to by the urgent pointer (the
urgent data need not be in the segment). The receiving TCP must inform the
application that there is urgent data. Otherwise, the segments do not receive any
special treatment. This is used by Telnet to send interrupt type commands.

l RST is used to indicate a RESET command. Its reception causes the connection to be
aborted.

l SYN and FIN are used to indicate connection setup and close. They each consume
one sequence number.

l The sequence number is that of the first byte in the data. The ack number is the next
expected sequence number.

l Options contain for example the Maximum Segment Size (MSS) normally in SYN
segments (negotiation of the maximum size for the connection results in the smallest
value to be selected).

l The checksum is mandatory.

114

TCP is used via a Socket Library

 The figure shows toy client and servers.
The client sends a string of chars to the
server which reads and displays it.

 socket() creates a socket and returns a
number (=file descriptor) if successful

 bind() associates the local port number
with the socket

 connect() associates the remote IP address
and port number with the socket and
sends a SYN packet

 send() sends a block of data to the remote
destination

 listen() can be omitted at first reading;
accept blocks until a SYN packet is
received for this local port number. It
creates a new socket (in pink) and returns
the file descriptor to be used to interact
with this new socket

 receive() blocks until one block of data is
ready to be consumed on this port
number. You must tell in the argument of
receive how many bytes at most you want
to read. It returns the number of bytes
that is effectively retruned and and the
block of data.

% ./tcpClient

<destAddr> bonjour

les amis

%% ./tcpServ &

%

client
socket();

serversocket();

bind();

connect();

send();

close();

bind();

listen();

accept();

receive();

close();

115

How the Operating System views TCP Sockets

program

TCP

IP

id=3 id=4

incoming

connection

queue

buffer

port=32456

address=128.178.151.84

id=5

buffer

socketsocket socket

116

Test Your Understanding

 Consider the UDP and TCP services

Q1. what does service mean here ?

Q2. does UDP transfer the blocks of data delivered by the calling process as they

were submitted ? Analyze: delineation, order, missing blocks.

Q3. does TCP transfer the messages delivered by the calling process as they were

submitted ? Analyze: delineation, order, missing blocks.

 One more question

Q4. Is Stop and Go a sliding window protocol ?

solution

117

6. TCP, advanced

 TCP implements a large number of additional mechanisms. Why ?

1. The devils’ in the detail

Doing ARQ and flow control the right way poses a number of small problems that

need to be solved. We give some examples in the next slides.

This will give you a feeling for the complexity of the real TCP code.

Note that there are many other details in TCP, not shown in this lecture.

2. Congestion control is done in TCP

Congestion control is a network layer function (avoid congestion in the network)

that the IETF decided to implement in TCP – we discuss why in the module on

congestion control cc.pdf. We do not consider congestion control in this module.

118

When to send an ACK

 Why is there an issue ?

 When receiving a data segment, a TCP receiver may send an

acknowledgement immediately, or may wait until there is data to send

(“piggybacking”), or until other segments are received (cumulative ack).

Delaying ACKs reduces processing at both sender and receiver, and may

reduce the amount of IP packets in the network. However, if ACKs are delayed

too long, then receivers do not get early feedback and the performance of

the ARQ scheme decreases. Also, delaying ACKs also delays new information

about the window size.

 What is this algorithm doing ?

 Decide when to send an ACK and when not.

 How does it do its job ?

 Sending an ACK is delayed by at most 0.5 s. In addition, in a stream of full

size segments, there should be at least one ACK for every other segment.

 Note that a receiving TCP should send ACKs (possibly delayed ACKs) even if

the received segment is out of order. In that case, the ACK number points to

the last byte received in sequence + 1.

119

Nagle’s Algorithm
 Why is there an issue ?

 A TCP source can group several blocks of data -- passed to it by sendto() –
into one single segment. This occurs when the application receives very small
blocks to transmit (ex: Telnet: 1 char at a time). Grouping saves processing and
capacity when there are many small blocks to transmit, but adds a delay.

 What is this algorithm doing ?

 Decide when to create a segment and pass it the IP layer for transmission.

 How does it do its job ?

 accept only one unacknowledged tinygram (= segment smaller than MSS):

 Nagle’s algorithm can be disabled by application

 example: X window system (TCP_NODELAY socket option)

 if Nagle enabled, then applies also to pushed data

(data written by upper layer) or (new ack received) ->

if full segment ready

then send segment

else if there is no unacknowledged data

then send segment

else start override timer; leave

override timer expires -> create segment and send

120

Example: Nagle’algorithm

8000:8001(1) ack 101 win 6000

1

A B

a ->

b ->

c ->

d ->

e ->

f ->

101:102(1) ack 8001 win 140002

8001:8003(2) ack 102 win 6000

3

102:102(0) ack 8003 win 139984

8003:8005(2) ack 102 win 6000

102:102(0) ack 8003 win 14000
5

6

102:102(0) ack 8005 win 139987

8005:8006(1) ack 102 win 6000

8

121

Silly Window Syndrome Avoidance: Why ?
 Silly Window Syndrome occurs when

 Receiver is slow or busy

 sender has large amount of data to send

 but small window forces sender to send many small packets -> waste of resources

ack 0 win 2000 <-----

0:1000 -----> bufferSize= 2000B, freebuf= 1000B

1000:2000 -----> freebuf= 0B

ack 2000, win 0 <-----

application reads 1 Byte: freeBuf = 1

ack 2000, win 1 <-----

2000:2001 -----> freeBuf = 0

application reads 1 Byte: freeBuf = 1

ack 2001, win 1 <-----

2001:2002 -----> freeBuf = 0

application reads 1 Byte: freeBuf = 1

ack 2002, win 1 <-----

2002:2003 -----> freeBuf = 0

122

Silly Window Syndrome Avoidance

 What does SWS avoidance do ?

 Prevent receiver from sending small incremental window updates

 How does SWS avoidance work ?

receiver moves the window by increments that are as large as one MSS or 1/2

receiveBuffer:

keep nextByteExpected + offeredWindow fixed until:

reserve · min (MSS, 1/2 receiveBuffer)

highestByteRead nextByteExpected
---|-----------|---------------------|------------|----

<-- offeredWindow --> <- reserve ->
<-------------- receiveBuffer ---------------->

123

SWS Avoidance Example
ack 0 win 2000 <-----

0:1000 -----> bufferSize= 2000B, freebuf = 1000B, reserve = 0B

1000:2000 -----> freebuf= 0B, reserve = 0B

ack 2000, win 0 <-----

application reads 1 Byte: freeBuf=reserve=1B,

....

application has read 500 B: reserve = 500

persistTimer expires

window probe packet sent

2000:2001 ----->

data is not accepted (out of window)

ack 2000, win 0 <-----

....

application has read 1000 B: reserve = 1000

ack 2000, win 1000 <-----

2000:3000 ----->

124

 There is also a SWS avoidance function at sender

 Why ? Cope with destinations that do not implement SWS avoidance

at receiver – see the RFCs for what and how

 Q. What is the difference in objective between Nagle’s algorithm

and SWS avoidance ?

solution

125

Round Trip Estimation

 Why ? The retransmission timer must be set at a value slightly

larger than the round trip time, but too much larger

 What ? RTT estimation computes an upper bound RTO on the

round trip time

 How ? sampleRTT = last measured round trip time

estimatedRTT = last estimated average round trip time

deviation = last estimated round trip deviation

initialization (first sample):

estimatedRTT = sampleRTT + 0.5s; deviation = estimatedRTT/2

new value of sampleRTT available ->

Err = sampleRTT - estimatedRTT

estimatedRTT = estimatedRTT + 0.125 * Err

deviation = deviation + 0.250 * (|Err|- deviation)

RTO = estimatedRTT + 4*deviation

126

Sample RTO

0

2

4

6

8

10

12

14

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

seconds

seconds

RTO

SampledRTT

127

Conclusions

 TCP provides a reliable service to the application programmer.

 TCP is complex and is complex to use, but is powerful. It works well

with various applications such as short interactive messages or large

bulk transfer.

 TCP is even more complex than we have seen as it also implements

congestion control, a topic that we will study in a follow-up lecture.

128

Solutions

129

The Philosophy of Errors in a Layered Model

 The physical layer is not completely error-free – there is always some bit error
rate (BER).

Information theory tells us that for every channel there is a capacity C such that

 At any rate R < C, arbitrarily small BER can be achieved

 At rates R ¸ C, any BER such that H2(BER) > 1 – C/R is achievable

 The TCP/IP architecture decided

 Every layer ¸ 2 offers an error free service to the upper layer:

SDUs are either delivered without error or discarded

 Example: MAC layer

 Q1. How does an Ethernet adapter know whether a received Ethernet frames has
some bit errors ? What does it do with the frame ?
A1. It checks the CRC. If there is an error, the frame is discarded

 WiFi detects errors with CRC and does retransmissions if needed
Q2. Why does not Ethernet do the same ?
A2. BER is very small on cabled systems, not on wireless

back

130

The Layered Model Transforms Errors

into Packet Losses

 Packet losses occur due to

 error detection by MAC

 buffer overflow in bridges and routers

 Other exceptional errors may occur too

Q. give some examples

A. changes in routes may cause some packets

to be lost by TTL exhaustion during the

transients

back

131

The Capacity of the End-to-End Path

 Q. compute the capacity with end-to-end and with hop by hop error

recovery

A.

 Case 1: end-to-end error recovery

End to end Packet Error Rate = 1– (1 – p)k

Capacity C1 = R £ (1-p)k

 Case 2: hop-by-hop error recovery

Capacity one hop = R £ (1-p)

End-to-end capacity C2 = R £ (1-p)

A

R1 R1 R1 R1 R1 R1

B

Loss probability p

k links

back

132

End-to-end Error Recovery is Inefficient when

Packet Error Rate is high

 The table shows the capacity of an end-to-end path as a function of the
packet loss rate p

 Conclusion: end-to-end error recovery is not acceptable when packet loss
rate is high

 Q. How can one reconcile the conflicting arguments for and against hop-by-
hop error recovery ?
A.

1. Do hop-by-hop error recovery only on links that have high bit error rate: ex on
WiFi, not on Ethernet.

2. Do hop-by–hop error recovery at the MAC layer (in the adapter), not in the
router

3. In addition, do end-to-end error recovery in hosts

k Packet loss
rate

C1 (end-to-
end)

C2 (hop-
by-hop)

10 0.05 0.6 £ R 0.95 £ R

10 0.0001 0.9990 £ R 0.9999 £ R

back

133

2. Mechanisms for Error Recovery

 In this section we discuss the methods for repairing packet losses that are used

in the Internet.

 We have seen one such method already:

Q. which one ?

A. the stop and go protocol.

 Packets are numbered at source

 Destination sends one acknowledgement for every packet received

 Source waits for ack; if after T1 seconds the ack did not arrive, packet is

retransmitted

S

L

Packet 1 Ack 1 Packet

2
Ack 2 Packet 2

T1
L’

back

134

Why Sliding Window ?

 Why invented ?

 Overcome limitations of Stop and
Go
Q. what is the limitation of Stop
and Go ?
A. when the bandwidth-delay
product is not very small, the
throughput is small. The protocol
wastes time while waiting for
acks.

 What does it do ?

1. Allow mutiple transmissions
But this has a problem: the
required buffer at destination may
be very large

2. This problem is solved by the
sliding window. The sliding
window protocol puts a limit on
the number of packets that may
have to be stored at receive
buffer.

P0

A1

P1

P2

A2

Pn

P0 again

Pn+1

P1

P1 P2

P1 P2 ... Pn

P1 P2 ... Pn+1

Receive

Buffer

back

135

The previous slide shows an example of ARQ protocol, which uses the following details:

1. packets are numbered by source, staring from 0.

2. window size = 4 packets;

3. Acknowledgements are positive and indicate exactly which packet is being

4. acknowledged

5. Loss detection is by timeout at sender when no acknowledgement has arrived

6. When a loss is detected, only the packet that is detected as lost is re-transmitted (this is

7. called Selective Repeat).

Q. Is it possible with this protocol that a packet is retransmitted whereas it was already
received correctly ?

8.

A. Yes, if an ack is lost.

136

The previous slide shows an example of ARQ protocol, which uses the following

details:

1. window size = 4 packets;

2. Acknowledgements are positive and are cumulative, i.e. indicate the highest

packet number upt to which all packets were correctly received

3. Loss detection is by timeout at sender

4. When a loss is detected, the source starts retransmitting packets from the

last acknowldeged packet (this is called Go Back n).

Q. Is it possible with this protocol that a packet is retransmitted whereas it

was correctly received?

A. Yes, for several reasons

1. If an ack is lost

2. If packet n is lost and packet n+ 1 is not

back

137

The previous slide shows an example of ARQ protocol, which uses the

following details:

1. window size = 4 packets;

2. Acknowledgements are positive or negative and are cumulative. A

positive ack indicates that packet n was received as well as all packets

before it. A negative ack indicates that all packets up to n were

received but a packet after it was lost

3. Loss detection is either by timeout at sender or by reception of negative

ack.

4. When a loss is detected, the source starts retransmitting packets from

the last acknowldeged packet (Go Back n).

Q. What is the benefit of this protocol compared to the previous ?

A. If the timer T1 cannot be set very accurately, the previous protocol

may wait for a long time before detecting a loss. This protocol reacts

more rapidly.

back

138

Are There Alternatives to ARQ ?

Coding is an alternative to ARQ.

 Forward Error Correction (FEC):

 Principle:

 Make a data block out of n packets

 Add redundancy (ex Reed Solomon codes) to block and generate k+n
packets

 If n out of k+n packets are received, the block can be reconstructed

 Q. What are the pros and cons ?
A. Pro: does not require retransmission. On network with very large
delay, this is a benefit.
Pro: works better for multicast, since different destinations may have
lost different packets.
Con: less throughput: redundancy is used even if not needed, ARQ
transmits fewer packets
back

 Is used for data distribution over satellite links

 Other FEC methods are used for voice or video (exploit the fact that
some distortion may be allowed – for example: interpolate a lost packet
by two adjacent packets)

139

Backpressure Flow Control

 Destination sends STOP (= PAUSE) or GO

messages

 Destination stops sending for x msec

after receiving a STOP message

 Simple to implement

 Q. When does it work well ?

A. If bandwidth delay product is small

back

P=0

P0

P=1

P=2

P=3
STOP

P1

P2

P3

STOP

GO

P=5

P=6

P=7

P=4

140

Can we use Sliding Window for Flow Control ?

 One could use a sliding window for flow control, as follows

 Assume a source sends packets to a destination using an ARQ protocol with

sliding window. The window size is 4 packets and the destination has buffer

space for 4 packets.

 Assume the destination delays sending acks until it has enough free buffer

space. For example, destination has just received (but not acked) 4

packets. Destination will send an ack for the 4 packets only when

destination application has consumed them.

Q. Does this solve the flow control problem ?

A. Yes, since with a sliding window of size W, the number of packets sent

but unacknowledged is · W. However, this poses a problem at the source:

non acknowledged packets may be retransmitted, whereas they were

correctly received.

back

141

Why both TCP and UDP ?

 Most applications use TCP rather than UDP, as this avoids re-

inventing error recovery in every application

 But some applications do not need error recovery in the way

TCP does it (i.e. by packet retransmission)

 For example: Voice applications

Q. why ?

A. delay is important for voice. Packet retransmission

introduces too much delay in most cases.

back

 For example: an application that sends just one message,

like name resolution (DNS). TCP sends several packets of

overhead before one single useful data message. Such an

application is better served by a Stop and Go protocol at the

application layer.

Multicast Routing

 Multicast Routing is one of the routing protocols in

TCP/IP communication. In computer networking,

there are several multicast group communication

protocols where data transmission is addressed to

a group of destination computers simultaneously.

(Multicast Source Discovery Protocol, Multicast

BGP, Protocol Independent Multicast)

Multicast

 In computer networking, multicast is group

communication where data transmission is addressed to

a group of destination computers simultaneously.

Multicast can be one-to-many or many-to-many

distribution. Multicast should not be confused with

physical layer point-to-multipoint communication.

Multicast Routing Protocol

 A Multicast Routing Protocol is used to communicate

between multicast routers and enables them to calculate

the multicast distribution tree of receiving hosts.

Protocol Independent Multicast (PIM) is the most

important Multicast Routing Protocol.

 A multicast routing protocol is a mechanism for

constructing a loop-free shortest path from a source host

that sends data to the multiple destinations that receives

the data.

Dynamic Host Configuration Protocol (DHCP)

 BOOTP is not dynamic configuration protocol.

 When a client requests its IP address, the BOOTP sever looks up a table

that matches the physical address of the client with its IP address.

 This means that the binding between the physical address and the IP

address of the client should already exist.

 What if a host moves from one physical network to another ?

 DHCP is extension to BOOTP and has backward compatible with

BOOTP

 meaning that a host running the BOOTP client can request a static

configuration to a DHCP server

DHCP (Cont’d)

 DHCP provides temporary IP addresses for a limited period of time

 DHCP has two DBs

 one for statically binding between physical address and IP

address

 the other one with a pool of available IP addresses

 When a DHCP client requests a temporary IP addresses, the

DHCP sever assigns an IP address from a pool for a negotiable

period of time

 When a DHCP client sends a request to a DHCP server

 At first, checking its static database

 If not , selecting an IP address from the available pool

DHCP (Cont’d)
 Leasing

 The DHCP server issues a lease for a specific period of time

 When the lease expires, the client must either stop using the IP
address or renew the lease

 DHCP Operation

1. A client broadcasts a DHCPDISCOVER message using destination
port 67

2. Servers respond with a DHCPOFFER message including an IP
address

Offering the duration of the lease - default : one hour

The server that sends a DHCPOFFER locks the offered IP
address so that it is not available to any other clients

DHCP (Cont’d)

 If the client receives no DHCPOFER message, it will

try four more times, each with a SPAN of two

seconds.

 If there is no reply to any of these DHCPDISCOVERs,

the client sleeps for five minutes before trying

again

 The client chooses one of the offers and sends a

DHCPREQUEST message to the selected sever

 The server responds with a DHCPACK message and

creates the binding between the client physical address

and its IP address

 Before 50 percent of the lease period is reached, the

client sends another DHCPREQUEST and asks for

renewal

DHCP (Cont’d)

 If the server responds with a DHCPACK, the client

has a new lease agreement and can reset its timer.

If the server responds with a DHCPNACK, the client

must immediately stop using the IP address and

find another server (step 1)

 If the sever does not respond, the client sends

another DHCPREQUEST when the lease time

reaches 87.5 percent. If the client terminates the

lease prematurely, the client sends a DHCPRELEASE

message to the server.

DHCP (Cont’d)

 DHCP Transition Diagram

DHCP (Cont’d)

DHCP (Cont’d)

DHCP (Cont’d)

 Packet Format

 To make DHCP backward compatible with BOOTP, it is only

added a one-bit flag to the packet.

 extra options have been added to the option field

 Flag :

 Let client specify a forced broadcast reply from the server

 Option :

 several options are added

 Ex) the value 53 for the tag subfield is used to define the type of

interaction between the client and server

 MAX : 312 bytes

DHCP (Cont’d)

DHCP (Cont’d)

 DHCP Options

Domain Name

System

(DNS)

Domain Name System (DNS)

Need System to map name to an IP address and vice versa

We have used a host file in our Linux laboratory.

Not feasible for the entire Internet.

Thus, divide huge amount of info and store in parts on many different computers.

Host needing info contacts the closest server containing the needed info.

This is DNS.

Hierarchical Name Space is used. Names are made up of several parts:

acme.gatech.edu

Domain Name Space: names are defined in an inverted tree structure. Read

names from node

up to root of tree.

Source: TCP/IP Protocol Suite by Forouzan

CONTENTS

• NAME SPACE

• DOMAIN NAME SPACE

• DISTRIBUTION OF NAME SPACE

• DNS IN THE INTERNET

• RESOLUTION

• DNS MESSAGES

• TYPES OF RECORDS

• COMPRESSION

• EXAMPLES

• DDNS

• ENCAPSULATION

NAME SPACE

DOMAIN

NAME

SPACE

Domain name space

Domain names

and labels

FQDN and PQDN

Domains

DISTRIBUTION

OF

NAME SPACE

DNS servers are used to distribute the info among many servers. We use a

hierarchy of servers

just like the hierarchy of names.

What a server has authority for is called a zone. A root server’s zone is

the whole tree.

We use primary and redundant servers.

A primary server loads all information from

the disk file; the secondary server loads

all information from the the primary server.

When the primary downloads information

from the secondary, it is called

zone transfer.

DNS

IN THE

INTERNET

DNS in the Internet

Generic domains

Country domains

Inverse domain

RESOLUTION

DNS uses a client server architecture. A host needing info contacts a client named

a resolver.

The resolver client contacts a DNS server.

Recursive Resolution:

The resolver asks for a recursive answer from a DNS server.

The server must respond with the complete answer.

If it does not know the answer the server itself asks a parent server in the

hierarchy.

If the parent does not know, the parent asks a higher level server in the hierarchy.

Eventually the resolver will be told the answer by the first DNS server the

resolver contacted.

Iterative Resolution:

If client does not specify a recursive answer, client will get an iterative answer.

This means if the first server contacted does not know the answer, the server

returns

the IP address of what the server thinks is a smarter server.

This continues until the answer is found.

Resolution

DNS uses either TCP or UDP. Always port 53. UDP is used when messages

are less than 512 bytes because many UDP implementations have a 512 byte

maximum size limit.

If message larger than 512 bytes:

If client knows message is larger than 512 it will use a TCP

connection

If client does not know size of message opens a UDP port to server,

but if the response is larger than 512, server truncates response and

sets

the TC bit as a sign to the client to try again using a TCP

connection instead.

Protocol that transports DNS messages

Recursive resolution

Here is a typical list of root servers held by a typical name server:

; This file holds the information on root name servers

; needed to initialize cache of Internet domain name

; servers (e.g. reference this file in the

; "cache . <file>" configuration file of BIND domain

: name servers).

;

; This file is made available by InterNIC registration

; services under anonymous FTP as

; file /domain/named.root

; on server FTP.RS.INTERNIC.NET

; last update: Aug 22, 1997

; related version of root zone: 1997082200

;

;

; formerly NS.INTERNIC.NET

;

. 3600000 IN NS A.ROOT-SERVERS.NET.

A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

;

; formerly NS1.ISI.EDU

;

. 3600000 NS B.ROOT-SERVERS.NET.

B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

;

; formerly C.PSI.NET

;

. 3600000 NS C.ROOT-SERVERS.NET.

ETC……

Source:http://computer.howstuffworks.com/dns5.htm

Iterative resolution

DNS

MESSAGES

DNS messages

DNS Message Formats

Two basic types: Query and Response

Identification: 2 byte field so client may match response to the question. Client creates number,

Server just repeats the number in the request

Flags: QR Query/Response: One bit 0=query 1=response

Opcode: four bits define type of query or response 0=normal 1=inverse, 2=server status

is requested

AA authoritative answer: One bit value of 1 means server responding is authoritative server

TC truncated: One bit if it equals 1 means answer was larger than than 512 bytes and was

truncated

RD recursion desired: one bit if set to 1 means we want a recursive answer

RA recursion available: One bit when set to 1 means a recursive response is available. This is

set only in the response message

Reserved: three bit field set to 000

rCode: Four bit field contains error status

Number of Question Records: two byte field with number of queries in the question section

of the message

Number of Answer Records: two byte field with number of answers contained in answer section

of the message

Number of Authoritative Records: Two byte field containing the number of authoritative records in the

authoritative records section of a response message

Number of Additional Records: Two byte field containing the number additional records in the

additional section of a response message.

Header:

Question Section: Section consisting of one or more question records. Exists in both query and response

Answer Section: Section consisting of one or more answer records. Exists in response only.

Authoritative Section: Section consisting of one or more resource records. Exists in response only.

This contains the domain name about one or more of the authoritative servers for the query.

Additional Info Section: Contains one or more resource records. Exists in response only.

Remainder of DNS Message Format

TYPES

OF

RECORDS

Types of Records

Two Types of Records in DNS

•Question Records are found in Query section and response section of DNS messages.

We echo the question record in the response in case you forgot your question

before you get your answer :>)

•Resource Records are used the answer section, authoritative section, and additional

section of a response message

Question Record

Question Record used to get info from server.

Resource Record

Resource records are returned from server to client

Query Name: Variable length field containing a domain name

Query Type: 2 byte filed containing the type of query:

TypeMnemonic Details

1 A IP Address. Convert a domain name to IP address

2 NS Name Server. IDs authoritative server for a zone

5 CNAME Canonical Name. Defines an alias for official name of a host

12 PTR Convert an IP address to a domain name

etc

Query Class: 2 Byte field specifying the protocol using DNS. Internet has a value of 1.

Question Record Format

(Each count byte is a binary value between 0 and 63, count bytes are not ASCII)

Resource Record Format

Resource records are returned from server to client

Domain Name: Variable length field containing domain name

Domain Type: Same as query type field from before but a reduced “Query type” list

Domain Class: 2 Byte field specifying the protocol using DNS. Internet has a value of 1.

Time to Live: 4 byte field with number of seconds answer is valid. Receiver can cache this

answer for this period of time

Resource Data Field Length: 2 bytes representing the length of the resource data field

Resource Data: Variable length field containing answer to query

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

