
CLOUD COMPUTING-(18MCA43C)
UNIT – V

'Monitorzing And Management'

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer
Applications,

Government Arts College (Autonomous), Coimbatore – 641
018.

UNIT-IV

• SLA concepts review

• Contrail SLA syntax

• SLA management

• SLA terms

• Multilevel SLA management

• Federation Negotiation

• Provider/SLA selection

• SLA splitting

Federated cloud computing

• A federated cloud (also called cloud federation) is the deployment and
management of multiple external and internal cloud computing
services to match business needs. A federation is the union of several
smaller parts that perform a common action.

SLA – Service Level Agreement

• SLA: agreement (contract) between a Provider and a
Consumer of a service

• A SLA is made of one or more SLOs

• SLO (Service Level Objective): it is a condition on a Term

• Term: measure of a given QoS or QoP attribute

• QoS (Quality of Service) attribute: it describes a specific
measurable aspect of the quality of a service
 Examples: Response time, Throughput

• QoP (Quality of Protection) attribute: it describes a
specific measurable aspect of the security of a service
 Examples: Authentication strength, Reputation, Resource location

Definitions of SLA
• ITIL (v3), Service Design Book – [A SLA is] an agreement between an IT

Service Provider and a Customer. The SLA describes the IT service, documents
Service Level Targets, and specifies the responsibilities of the IT Service
Provider and the Customer. A single SLA may cover multiple IT Services or
multiple customers.

• WS-Agreement specification - An agreement defines a dynamically-
established and dynamically managed relationship between parties. The
object of this relationship is the delivery of a service by one of the parties within
the context of the agreement. The management of this delivery is achieved by
agreeing on the respective roles, rights and obligations of the parties. The
agreement may specify not only functional properties for identification or
creation of the service, but also non-functional properties of the service
such as performance or availability. Entities can dynamically establish and
manage agreements via Web service interfaces.

• Contrail, D3.1 – A SLA is the part of a contract between the provider and the
consumer of some service where the service itself is defined and the
guarantees offered, usually by the provider, are stated.

SLA structure

• UUIDs: SLA ID and Template ID

• Validity: when the SLA is
effective

• Parties: obliged parties:
Provider and Customer

• Interface Declaration:
identification of the Services
that are object of the
agreement

• Agreement Terms: Guarantees
offered on the Services,
including business attributes
(price and penalties)

SLA@SOI SLA

Validity

UUIDs

Parties

Interface Declaration

Variable Declaration

Agreement Terms

A SLA template is…

• Like a pattern…

• …for a SLA

SLAs and SLA Templates
(SLA@SOI)

Agreement terms (SLA@SOI)

• Description
 Detail

SLA syntax

BNF syntax of a simple SLA Template
sla_template {

uuid = example_slat_1 // universally unique identifier for this SLAT
sla_model_version = sla_at_soi_sla_model_v1.0
party {

id = ACME
role = provider

}
interface_declr {

id = the_service // the ID used within the SLAT to refer to
"TheService“

provider_ref = ACME
interface_spec { // an "Interface.Specification“

name = TheService
operation{ // an "Interface.Operation“

name = doStuff
}

}
}
agreement_term {

id = term_1
guaranteed_state {

id = guaranteed_state_1
qos:completion_time(the_service) < 10s // a

"ConstraintExpr“
}

}
}

UUID

Provider

party

Interface

declarations

Agreement

terms

XML syntax of simple SLA Template
1/2

UUID

Provider

party

Interface

declarations

XML syntax of simple SLA Template
2/2

Agreement

terms

SLA management

SLA Lifecycle

• Templates are defined according to the available
services

• Customer selects a SLA template

• Customer negotiates a SLA using a SLA template

• Provisioning: service execution

• Assessment and corrective actions during execution

• Termination and decommission of the service

Template
definition

Negotiation Provisioning
Monitoring /

Enforcement
Expiration

Provider SLAM Architecture

Provider SLAM

SLA Repository

SLA Lifecycle manager & Negotiation

SLA Enforcement

VEP

Provisioning
manager

Monitoring

PAC

POCPE

SLAR SLATR

violation messages

E

x

t

t

e

r

n

a

l

u

s

e

r

initiateNegotiation

negotiate

createAgreement

createTemplate

getSLA

createCustomer

SLA negotiation and provisioning

SLA enforcement

• OVF is a standard
format used to
describe multiple
virtual resources,
their properties
and their
connections

• Provisioning
services in Contrail
use OVF
descriptors as
input

OVF (Open Virtualization Format)

• Role of OVF: to describe resources
• Role of SLA: to express guarantees on services
• SLAs contain both a service description and guarantees about the service
• There is a semantic overlap between OVFs and SLAs for IaaS resources

Combining SLAs with OVF

OVF SLA

Logical Networks

Resources

description

Virtual Machines

Virtual Disks

Startup instructions

Validity period

Service guarantees

Price / Penalties

Scaling rules

Resource details

Agreement Parties

• Need a link between guarantees (SLA) and resources (OVF)
 To enforce SLA terms, resources referenced in the guarantees must be well known

• Need elasticity
 Contrail should support negotiation of long lasting SLAs for provisioning multiple OVFs

 A SLA should be defined independently from the OVFs to be provisioned

• Possible solutions
1. Specific SLAs. They refer to specific appliances / OVF resources

1. E.g. VM34 will have 8Gb of RAM

2. Generic SLAs. They express guarantees that can be applied to all OVFs /
appliances
1. E.g. All VMs will have 4Gb of RAM

Combining OVF and SLA

• Refer to a specific OVF file

• Express guarantees about specific OVF items (e.g.
Virtual Systems or VS Collections)

Specific SLAs

VS Collection

SLA

OVF descriptor

• Do NOT refer to a specific OVF file

• Express guarantees valid for all OVF appliances

Generic SLAs

VS Collection

SLA

OVF descriptor

<slasoi:InterfaceDeclr>

<slasoi:Text>Interface for overall OVF</slasoi:Text>

<slasoi:Properties>

<slasoi:Entry>

<slasoi:Key>OVF_URL</slasoi:Key>

<slasoi:Value>/opt/contrail/ ovf/lamp.ovf</slasoi:Value>

</slasoi:Entry>

</slasoi:Properties>

<slasoi:ID>OVF-Descriptor-General</slasoi:ID>

<slasoi:ProviderRef>ContrailProvider</slasoi:ProviderRef>

<slasoi:Endpoint>

<slasoi:Text/><slasoi:Properties />

<slasoi:ID>OVF-Endpoint</slasoi:ID>

<slasoi:Location>VEP-ID</slasoi:Location>

<slasoi:Protocol>http://www.slaatsoi.org/slamodel#HTTP</slasoi:Protocol>

</slasoi:Endpoint>

<slasoi:Interface>

<slasoi:InterfaceResourceType>

<slasoi:Name>OVFDescriptor</slasoi:Name>

</slasoi:InterfaceResourceType>

</slasoi:Interface>

</slasoi:InterfaceDeclr>

Specific SLA: reference to an OVF file

Reference type:

OVF descriptor

(file)

<slasoi:InterfaceDeclr>

<slasoi:Text>Interface to specific OVF item</slasoi:Text>

<slasoi:Properties><slasoi:Entry>

<slasoi:Key>OVF_URL</slasoi:Key>

<slasoi:Value>/opt/contrail/ ovf/lamp.ovf</slasoi:Value>

</slasoi:Entry></slasoi:Properties>

<slasoi:ID>OVF-Descriptor-LAMP</slasoi:ID>

<slasoi:ProviderRef>ContrailProvider</slasoi:ProviderRef>

<slasoi:Endpoint>

<slasoi:Text/>

<slasoi:Properties><slasoi:Entry>

<slasoi:Key>OVF_VirtualSystem_ID</slasoi:Key>

<slasoi:Value>MyLampService</slasoi:Value>

</slasoi:Entry></slasoi:Properties>

<slasoi:ID>VM-with-Linux-Apache-MySQL-PHP</slasoi:ID>

<slasoi:Location>VEP-ID</slasoi:Location>

<slasoi:Protocol>http://www.slaatsoi.org/slamodel#HTTP</slasoi:Protocol>

</slasoi:Endpoint>

<slasoi:Interface>

<slasoi:InterfaceResourceType>

<slasoi:Name>OVFAppliance</slasoi:Name>

</slasoi:InterfaceResourceType>

</slasoi:Interface>

</slasoi:InterfaceDeclr>

Specific SLA: reference to VirtualSystem

VirtualSystem ID

inside the OVF

Reference type:

OVF appliance

(VirtualSystem)

Negotiation model for specific SLA

• Optimization problem: find “nearest” offer that fulfill
user’s request
 Constraints:

• OVF (lower bound): provider can’t offer less than the request

• VM Handler (upper bound): provider can’t offer more than resource
available

OVF

SLA

Combined resources

Provider

Small VM

Medium VM

Big VM

Resources availableProposal
Map function Counter Offer

Pricing model

• Logic determining the price of the services in the SLA Offer:

totalPrice = resourcesPrice + guaranteePrice

resourcesPrice= (cpu_speed * cpu_speed_unit_price) +
(vm_cores * vm_core_unit_price) +

(memory * memory_unit_price)

guaranteesPrice = (resourcesPrice *
guaranteeModificationPricePercentage)

• It’s open and flexible to meet the particulars pricing policies of
different cloud computing providers. It’s possible to associate a
price for each individual resource (CPU, RAM, HDD, etc.), a
specific OVF, or a particular VM configuration.

SLA terms

Classification of SLA Terms

• Term type
 QoS (constraints on performance)

 QoP (level of protection)

• Evolvability
 Static (static properties, e.g. # of VM cores)

 Dynamic (non static props., e.g. RAM)

• Monitorability & Controllability
 Unobservable

 Observable
• Enforceable

• Categorization in a Quality Model (e.g. S-CUBE)
 Performance, Dependability, Reliability, Network-related, Infrastructure-

related, Security, Auditability, Legal

Unobservabl

e

Observabl

e

Enforceable

Quality Model

new quality

terms/categories

Example QoS/QoP SLA Terms

• QoS
 Availability

• the probability that the cloud infrastructure is running over a predefined
monitoring period (usually a month or a year)

 Virtualization factor

• ratio between virtual and physical CPU cores

• QoP
 Location

• country code where the resource (VM / storage) is located

 Isolation level
• depends on which measures are taken to ensure isolation between

different users hosted on the same infrastructure (e.g. storage encryption,
communication encryption, zero-filling released storage, …)

SLA Terms supported in Contrail
(v1.2)

Term name Description Type Evolv. Enforc.

vm_cores number of cores assigned to a VM QoS static Enf.

memory RAM size assigned to a VM QoS dynamic Enf.

cpu_speed CPU frequency assigned to a VM QoS static Enf. (*)

cpu_load average system load over a 5-
minute period

QoS dynamic Enf.

location country code where the resource
(VM / storage) is located

QoP dynamic /
static

Obs.

(*) quantized values

Additional SLA terms in next releases

Term name Description Type Evolv. Enforc.

reservation Resources reservation QoS static Enf.

co-location (rack) Location of VM in the same
cluster/host

QoS static Enf.

minimum LoA Minimum level of authentication
needed to access users’ resources

QoP static Enf.

availability % of uptime of the whole provider
infrastructure

QoS dynamic Obs.

vm_cpu_load [5 min CPU avg load / # of cores]
for the VM of a VirtualSystem

QoS dynamic Obs.

host_cpu_load [5 min CPU avg load / # of cores]
for the host of a VirtualSystem

QoS dynamic Enf.

Additional SLA terms in next releases
/2

Term name Description Type Evolv. Enforc.

location for
storage

replicas for the given volume are
placed in the given countries

QoP dynamic Obs.

not-co-location
(host)

VMs are not allocated on the same
cluster/host

QoS static Enf.

reliability for
storage

number N of replicas for the given
volume

QoS static Enf.

bandwidth Applied to a single network defined
in the OVF

QoS static Enf.

public IP address Applied to a single network defined
in the OVF

QoS static Enf.

Multilevel SLA management

SLA Interaction Model
• User

negotiates a
SLA with the
Federation

• Federation
negotiates
SLAs with one
or more
providers, on
behalf of the
user

Cloud user

Contrail Federation Layer

SLAfed

SLA1

Contrail Provider Layer

Provider P1

IaaS1

Contrail Resource Layer

PaaS1

SLAn

Contrail Provider Layer

Provider Pn

IaaSn

Contrail Resource Layer

PaaSn

…

Future: integration of external
providers

• External
providers will be
integrated in
future versions
of Contrail

• The interaction
model will not
change for the
user

Cloud user

Contrail Federation Layer

SLAfed

SLA1

Contrail Provider Layer

Provider P1

IaaS1

Contrail Resource Layer

PaaS1

SLAn

Contrail Provider

(Proxy) Layer

External Provider Pn

(Amazon, Azure, …)

…

SLAs in Contrail are the main pillars
for Cloud Federations

• Federation: abstraction of
providers

• SLA+OVF is a unified way for expressing
user requirements

• QoS/QoP requested by each customer can be
satisfied irrespective of the provider

• Federation: broker of providers
 Provider selection is based on SLAs

• new market and business model for intermediate
players

• Federation: small providers can
join forces
 SLA splitting allows distributing application

over multiple providers

Cloud B

C

A

B
Federation

CA

B

Added value of Contrail approach:
Federation as a Virtualization of

Clouds
• Contrail Federations relieve the user from managing cloud

providers
 Inner complexity is hidden to users

 Federated Identity Management

 Best / cheapest cloud provider is automatically selected based on user
preferences

• Comparing SLAs and selecting the best provider opens new
Cloud mediators market

• Automatic SLA negotiation allows Cloud providers to
personalize their offer

• Worldwide Clouds made possible

Contrail high level architecture

SLA management in a Cloud
Federation

Cloud Provider

VEP

Se
cu

ri
ty

M
o

n
it

o
ri

n
g

Federation

Federation SLA
Management

Provider Selection

Federated Identity

Accounting

Application Splitting

CSP SLA Mgmt.

Provisioning
Manager

SLA

Cloud Provider

VEP
CSP SLA Mgmt.

Cloud Provider

VEP
CSP SLA Mgmt.

Multilevel SLA Management
Architecture

Federation SLAM

SLA
Repository

SLA
Negotiation

SLA
Enforcement

Provider SLAM

SLA
Repository

SLA
Negotiation

SLA
Enforcement

VEP

Provisioning
Manager

F

e

d

e

r

a

t

i

o

n

Monitoring
Manager

Provider
Accounting

Monitoring
Hub

Federation
Accounting

General interaction model

Cloud user Federation Provider IaaS / PaaS

ResourceNegotiate

Select / Split SLA

Negotiate

Enforcement action

Provision

Monitoring events

Provision Provision

Adjustment

SLA violation

Adjustment

Enforcement action

User access and applications
retrieval

SLA negotiation /1

SLA negotiation /2

Selection

Provider selection

• Happens during user-federation negotiation

• Driven by user-specified preferences

• May be guided also by provider reputation, if the
federation keeps track of it

• Roles:
 The federation component gives the list of providers to be

contacted by the Federation SLAM
• It might even vary for each negotiation round

 The Federation SLAM negotiate the SLA template (proposal)
with each provider and then selects the best SLA offers

User preferences

 Users drive the provider selection process by
specifying user preferences during the
negotiation

 User preferences include:

• Selection criteria (e.g. minimize price or
maximize quality or even maximize penalties)

• Positive or negative preference on individual
providers (e.g. not on Azure)

User criteria

• Each criterion is a pair {Guarantee Term, Weight}, weight
{0, 1}

• Weight express the importance of the term for that
criterion (max importance = 1).
 By default, the weight is considered 0.

• Currently supported terms:
 cpu_speed

 core_number

 memory

 price

Provider list and User criteria -
Syntax

• The Federation uses the SLA proposal itself to pass
User criteria and Provider list to the Federation SLAM

Selection process

1. Offer guarantee terms are normalized versus user’s proposal
 e.g. value of offer guarantee term / value of proposal guarantee term

2. User criteria are extracted from SLA Template proposal

3. Normalized values are weighted using Criteria related weight
 e.g. normalized term value * term weight

4. An evaluation algorithm is applied to the set of weighted values

5. SLA offers are ordered according to the output values of the
evaluation algorithm.

6. SLA offers are filtered

Normalize
terms

Weight
values

Apply
evaluation
algorithm

Order SLA
offers

Filter
offers

Evaluation algorithms

• Evaluation algorithms, used to order SLA offers, and so determine the
best one, take into account user criteria weights for impacted terms in
each offer

• The problem is transformed in maximizing the Euclidean distance of a
point from the origin, in an n-dimensional space.

• Dimensions can be:

 Terms

 Terms x VirtualSystems

Term-1 Term-2

Term-3

Term-n

PVS1,O1

d

0

PVS2,O1 PVS3,O1

PVS1,O2

PVS2,O2

PVS3,O2

SLA Offer1

SLA Offer2

Evaluation algorithms

• Different evaluation algorithms have been identified for
ranking the SLA offers

• Based upon user criteria, one can privilege the offer
including the most convenient VirtualSystem, etc.

• The Federation SLA Manager is configurable: the
Federation Administrator can select the preferred
algorithm, or can write their own Java class for it
(implementing a common interface)

Algorithm example 1: best virtual
system /1

• For each VirtualSystem of each SLA offer, the algorithm
computes the Euclidean distance from the origin of a t-
dimensional point, t=NumTerms

cpu_speed memory

core_number

price

P(W1, W2, W3, W4)
W1

dj = distance of j-th

VirtualSystem

Wi = weighted value

of i-th term

d

0

Algorithm example 1: best virtual
system /2

• The SLA offers are ranked based on their
VirtualSystems distances

• The best SLA Offer is the one including the farther
VirtualSystem from origin

Term-1 Term-2

Term-3

Term-n

PVS1,O1

PVS2,O1 PVS3,O1

PVS1,O2

PVS2,O2

PVS3,O2

SLA Offer1

SLA Offer2

Algorithm example 2: best mean
offer /1

• For each SLA offer, the algorithm computes the
Euclidean distance from the origin of an {t*v}-
dimensional point
t=NumTerms, v=NumVirtualSystems

Term1-VS1 Term2-VS2

Term3-VS3

Term1-VS2

P

Wi k = weighted

value of i-th term

for the k-th

virtualSystem

dj

0

Term2-VS2
Termi-VSk

j = {1 .. NumOffers}

SLA Offerj

Algorithm example 2: best mean
offer /2

• The SLA offers are ranked based on their distances

• The best SLA Offer is the farthest one

Term1-VS1 Term2-VS2

Term3-VS3

Term1-VS2

P

dj

0

Term2-VS2Termi-VSk

SLA Offerj

Other algorithms

• Select the offer having the best “average” VirtualSystem

• Select the offer having the best VirtualSystem in relation to
the average of the same VirtualSystem for the other n-1
offers

• Select the offer having the best average VirtualSystem in
relation to the other offers

• …

SLA splitting

• The SLA (or application) requires services that cannot
be found on only one provider
 E.g.: the customer wants to distribute its application in several countries

• The amount of resources required goes beyond what a
single provider can offer (and guarantee)
 A service provider does not have to be the size of Amazon to participate in

the Federation

• The required performance cannot be guaranteed by
any single provider alone
 Scaling across multiple providers

• The Federation, according to its own risk management
strategy, wants to distribute the risk of satisfying the
user SLA

Why splitting SLAs?

• The Federation splits the user SLA and assigns the
resulting SLAs to multiple providers

• Three types of SLA splitting strategies are considered:
 Service-based SLA splitting

 Resource-based SLA splitting

 Performance-based SLA splitting

• Selection of the best split for a given SLA is a multi-
objective optimization problem (total price, QoS
offered, reputation…)

• Some terms cannot be split (invariant terms, typically
QoP)

• Not only the SLA, but also the application must be split

Splitting SLAs

• Generation of several
candidate splits, each
with candidate
providers

• Selection of the best split
according to total price,
QoS offered, reputation…

Service-based SLA splitting

Cloud user

Contrail Federation Layer

SLAfed

ServiceA

ServiceB

ServiceC

SLA1

ServiceA

SLA2

ServiceB

ServiceC

Provider P1 Provider P2

• Generation …

• Selection …

• Penalties cannot be split

• Federation, according to
its risk management
strategy, may ask more
to providers to have
some tolerance

Resource-based SLA splitting

Cloud user

Contrail Federation Layer

SLAfed

100 x

ResourceA

SLA1

60 x

ResourceA

SLA2

50 x

ResourceA

Provider P1 Provider P2

• Generation …

• Selection …

• Penalties…

• Tolerance…

• Common entry point
with load balancing
across providers

• More complex if Service
not stateless

Performance-based SLA splitting

Cloud user

Contrail Federation Layer

SLAfed

100

requests/sec

SLA1

60

requests/sec

SLA2

50

requests/sec

Provider P1 Provider P2

SLA splitting steps (without
selection)

SLA splitting with selection

Cloud Platforms in Industry

Automated policy management in
cloud

• Automated cloud policy management can be described as
a hands-free way to govern your cloud environment.
Although an automated cloud management solution does
initially require some input, the description thereafter is
remarkably accurate, as it's possible to automate the
management of virtually any cloud governance policy.

Cloud Computing Framework

• The Cloud Computing Governance Framework is a subset
of overall business governance which includes IT and EA
governance. It contains the unique characteristics from all
types of governance that are essential to cloud computing
governance.

Amazon web services (AWS)

• Amazon Web Services (AWS) provides elastic
infrastructure scalability, messaging, and data storage.

• The platform is accessible through SOAP (Simple Object
Access Protocol) or RESTful (Representational State
Protocol)Web service interfaces and provides a Web-based
console.

• Expenses computed on a pay-as-you-go basis

• Amazon Elastic Compute (EC2) and Amazon Simple
Storage Service(S3).

Services available in the AWS ecosystem.

AWS: Compute services

• The fundamental service in this space is Amazon EC2, which
delivers an IaaS solution.

• Amazon EC2 allows deploying servers in the form of virtual
machines created as instances of a specific image.

• Amazon machine images:
 Amazon Machine Images(AMIs) are templates from which it is

possible to create a virtual machine.

 They are stored in Amazon S3 and identified by a unique identifier in
the form of ami-xxxxxx.

 An AMI contains a physical file system layout with a predefined
operating system installed.

 Amazon Ram disk Image (ARI, id: ari-yyyyyy) and the Amazon Kernel
Image (AKI, id: aki-zzzzzz),

 Once an AMI is created, it is stored in an S3 bucket

AWS: EC2 instances

• EC2 instances represent virtual machines, created using
AMI as templates, by selecting the number of cores, their
computing power, and the installed memory.

• The processing power is expressed in terms of virtual
cores and EC2 Compute Units (ECUs).

• One ECU is defined as giving the same performance as a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

Available configurations for EC2 instances

AWS:EC2 environment

• The EC2 environment is in charge of allocating addresses,
attaching storage volumes, and configuring security in
terms of access control and network connectivity.

• instances are created with an internal IP address, which
makes them capable of communicating within the EC2
network and accessing the Internet as clients.

• EC2 instances are also given a domain name that generally
is in the form ec2-xxx-xxx-xxx.compute-x
.amazonaws.com,

• where xxx-xxx-xxx normally represents the four parts of
the external IP address separated by a dash.

• compute-x gives information about the availability zone
where instances are deployed.

AWS: EC2:Advanced compute services

• AWS Cloud Formation: Cloud Formation introduces the
concepts of templates, which are formatted text files that
describe the resources needed to run an application.

• Services: S3, SimpleDB, SQS, SNS, Route 53, Elastic
Beanstalk

• AWS elastic beanstalk: AWS Elastic Beanstalk constitutes
a simple and easy way to package applications and
deploy them on the AWS Cloud.

• Amazon elastic MapReduce : cloud computing platform
for MapReduce applications. It utilizes Hadoop as the
MapReduce engine,

AWS: Storage services: Simple Storage
Service(S3): S3 Key Concepts

• S3 has been designed to provide a simple storage service
that’s accessible through a Representational State Transfer
(REST) interface.

• The storage is organized in a two-level hierarchy .(
Buckets, Objects)

• Stored objects cannot be manipulated (renaming,
modifying, or relocating) like standard files.

• Content is not immediately available to users .

• Requests will occasionally fail.

AWS:S3 Key Concepts: Resource naming
• Buckets, objects are represented by uniform resource

identifiers(URIs) under the s3.amazonaws.com domain.

• three different ways of addressing a bucket:
 Canonical form: http://s3.amazonaws.com/bukect_name/

 Sub domain form: http://bucketname.s3.amazon.com/

 Virtual hosting form: http://bucket-name.com/

• Object ACL:
http://s3.amazonaws.com/bukect_name/object_name?acl

• Bucket server logging:
http://s3.amzonaws.com/bucket_name?logging

http://s3.amazonaws.com/bukect_name/
http://bucketname.s3.amazon.com/
http://bucket-name.com/

AWS:S3 Key Concepts: Buckets
• A bucket is a container of objects.

• Buckets are top- level elements of the S3 storage architecture and
do not support nesting. That is, it is not possible to create
“subbuckets”.

• A bucket is located in a specific geographic location.

• Once a bucket is created, all the objects that belong to the bucket
will be stored in the same availability zone of the bucket

• Users create a bucket by sending a PUT request to
http://s3.amazonaws.com/ with the name of the bucket.

• The content of a bucket can be listed by sending a GET request
specifying the name of the bucket.

• Once created, the bucket cannot be renamed or relocated.

• Deletion of a bucket is performed by a DELETE request .

AWS:S3 Key Concepts: Objects and metadata

• Objects constitute the content elements stored in S3.

• An object is identified by a name that needs to be unique within
the bucket.

• The name cannot be longer than 1,024 bytes when encoded in
UTF-8, and it allows almost any character.

• Users create an object via a PUT request that specifies the name of
the object together with the bucket name, its contents.

• Maximum size of an object is 5 GB.

• it cannot be modified, renamed, or moved into another bucket.

• Deleting an object is performed via a DELETE request.

• Objects can be tagged with metadata.

AWS:S3 Key Concepts: Access control and security

• Amazon S3 allows controlling the access to buckets and objects by
means of Access Control Policies(ACPs).

• An ACP is a set of grant permissions are attached to a resource
expressed by means of an XML configuration file.

• A policy allows defining up to 100 access rules.

• READ allows the grantee to retrieve an object.

• WRITE allows the grantee to add an object to a bucket .

• READ_ACP allows the grantee to read the ACP of a resource.

• WRITE_ACP allows the grantee to modify the ACP of a resource.

• FULL_CONTROL grants all of the preceding permissions

AWS:S3 Key Concepts: Amazon elastic block store

• The Amazon Elastic Block Store (EBS) allows AWS users to
provide EC2 instances with persistent storage.

• They accommodate up to 1 TB of space.

• Currently, Amazon charges $0.10/GB/month of allocated storage
and $0.10 per 1 million requests made to the volume.

AWS:S3 Key Concepts: Amazon ElastiCache

• ElastiCache is an implementation of an elastic in-memory cache
based on a cluster of EC2.

• It provides fast data access from other EC2 instances through a
Memcached-compatible protocol.

AWS:S3 Key Concepts: Structured storage solutions

• RDBMS have been the common data back-end for a wide range of
applications.

• Amazon provides applications with structured storage: Amazon
Relational Data Storage(RDS), and Amazon SimpleDB.

AWS:S3 Key Concepts: Amazon CloudFront

• CloudFront is an implementation of a content delivery network.

• AWS provides users with simple Web service APIs to manage
CloudFront.

• DNS domain under the Cloudfront.net domain name(i.e.,my-
distribution.Cloudfront.net).

• The content that can be delivered through CloudFront is static
(HTTP and HTTPS) or streaming (Real Time Messaging Protocol,
or RMTP).

AWS: Communication services

• Amazon provides the communication among existing
applications and services residing within the AWS
infrastructure.

• Two major categories: virtual networking and messaging.

AWS: Communication services: Virtual
networking

• comprises a collection of services that allow AWS users to
control the connectivity to and between compute and
storage services.

• Amazon Virtual Private Cloud(VPC) and Amazon
DirectConnect provide connectivity solutions.

• VPC: Prepared templates include public subnets, isolated
networks, private networks accessing Internet through
network address translation (NAT), and hybrid networks.

• Amazon Direct Connect allows AWS users to create
dedicated networks between the user private network
and Amazon Direct Connect locations, called ports.

• Amazon Route 53 implements dynamic DNS services that
allow AWS resources to be reached through domain names
different from the amazon.com domain.

AWS: Communication services:
Messaging

• The three different types of messaging services offered are
Amazon Simple Queue Service (SQS), Amazon Simple
Notification Service(SNS), and Amazon Simple Email
Service(SES).

• SQS: exchanging messages between applications by means
of message queues, hosted within the AWS infrastructure.

• Amazon SNS provides a publish-subscribe method for
connecting heterogeneous applications.

• Amazon SES provides AWS users with a scalable email
service.

Aneka framework

• Aneka is an Application Platform-as-a-Service (Aneka PaaS) for
Cloud Computing. It acts as a framework for building customized
applications and deploying them on either public or private Clouds.
One of the key features of Aneka is its support for provisioning
resources on different public Cloud providers such as Amazon EC2,

Google AppEngine

• Google AppEngine is a PaaS implementation that provides
services for developing and hosting scalable Web
applications.

Google AppEngine: Architecture

Google AppEngine: Runtime environment

• The runtime environment represents the execution context
of applications hosted on AppEngine.

• Supported runtimes : Java, Python, and Go.

• Java ServerPages(JSP),

• Python 2.5.2 interpreter

• Python Web application framework, called webapp,
simplifying the development of Web applications.

• Go that is supported by AppEngine is r58.1.

Google AppEngine: Storage

• AppEngine provides in memory-cache, storage for
semistructured data, and long-term storage for static data.

• Static file servers: Static data of web applications can be
hosted on static file servers, since they are not frequently
modified.

• DataStore : DataStore is a service that allows developers
to store semistructured data.

• DataStore can be considered as a large object database in
which to store objects that can be retrieved by a specified
key.

Google AppEngine: Application services
• UrlFetch : provide developers with the capability of retrieving a

remote resource through HTTP/HTTPS .

• MemCache: optimized for fast access and provides developers with a
volatile store for the objects that are frequently accessed.

• Mail and instant messaging: AppEngine provides developers with the
ability to send and receive mails through Mail. The service allows
sending email on behalf of the application to specific user accounts.

• AppEngine provides also another way to communicate with the
external world: the Extensible Messaging and Presence Protocol
(XMPP) ,Google Talk .

• Account management : allowing developers to leverage Google
account management by means of Google Accounts.

• Image manipulation : AppEngine allows applications to perform image
resizing, rotation, mirroring, and enhancement by means of Image
Manipulation.

Google AppEngine: Compute services
• Task queues:

 Task Queues allow applications to submit a task for a later
execution.

 The service allows users to have up to 10 queues that can execute
tasks at a configurable rate.

• Cron jobs
 It is possible to schedule the required operation at the desired time

by using the CronJobs service.

Google AppEngine: Application life cycle
• AppEngine provides support for almost all the phases

characterizing the life cycle of an application: testing and
development, deployment, and monitoring.

• Java SDK , Google Web Toolkit, and Google AppEngine plug-
ins into Eclipse, servlet

• Python SDK:
 The Python SDK allows developing Web applications for AppEngine

with Python 2.5.

 It provides a stand alone tool,called GoogleApp EngineLauncher,
for managing Web applications locally and deploying them to
AppEngine.

Microsoft Azure

• Microsoft Windows Azure is a cloud operating system built
on top of Microsoft datacenters’ infrastructure .

• Services range from compute, storage, and networking
to application connectivity, access control, and
business intelligence.

• integrates the scalability features into the common
Microsoft technologies such as Microsoft Windows
Server 2008, SQL Server, and ASP.NET.

Azure core concepts

Microsoft Azure :Compute services

• Web role, Worker role, Virtual Machine (VM) role.

• Web role:
 The Web role is designed to implement scalable Web applications.

 They are hosted on the IIS 7 Web Server.

 the .NET technology natively supports Web roles; developers can
directly develop their applications in Visual Studio, test them locally, and
upload to Azure.

 It is possible to develop ASP.NET.

 IIS 7 also supports the PHP runtime environment by means of the
FastCGI module.

Microsoft Azure :Compute services

• Worker role:
 Worker roles are designed to host general compute services on

Azure.

 They can be used to quickly provide compute power or to host
services .

 the .NET technology provides complete support for Worker role

 For example, Worker roles can be used to host Tomcat and serve JSP-
based applications.

Microsoft Azure :Compute services

• Virtual Machine role:
 The Virtual Machine role is based on the Windows Hyper-V

virtualization technology.

Microsoft Azure :Storage services

• Blobs:
 Azure allows storing large amount of data in the form of binary large

objects(BLOBs) by means of the blobs service.

 This service is optimal to store large text or binary files.

 Block blobs. Block blobs are composed of blocks and are optimized
for sequential access; therefore they are appropriate for media
streaming. Currently, blocks are of 4 MB, and a single block blob can
reach 200 GB in dimension.

 Page blobs. Page blobs are made of pages that are identified by an offset
from the beginning of the blob.

 This type of blob is optimized for random access

 Currently, the maximum dimension of a page blob can be 1 TB.

Microsoft Azure :Storage services

• Azure drive: Page blobs can be used to store an entire file
system in the form of a single Virtual Hard Drive (VHD) file.

• Tables: Tables constitute a semi structured storage solution,
allowing users to store information in the form of entities with
a collection of properties.

• Currently, a table can contain up to 100 TB of data, and rows
can have up to 255 properties, with a maximum of 1 MB for
each row.

Microsoft Azure :Storage services

• Queues :Queue storage allows applications to communicate
by exchanging messages through durable queues.

• Applications enter messages into a queue, and other
applications can read them in a first-in, first-out (FIFO) style.

Microsoft Azure: AppFabric

• AppFabric is a comprehensive middleware for developing,
deploying, and managing applica- tions on the cloud.

• AppFabric implements an optimized infrastructure supporting
scaling out and high availability;

• it also provides communication, authentication and
authorization, and data access.

Windows Azure virtual network

• Networking services for applications are offered under the
name Windows Azure Virtual Network, which includes
Windows Azure Connect and Windows Azure Traffic
Manager.

• Windows Azure Connect allows easy setup of IP-based network
connectivity.

• Windows Azure Traffic Manager provides load-balancing
features for services listening to the HTTP or HTTPS ports and
hosted on multiple roles.

SQL Azure
• SQL Azure is a relational database service hosted on Windows

Azure and built on the SQL Server technologies.

Cloud Applications: Healthcare:
ECG analysis in the cloud

• ECG activity produces a specific waveform that is repeated
over time and that represents the heartbeat.

• Cloud computing technologies allow the remote
monitoring of a patient’s heartbeat data, data analysis
in minimal time.

• This way a patient at risk can be constantly monitored
without going to a hospital for ECG analysis.

Biology: protein structure prediction

• Protein structure prediction is a computationally intensive
task for the design of new drugs for the treatment of
diseases.

• The computational power required for protein structure
prediction can now be acquired on demand, without
owning a cluster, parallel and distributed computing
facilities.

Protein structure prediction: JEEVA

Geoscience: satellite image
processing

• Geoscience applications collect, produce, and analyze
massive amounts of geospatial and non-spatial data.

• Satellite remote sensing generates hundreds of gigabytes
of raw images that need to be further processed to become
the basis of several different GIS products.

• Large images need to be moved from a ground station’s
local storage to compute facilities, where several
transformations and corrections are applied.

• Cloud computing provides the appropriate infrastructure
to support such application scenarios.

Business and consumer applications :

• Customer Relationship Management(CRM)

• Enterprise Resource Planning(ERP): finance and
accounting, human resources, manufacturing, supply chain
management, project management

Salesforce.com

Dropbox and iCloud

Google docs

• GoogleDocs is a SaaS application that delivers the basic
office automation capabilities with support for
collaborative editing over the Web.

• Google Docs allows users to create and edit text
documents, spreadsheets, presentations, forms, and
drawings.

Cloud desktops: EyeOS and XIOS/3

Social networking : Facebook

• Facebook is based on LAMP (Linux, Apache, MySQL, and
PHP).

Media applications

• Animoto: The Website provides users with a very
straightforward interface for quickly creating videos out of
images, music, and video fragments submitted by users.

• A proprietary artificial intelligence (AI) engine, which
selects the animation and transition effects according
to pictures and music, drives the rendering operation.

Animoto reference architecture.

Maya rendering with Aneka

Eucalyptus cloud computing
platforms

• Eucalyptus is an open source software platform for implementing
Infrastructure as a Service (IaaS) in a private or hybrid cloud
computing environment. The Eucalyptus cloud platform pools together
existing virtualized infrastructure to create cloud resources for
infrastructure as a service, network as a service and storage as a
service.

• Eucalyptus implements infrastructure as a service (IaaS) methodology
for solutions in private and hybrid clouds. Eucalyptus provides a
platform for a single interface so that users can calculate the resources
available in private clouds and the resources available externally in
public cloud services.

IBM Bluemix

• IBM Bluemix, rebranded IBM Cloud in 2017, is a cloud Platform as a
service (PaaS) developed by IBM. It supports several programming
languages and services as well as integrated DevOps to build, run,
deploy and manage applications on the cloud. Bluemix is based on
Cloud Foundry open technology and runs on SoftLayer infrastructure.

• IBM Bluemix, rebranded IBM Cloud in 2017, is a cloud Platform as a
service (PaaS) developed by IBM. It supports several programming
languages and services as well as integrated DevOps to build, run,
deploy and manage applications on the cloud. Bluemix is based on
Cloud Foundry open technology and runs on SoftLayer infrastructure.
Bluemix supports several programming languages including Java,
Node.js, Go, PHP, Swift, Python, Ruby Sinatra, Ruby on Rails and can be
extended to support other languages such as Scala through the use of
buildpacks.

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

