
CLOUD COMPUTING-(18MCA43C)
UNIT – IV

'MAP REDUCE PARADIGMS'

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer
Applications,

Government Arts College (Autonomous), Coimbatore – 641 018.

UNIT-IV

• MAP REDUCE PARADIGMS

Large-Scale Data Analytics

• MapReduce computing paradigm (E.g., Hadoop) vs. Traditional
database systems

Database

vs.

 Many enterprises are turning to Hadoop

 Especially applications generating big data

 Web applications, social networks, scientific applications

Why Hadoop is able to compete?

Scalability (petabytes of data,

thousands of machines)

Database

vs.

Flexibility in accepting all data

formats (no schema)

Commodity inexpensive hardware

Efficient and simple fault-

tolerant mechanism

Performance (tons of indexing,

tuning, data organization tech.)

Features:

- Provenance tracking

- Annotation management

- ….

GFS Architecture

• General architecture of Google File System GFS is clusters of
computers. A cluster is simply a network of computers. Each cluster
might contain hundreds or even thousands of machines.

What is Hadoop

• Hadoop is a software framework for distributed processing

of large datasets across large clusters of computers

 Large datasets Terabytes or petabytes of data

 Large clusters hundreds or thousands of nodes

• Hadoop is open-source implementation for Google

MapReduce

• Hadoop is based on a simple programming model called

MapReduce

• Hadoop is based on a simple data model, any data will fit

Single Node Architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk
 ~4 months to read the web

• ~1,000 hard drives to store the web

• Takes even more to do something useful
with the data!

• Today, a standard architecture for such problems is
emerging:
 Cluster of commodity Linux nodes

 Commodity network (ethernet) to connect them

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between

any pair of nodes

in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO

Large-scale Computing

• Large-scale computing for data mining
problems on commodity hardware

• Challenges:
 How do you distribute computation?

 How can we make it easy to write distributed programs?

 Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• People estimated Google had ~1M machines in 2011

– 1,000 machines fail every day!

Idea and Solution

• Issue: Copying data over a network takes time

• Idea:
 Bring computation close to the data

 Store files multiple times for reliability

• Map-reduce addresses these problems
 Google’s computational/data manipulation model

 Elegant way to work with big data

 Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS

 Programming model

• Map-Reduce

Storage Infrastructure

• Problem:
 If nodes fail, how to store data persistently?

• Answer:
 Distributed File System:

• Provides global file namespace

• Google GFS; Hadoop HDFS;

• Typical usage pattern
 Huge files (100s of GB to TB)

 Data is rarely updated in place

 Reads and appends are common

Distributed File System

• Chunk servers
 File is split into contiguous chunks

 Typically each chunk is 16-64MB

 Each chunk replicated (usually 2x or 3x)

 Try to keep replicas in different racks

• Master node
 a.k.a. Name Node in Hadoop’s HDFS

 Stores metadata about where files are stored

 Might be replicated

• Client library for file access
 Talks to master to find chunk servers

 Connects directly to chunk servers to access data

Distributed File System

• Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines
 Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

What is Hadoop

• Hadoop framework consists on two main layers

 Distributed file system (HDFS)

 Execution engine (MapReduce)

Hadoop Master/Slave Architecture

• Hadoop is designed as a master-slave shared-nothing architecture

Master node (single node)

Many slave nodes

Design Principles of Hadoop

• Need to process big data

• Need to parallelize computation across thousands of nodes

• Commodity hardware
 Large number of low-end cheap machines working in parallel to

solve a computing problem

• This is in contrast to Parallel DBs
 Small number of high-end expensive machines

Commodity Clusters

 MapReduce is designed to efficiently process large volumes of
data by connecting many commodity computers together to
work in parallel

 A theoretical 1000-CPU machine would cost a very large amount
of money, far more than 1000 single-CPU or 250 quad-core
machines

 MapReduce ties smaller and more reasonably priced machines
together into a single cost-effective
commodity cluster

Design Principles of Hadoop

• Automatic parallelization & distribution
 Hidden from the end-user

• Fault tolerance and automatic recovery
 Nodes/tasks will fail and will recover automatically

• Clean and simple programming abstraction
 Users only provide two functions “map” and “reduce”

How Uses MapReduce/Hadoop

• Google: Inventors of MapReduce computing paradigm

• Yahoo: Developing Hadoop open-source of MapReduce

• IBM, Microsoft, Oracle

• Facebook, Amazon, AOL, NetFlex

• Many others + universities and research labs

Hbase

• HBase is a distributed column-oriented database built on top of the
Hadoop file system. It is an open-source project and is horizontally
scalable.

• HBase is a data model that is similar to Google’s big table designed to
provide quick random access to huge amounts of structured data. It
leverages the fault tolerance provided by the Hadoop File System
(HDFS).

• It is a part of the Hadoop ecosystem that provides random real-time
read/write access to data in the Hadoop File System.

• One can store the data in HDFS either directly or through HBase. Data
consumer reads/accesses the data in HDFS randomly using HBase.
HBase sits on top of the Hadoop File System and provides read and
write access.

Google big Tables

• Google BigTable is a nonrelational, distributed and
multidimensional data storage mechanism built on the proprietary
Google storage technologies for most of the company's online and
back-end applications/products. It provides scalable data architecture
for very large database infrastructures.

Amazon’s key value pair storage

• Key-value stores are probably the simplest form of database
management systems. They can only store pairs of keys and values, as
well as retrieve values when a key is known. These simple systems are
normally not adequate for complex applications. On the other hand, it
is exactly this simplicity, that makes such systems attractive in certain
circumstances. ... Amazon DynamoDB; …

• They can only store pairs of keys and values, as well as retrieve values
when a key is known. These simple systems are normally not adequate
for complex applications. On the other hand, it is exactly this simplicity,
that makes such systems attractive in certain circumstances.

Microsoft’s Azure infrastructure

• Azure provides enterprise-grade cloud infrastructure on which
customers and partners can rely. This includes physical elements like
redundant power, networking, and cooling, as well as software
elements like safe deployment processes, impactless maintenance and
failure prediction enabled by machine learning.

Hadoop: How it Works

Hadoop Architecture

Master node (single node)

Many slave nodes

• Distributed file system (HDFS)

• Execution engine (MapReduce)

Hadoop Distributed File System (HDFS)

Centralized namenode

- Maintains metadata info about files

Many datanode (1000s)

- Store the actual data

- Files are divided into blocks

- Each block is replicated N times

(Default = 3)

File F 1 2 3 4 5

Blocks (64 MB)

Secondary
NameNode

Client

HDFS Architecture

NameNode

DataNodes

NameNode : Maps a file to a file-id and list of MapNodes
DataNode : Maps a block-id to a physical location on disk

Main Properties of HDFS

• Large: A HDFS instance may consist of thousands of
server machines, each storing part of the file system’s
data

• Replication: Each data block is replicated many times
(default is 3)

• Failure: Failure is the norm rather than exception

• Fault Tolerance: Detection of faults is quick, and
automatic recovery from them is a core architectural goal
of HDFS

 Namenode is consistently checking Datanodes

Map-Reduce Execution Engine
(Example: Color Count)

Shuffle & Sorting

based on k

Reduce

Reduce

Reduce

Map

Map

Map

Map

Input blocks

on HDFS

Produces (k, v)

(, 1)

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Consumes(k, [v])

(, [1,1,1,1,1,1..])

Produces(k’, v’)

(, 100)

Users only provide the “Map” and “Reduce” functions

Properties of MapReduce Engine

• Job Tracker is the master node (runs with the namenode)

 Receives the user’s job

 Decides on how many tasks will run (number of mappers)

 Decides on where to run each mapper (concept of locality)

• This file has 5 Blocks run 5 map tasks

• Where to run the task reading block “1”

• Try to run it on Node 1 or Node 3

Node 1 Node 2 Node 3

Properties of MapReduce Engine
(Cont’d)

• Task Tracker is the slave node (runs on each datanode)
 Receives the task from Job Tracker

 Runs the task until completion (either map or reduce task)

 Always in communication with the Job Tracker reporting progress

Reduce

Reduce

Reduce

Map

Map

Map

Map

Parse-hash

Parse-hash

Parse-hash

Parse-hash

In this example, 1 map-reduce

job consists of 4 map tasks

and 3 reduce tasks

Isolated Tasks

 MapReduce divides the workload into multiple independent tasks and
schedule them across cluster nodes

 A work performed by each task is done in isolation from one another

 The amount of communication which can be performed by tasks is
mainly limited for scalability reasons

Key-Value Pairs

• Mappers and Reducers are users’ code (provided functions)

• Just need to obey the Key-Value pairs interface

• Mappers:
 Consume <key, value> pairs

 Produce <key, value> pairs

• Reducers:
 Consume <key, <list of values>>

 Produce <key, value>

• Shuffling and Sorting:
 Hidden phase between mappers and reducers

 Groups all similar keys from all mappers, sorts and passes them to a
certain reducer in the form of <key, <list of values>>

Programming Model: MapReduce

Warm-up task:

• We have a huge text document

• Count the number of times each
distinct word appears in the file

• Sample application:
 Analyze web server logs to find popular URLs

Task: Word Count

Case 1:
 File too large for memory, but all <word, count> pairs fit in memory

Case 2:

• Count occurrences of words:
 words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per a line

• Case 2 captures the essence of MapReduce
 Great thing is that it is naturally parallelizable

MapReduce: Overview

• Sequentially read a lot of data

• Map:
 Extract something you care about

• Group by key: Sort and Shuffle

• Reduce:
 Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and Reduce
change to fit the problem

MapReduce: The Map Step

vk

k v

k v

map
vk

vk

…

k v

map

Input

key-value pairs

Intermediate

key-value pairs

…

k v

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate

key-value pairs

Group

by key

reduce

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output

key-value pairs

More Specifically

• Input: a set of key-value pairs

• Programmer specifies two methods:
 Map(k, v) <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

– E.g., key is the filename, value is a single line in the file

• There is one Map call for every (k,v) pair

 Reduce(k’, <v’>*) <k’, v’’>*

• All values v’ with same key k’ are reduced together
and processed in v’ order

• There is one Reduce function call per unique key k’

MapReduce: Word Counting

The crew of the space

shuttle Endeavor recently

returned to Earth as

ambassadors, harbingers of

a new era of space

exploration. Scientists at

NASA are saying that the

recent assembly of the

Dextre bot is the first step in

a long-term space-based

man/mache partnership.

'"The work we're doing now

-- the robotics we're doing -

- is what we're going to

need ……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the

programmer

Provided by the

programmer

(key, value)(key, value)

S
e

q
u

e
n

ti
a

lly
 r

e
a

d
 t
h

e
 d

a
ta

O
n

ly

s
e

q
u

e
n

ti
a

l

re

a
d

s

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)

Example: Word Count

Map

Tasks

Reduce

Tasks

• Job: Count the occurrences of each word in a data set

Map-Reduce: Environment

Map-Reduce environment takes care of:

• Partitioning the input data

• Scheduling the program’s execution across a
set of machines

• Performing the group by key step

• Handling machine failures

• Managing required inter-machine communication

Map-Reduce: A diagram
Big document

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,

Sort, Partition)

Reduce:
Collect all values

belonging to the key
and output

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the

work

Map-Reduce

• Programmer specifies:
 Map and Reduce and input files

• Workflow:
 Read inputs as a set of key-value-pairs

 Map transforms input kv-pairs into a
new set of k'v'-pairs

 Sorts & Shuffles the k'v'-pairs to output
nodes

 All k’v’-pairs with a given k’ are sent to
the same reduce

 Reduce processes all k'v'-pairs grouped
by key into new k''v''-pairs

 Write the resulting pairs to files

• All phases are distributed with many
tasks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

Data Flow

• Input and final output are stored on a distributed file
system (FS):
 Scheduler tries to schedule map tasks “close” to physical storage

location of input data

• Intermediate results are stored on local FS
of Map and Reduce workers

• Output is often input to another
MapReduce task

Coordination: Master

• Master node takes care of coordination:
 Task status: (idle, in-progress, completed)

 Idle tasks get scheduled as workers become available

 When a map task completes, it sends the master the location and
sizes of its R intermediate files, one for each reducer

 Master pushes this info to reducers

• Master pings workers periodically to detect failures

Refinement: Combiners

• Often a Map task will produce many pairs of the form (k,v1),
(k,v2), … for the same key k
 E.g., popular words in the word count example

• Can save network time by
pre-aggregating values in
the mapper:
 combine(k, list(v1)) v2

 Combiner is usually same
as the reduce function

• Works only if reduce
function is commutative and associative

Refinement: Combiners

• Back to our word counting example:
 Combiner combines the values of all keys of a single mapper (single

machine):

 Much less data needs to be copied and shuffled!

Combiner Functions
 MapReduce applications are limited by the bandwidth available

on the cluster

 It pays to minimize the data shuffled between map and reduce tasks

 Hadoop allows the user to specify a combiner function (just like the
reduce function) to be run on a map output

MT

MT

MT

MT

MT

MT

RT

LEGEND:

• R = Rack

• N = Node

• MT = Map Task

• RT = Reduce Task

• Y = Year

• T = Temperature

MT
(1950, 0)

(1950, 20)

(1950, 10)

(1950, 20)

Map

output

Combiner

output

N

N

R

N

N

R

(Y, T)

Mapper

Reducer

other mappers

other reducers

circular buffer

(in memory)

spills (on disk)

merged spills

(on disk)

intermediate files

(on disk)

Combiner

Combiner

Shuffle and Sort in Hadoop
• Probably the most complex aspect of MapReduce!

• Map side

 Map outputs are buffered in memory in a circular buffer

 When buffer reaches threshold, contents are “spilled” to disk

 Spills merged in a single, partitioned file (sorted within each partition):
combiner runs here

• Reduce side

 First, map outputs are copied over to reducer machine

 “Sort” is a multi-pass merge of map outputs (happens in memory and
on disk): combiner runs here

 Final merge pass goes directly into reducer

Partitions

 In MapReduce, intermediate output values are not usually
reduced together

 All values with the same key are presented to a single
Reducer together

 More specifically, a different subset of intermediate key space
is assigned to each Reducer

 These subsets are known as partitions

Different colors represent

different keys (potentially)

from different Mappers

Partitions are the input to Reducers

Refinement: Partition Function

• Want to control how keys get partitioned
 Inputs to map tasks are created by contiguous splits of input file

 Reduce needs to ensure that records with the same intermediate
key end up at the same worker

• System uses a default partition function:
 hash(key) mod R

• Sometimes useful to override the hash function:

 E.g., hash(hostname(URL)) mod R ensures URLs from a
host end up in the same output file

Example 2: Color Count

Shuffle & Sorting

based on k

Reduce

Reduce

Reduce

Map

Map

Map

Map

Input blocks

on HDFS

Produces (k, v)

(, 1)

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Consumes(k, [v])

(, [1,1,1,1,1,1..])

Produces(k’, v’)

(, 100)

Job: Count the number of each color in a data set

Part0003

Part0002

Part0001

That’s the output file, it

has 3 parts on probably 3

different machines

Example 3: Color Filter

Job: Select only the blue and the green colors

Input blocks

on HDFS

Map

Map

Map

Map

Produces (k, v)

(, 1)

Write to HDFS

Write to HDFS

Write to HDFS

Write to HDFS

• Each map task will select only

the blue or green colors

• No need for reduce phase

Part0001

Part0002

Part0003

Part0004

That’s the output file, it

has 4 parts on probably 4

different machines

Task Scheduling in MapReduce

 MapReduce adopts a master-slave architecture

 The master node in MapReduce is referred
to as Job Tracker (JT)

 Each slave node in MapReduce is referred
to as Task Tracker (TT)

 MapReduce adopts a pull scheduling strategy rather than
a push one

 I.e., JT does not push map and reduce tasks to TTs but rather TTs pull them by
making pertaining requests

JT

T0 T1 T2

Tasks Queue

TT

Task Slots

TT

Task Slots

T0 T1

Map and Reduce Task Scheduling

 Every TT sends a heartbeat message periodically to JT encompassing a
request for a map or a reduce task to run

I. Map Task Scheduling:

 JT satisfies requests for map tasks via attempting to schedule mappers in the
vicinity of their input splits (i.e., it considers locality)

II. Reduce Task Scheduling:

 However, JT simply assigns the next yet-to-run reduce task to a requesting TT
regardless of TT’s network location and its implied effect on the reducer’s
shuffle time (i.e., it does not consider locality)

Job Scheduling in MapReduce

 In MapReduce, an application is represented as a job

 A job encompasses multiple map and reduce tasks

 MapReduce in Hadoop comes with a choice of schedulers:

 The default is the FIFO scheduler which schedules jobs
in order of submission

 There is also a multi-user scheduler called the Fair scheduler which aims
to give every user a fair share of the cluster
capacity over time

Execution Overview

How many Map and Reduce jobs?

• M map tasks, R reduce tasks

• Rule of a thumb:
 Make M much larger than the number of nodes in the cluster

 One DFS chunk per map is common

 Improves dynamic load balancing and speeds up recovery from
worker failures

• Usually R is smaller than M
 Because output is spread across R files

Dealing with Failures

• Map worker failure
 Map tasks completed or in-progress at

worker are reset to idle

 Reduce workers are notified when task is rescheduled on another
worker

• Reduce worker failure
 Only in-progress tasks are reset to idle

 Reduce task is restarted

• Master failure
 MapReduce task is aborted and client is notified

Fault Tolerance in Hadoop

 MapReduce can guide jobs toward a successful completion even when jobs are
run on a large cluster where probability of failures increases

 The primary way that MapReduce achieves fault tolerance is through restarting
tasks

 If a TT fails to communicate with JT for a period of time (by default, 1 minute in
Hadoop), JT will assume that TT in question has crashed

 If the job is still in the map phase, JT asks another TT to re-execute all
Mappers that previously ran at the failed TT

 If the job is in the reduce phase, JT asks another TT to re-execute all Reducers
that were in progress on the failed TT

Worker Failure

Master Failure

Handled via re-execution
 Detect failure via periodic heartbeats

 Re-execute completed + in-progress map tasks
• Why????

 Re-execute in progress reduce tasks

 Task completion committed through master

Robust:

lost 1600/1800 machines once finished ok

Semantics in presence of failures: see paper

Fault Tolerance / Workers

Refinements: Backup Tasks

• Problem
 Slow workers significantly lengthen the job completion time:

• Other jobs on the machine

• Bad disks

• Weird things

• Solution
 Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
 Dramatically shortens job completion time

Speculative Execution

 A MapReduce job is dominated by the slowest task

 MapReduce attempts to locate slow tasks (stragglers) and run
redundant (speculative) tasks that will optimistically commit before
the corresponding stragglers

 This process is known as speculative execution

 Only one copy of a straggler is allowed to be speculated

 Whichever copy (among the two copies) of a task commits first, it
becomes the definitive copy, and the other copy is killed by JT

Locating Stragglers

 How does Hadoop locate stragglers?

 Hadoop monitors each task progress using a progress score
between 0 and 1

 If a task’s progress score is less than (average – 0.2), and the
task has run for at least 1 minute, it is marked as a straggler

PS= 2/3

PS= 1/12

 Not a stragglerT1

T2

Time

A straggler

Task Granularity & Pipelining

• Fine granularity tasks: map tasks >> machines
 Minimizes time for fault recovery

 Can do pipeline shuffling with map execution

 Better dynamic load balancing

Bigger Picture: Hadoop vs. Other Systems

Distributed Databases Hadoop

Computing Model - Notion of transactions
- Transaction is the unit of work
- ACID properties, Concurrency control

- Notion of jobs
- Job is the unit of work
- No concurrency control

Data Model - Structured data with known schema
- Read/Write mode

- Any data will fit in any format
- (un)(semi)structured
- ReadOnly mode

Cost Model - Expensive servers - Cheap commodity machines

Fault Tolerance - Failures are rare
- Recovery mechanisms

- Failures are common over thousands
of machines

- Simple yet efficient fault tolerance

Key Characteristics - Efficiency, optimizations, fine-tuning - Scalability, flexibility, fault tolerance

• Cloud Computing

• A computing model where any computing infrastructure can
run on the cloud

• Hardware & Software are provided as remote services

• Elastic: grows and shrinks based on the user’s demand

• Example: Amazon EC2

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

