18MCA42C
NET PROGRAMMING (C#)
UNIT I1: Object Oriented Programming in C#

FACULTY
Dr. K. ARTHI MCA, M.Phil,, Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

Methods in C#

DECLARING METHODS

form of a method declaration 1s
modifiers type methodname (formal-parameter-list)

{
1

method _ body

Method declaration has five parts:
MName of the method (methodname)

L D B

Type of value the method returns (type)
List of parameters (formal-parameter-list)
Body of the method

Method modifiers (modifier)

int Product (int x, inty)

i
intm=x"y;
return{m);

/ /operation, m is a local variable
!/ returns the result (int type)

Table 8.1 List of method modifiers

MobiFiER
new
public
protected

internal
private
static
virtual

abstract

override

sealed

extlem

DESCRIPTION
The method hides an inherited method with the same signature
The method can be accessed from anywhere, including outside the class

The method can be accessed from within the class to which it belongs, or a type denived
from that class

The method can be accessed from within the same program

The method can only be accessed from inside the class to which it belongs
The method does not operate on a specific instance of the class

The method can be overridden by a derived class

A virtual method which defines the signature of the method, but doesn’t provide an imple-
mentation

The method overrides an inherited virtual or abstract method

The method overrides an inherited virtual method, but cannot be overridden by any classes
which inherit from this class. Must be used in conjunction with override

The method is implemented externally, in a different language

THE MAIN METHOD -

public static int Main()
Or
public static void Main()

INVOKING METHODS

objectname.methodname(actual-parameter-list);

Program 8.1 | DEFINING AND INVOKING A METHOD

using System;
class Method // class containing the method

{
{f Define the Cube method
int Cube (int x)
{
return (X *x*x);
}
}

[/ Client class to invoke the cube method
class MethodTest

{
public static void Main()

{
// Create object for invoking cube
Method M = new Method ();
{/ Invoke the cube method
int y = M.Cube (5); //Method call
{/ Write the result
Console.WriteLine(y);

- METHOD PARAMETERS

a

four kinds of parameters.
* Value parameters s (utput parameters
» Reference parameters * Parameter arrays

®Program 84 | ILLUSTRATION OF PASSING BY VALUE

using System;
class PassByValue
{
static void Change (int m)
{
m =m=+10; //value of m is changed
}
public static void Main()
{
int x = 100;
Change (x);
Console.WriteLine(“x =" + x);
}
}
Program 8.5 | SWAPPING VALUES USING REF PARAMETERS
]

using System;
class PassByRef

{

static void Swap (ref int x, ref inty)

{
int temp = x;
X =y;
y = temp;

1

public static void Main()

{
int m = 100;
int n = 200;
Console.WriteLine("“Before Swapping:");
Consale WriteLine(*m = " + m);
Console.WriteLine("n = " + n);
Swap(refm , refn);
Console WriteLine(“After Swpaping:"):
Console.WriteLine(“m = " + m);
Console.WriteLine("n = " + n);

1

1

Classes and Objects

CLASS

class classname

{

[variables declaration;]
[methods declaration;]

Class Members |

Instance Static
Members | Members

i

Data Function
Members Members
'\\\ {1
// ™
h
- r N yas

~
Fields Constants| Events|

Fa
A

ra

A
Fa

¥ oy Y 1
\Methods | Properties Indexers| Constructors Destructors

Fig. 12.2 Categories of class members

ADDING METHODS
class Rectangle
{
int length;
int width;
public void GetData(int x , int y)//mutator method
{

length = x ;
width =y ;

Table 12.1 C# access modifiers

MobiFiER
private

public

protected

mternal

protected internal

A CcESSIRILITY CONTROL
Member is accessible only within the class containing the member.
Member is accessible from anywhere outside the class as well. It is also accessible in derived
classes.
Member is visible only to its own class and its derived classes,

Member 15 available within the assembly or component that is being created but not to the
clients of that component.

Available in the containing program or assembly and in the derived classes.

CREATING OBJECTS -

Here is an example of creating an object of type

Rectangle.

Rectangle rectl ; !/ declare
rect1 = new Rectangle(); // instantiate

OR

AR EE o

Rectangle rect1 = new Rectangle();

ACCESSING CLASS MEMBERS

objectname. variable name;
objectname.methodname (parameter-list);

Program 12.1 | APPLICATION OF CLASSES AND OBJECTS
]

using System;
class Rectangle

{
public int length, width; {/ Declaration of variables
public void GetData(int x, int v) A Definition of method
{
length = x;
width = y;
1
public int RectAreal() i Definition of another method
{
int area = length * width;
return (area);
}
X
class RectArea /! class with main method
{
public static void Main()
{
int areal,area?; I Local variables
Rectangle rect1 = new Rectangle(); /I Creating objects
Rectangle rect? = new Rectangle();
rect1.length = 15; /1 Accessing variables
rect1.width = 10;
areal = rectl.length * rect1.width;
rect?.GetData(20,12); /! Accessing methods
areal = rect,RectArea();
Console.WriteLine(*Areal = " + areal);
Console.WriteLine(“Areal = " + areal);
}
i

Inheritance

C# classes can be reused in several ways. Reusability is achieved by designing new classes, reusing all
or some of the properties of existing ones. The mechanism of designing or constructing one class from
another is called inheritance. This may be achieved in two different forms.

& (Classical form
* Containment form

CLASSICAL INHERITANCE

Cl

&

Class B
Fig.13.1 Simple inheritance

Animal

¥ L y
Hofend | oal | Lo

Fig.13.2 The is-a resistance

LAad Hifl

L

T ¥
B L.8d [cd [.Od

(a) Single inheritance {b) Hierarchical inheritance

) Multilevel inheritance (d) Multiple inheritance

Fig.13.3 Implementation of inheritance

* Single inheritance (only one base class)

¢ Multiple inhentance (several base classes)

» Hierarchical inheritance (one base class, many
subclasses)

¢ Multilevel inheritance (derived from a derived

rlagch

CONTAINMENT INHERITANCE -

class A

{
}

class B

{

Aa; [/ ais contained in b

1
B b;

Car Object

Radio Object

Fig.13.4 The has-a relationship

DEFINING A SUBCLASS

A subclass is defined as follows:
Class subclass-name : baseclass-name

{

variables declaration ;

methods declaration ;

Program 13.1 | ILLUSTRATION OF A SIMPLE INHERITANCE

using System;
Class Item
{
public void Company () /I base class
i
Console.WriteLine("Item Code = XXX");
}
}
class Fan : Item {/ derived class
public void Model ()
{
Console. WriteLine(“Fan Model : Classic™);
iy
}
class Simplelnheritance
{
public static void Main()
{
Item item = new Item() ;
Fan fan = new Fan() :
item.Company() ;
fan.Company() ;
fan.Model() ;
3
}

The output of Program 13.1 would be:
Item Code = XXX
Item Code = XXX
Fan Model : Classic

Some immportant characteristics ol inheritance are:

o A derived class extends its direct base class, It can add new members to those it inherits,
However, it cannot change or remove the definition of an inherited member.

» (Constructors and destructors are not inherited. All other members, regardless of their declared
accessibility in base class, are inherited. However, their accessibility in the derived class depends
on their declared accessibility in the base class.

= An instance of a class contains a copy of all instance fields declared in the class and its base
classes.

» A derived class can hide an inherited member

» A derived class can override an inherited member

Table 13.1 Visibility of class members

Keyworp

Private

protected

Internal

protected internal
Public

CONTAINING
CLASSES
¥

AR RS

DErveD
CLASSES

VisigiLiry

CONTAINING PRO=
GRAM

ANYWHERE OUTSIDE
THE CONTAINING PRINGRAM

Program 13.2 | APPLICATION OF SINGLE INHERITANCE
I

using System;
class Room

{

public int length;

[/ base class

public int breadth;
public Room (int x , int y)

// base constructor

length
breadth

T
2%

Y;
}
public int Area ()

{
}

return (length * breadth);

3

class BedRoom : Room //Inheriting Room

{
int height;
/ /subclass constructor
public Bedroom (int x, int y, int z):base (x,y)

{
height = z;

public int Volume ()

{
]
}
class InherTest

{

return (length * breadth * height);

public static void Main()

{
BedRoom room1 = new BedRoom (14, 12, 10);

int areal = room1.Area (); // superclass method
int volume1 = room1.Volume (); // subclass method

Console.WriteLine(“Areal = ™ + areall);

Console.WriteLine(“Volume1 = ” + volume1);

1

MULTILEVEL INHERITANCE

Grandfather A i Superclass

L

Father |:B Intermediate superclass

L

Child & I Subclass

Fig. 13.5 Multilevel inheritance

A derived class with multilevel base classes is declared

as follows:
class A

{

}
class B : A // First level derivation

{

}
class C : B // Second level derivation

{

Clags C members

Fig. 13.6 C contains B which contains A

I%

e ek (i

- Hierarchical classification of bank accounts

ABSTRACT CLASSES

The abstract is a modifier and when used to declare a class indicates that the class cannot be

instantiated. Only its derived classes (that are not marked abstract) can be instantiated. Example:
abstract class Base

{
}

class Derived : Base

{
.

Base b1; ! /Error
Derived d1; FHOK
We cannot create ohjects of Base type but we can derive its subclasses which can be instantiated.
Some characteristics of an abstract class are:
e [t cannot be instantiated directly
e [t can have abstract members
» We cannot apply a sealed modifier to it

13.13 ———— SEALED CLASSES: PREVENTING INHERITANCE

Sometimes, we may like to prevent a c¢lass being further subclassed for security reasons, A class
that cannot be subclassed is called a sealed class. This is achieved in C# using the modifier sealed as
follows:

sealed class Aclass

f

sealed class Bclass: Someclass

{

}

Any attempt to inherit these classes will cause an error and the compiler will not allow it.

Declaring a class sealed prevents any unwanted extensions to the class. It also allows the compiler
to perform some optimizations when a method of a sealed class is invoked. Usually standalone utility
classes are created as sealed classes.

A sealed class cannot also be an abstract class.

Interface: Multiple Inheritance

An interface in C# is a reference type. It is basically a kind of class with some differences. Major
differences include:

¢ All the members of an interface are implicitly public and abstract.

An interface cannot contain constant fields, constructors and destructors.

Its members cannot be declared static.

Since the methods in an interface are abstract, they do not include implementation code.
An interface can inherit multiple interfaces.

DEFINING AN INTERFACE -

The syntax for defining an interface is very similar to that used for defining a class. The general form

of an interface definition is:
interface InterfaceName

{

—_ B

Member declarations;

}

Here, interface is the keyword and [nterfaceName is a valid C# identifier (just like class names).

EXTENDING AN INTERFACE

interface named : namel

{

Members of name

IMPLEMENTING INTERFACES -

class classname : interfacename

{

body of classname

TE al 1 L &= 1

J

Here the class classname ‘implements’ the interface interfacename. A more general form of
implementation may look like this:
class classname : superclass, interfacel, interface2. . ..

d
i

body of classname

Program 14.1 | IMPLEMENTATION OF MULTIPLE INTERFACES

using System;

interface Addition
{
int Add ();
}
interface Multiplication
{
int Mul {);
}
class Computation : Addition, Multiplication
{
int x, y;
public Computation (int x, int y) [fConstructor
{
this.x = x;
this.y = y;
}
public int Add () f/Implement Add ()
{
return { x +y);
}
public int Mul () {fIimplement Mul ()
{
return { X"y);
}
}
class InterfaceTest1
{
public static void Main(}
i
Computation com = new Computation (10,20);
Addition add = (Addition) com; /f casting
Console.WriteLine {“Sum = " + add.Add ());
Multiplication mul = (Multiplication) com; /f casting
Console.WriteLine(“Product = ™ + mul.Mul { });
3
}

Delegates

A delegate object is a special type of object that contains the details of a method rather than data.
Delegates in C# are used for two purposes:
* Callback

* Event handling

The dictionary meaning of delegate is “a person acting for another person™. In C#, it really means a
method acting for another method. As pointed out earlier, a delegate in C# is a class type object and is
used to invoke a method that has been encapsulated into it at the time of its creation. Creating and using
delegates involve four steps. They include:
» Delegate declaration

Delegate methods definition

Delegate instantiation

Delegate invocation

DELEGATE DECLARATION

A delegate declaration is a type declaration and takes the following general form:
modifier delegate return-type delegate-name (parameters);

delegate is the keyword that signifies that the declaration represenis a class tvpe derived from System.
Delegate, The return-type indicates the return type of the delegate. Parameters identifies the signature
of the delegate. The delegate-name is any valid C# identifier and is the name of the delegate that will be
used to instantiate delegate objects.

The modifier controls the accessibility of the delegate. It is optional. Depending upon the context in
which they are declared, delegates may take any of the following modifiers:

s new s public
* protected * internal
* private

The new modifier is only permitted on delegates declared within another type. It signifies that the
delegate hides an inherited member by the same name.
Some examples of delegates are:
delegate void SimpleDelegate();
delegate int MathOperation(int x, int y);
public delegate int Compareltems(object o1, object o);
private delegate string GetAString();
delegate double DoubleOperation{double x);

DELEGATE METHODS

The methods whose references are encapsulated into a delegate instance are known as delegate methods
or callable entities. The signature and return type of delegate methods must exactly match the signature
and return type of the delegate.

DELEGATE INSTANTIATION

Although delegates are of class types and behave like classes, C# provides a special syntax for instantiating
their instances. A delegate-creation-expression is used to create a new instance of a delegate.
new delegate-type (expression)

DELEGATE INVOCATION -

C# uses a special syntax for invoking a delegate. When a delegate is invoked, it in turn invokes the
method whose reference has been encapsulated into the delegate, (only if their signatures match).

Invocation takes the following form:
delegate_object (parameters list }

The optional paramerers Tist provides values for the parameters of the method to be used.
e [fthe invocation invokes a method that returns void, the result is nothing and therefore it cannot

be used as an operand of any operator. It can be simply a statement_expression. Example:
delegatet(x, y); //void delegate
This delegate invokes a method that does not return any value.
¢ [f the method returns a value, then it can be used as an operand of any operator. Usually, we
assign the return value to an appropriate variable for further processing. Example:
double result = delegate2(2.56, 45.73);
This statement invokes a method (that takes two double values as parameters and returns double
tvpe value) and then assigns the returned value to the variable result.

Program 16,1 | CREATING AND IMPLEMENTING A DELEGATE
|

using System;
/ /delegate declaration
delegate int ArithOp{int x, int y);

class MathOperation

{
//delegate methods definition
public static int Add(int a, int b)
{
return (a + b);
}
public static int Sub(int a, int b)
{
return (a - b);
}
}
class DelegateTest
{
public static void Main()
{
/ /delegate instances
ArithOp operation1 = new ArithOp (MathOperation.Add);
ArithOp operation2 = new ArithOp(MathOperation.Sub);
/finvoking delegates
int result1 = operation1(200, 100);
int result2 = operation2(200,100);
Console.WriteLine(“Result1 = ” + result1);
Console.WriteLine(“Result2 = " + result2);
}

EXCEPTIONS

An exception is a condition that is caused by a run-time error in the program. When the C# compiler
encounters an error such as dividing an integer by zero, it creates an exception object and throws it (i.e.,

informs us that an error has occurred).

* Find the problem (Hif the exception)
s Inform that an error has occurred (Throw the exception)
* Receive the error information (Catek the exception)
o Take corrective actions (Handle the exception)
Table 18.1 Common C# exceptions

Excerrion CrLass
SystemException
AccessExceplion
ArgumentException
ArgumentNull Exception

ArgumentOutofRangeException

ArithmeticException

Array TypeMismatchException

BadlmageFormatException
CoreException
DivideByZeroException
FormatException
IndexOutofRangeException
InvalidCastException
InvalidOperationException
MissingMemberException
MNotFiniteNumberException
NotSupported Exception
MNullReferenceException
OutofMemoryException
StackOverflowException

Cavse oF Exceprion
A failed run-time check; used as a base class for other exceptions
Failure 1o access a type member, such as a method or field
An argument to a method was invalid
A null argument was passed to a method that does not accept it
Argument value is out of range
Arithmetic over-or underflow has oceurred
Attempt to store the wrong type of object in an array
Image is in the wrong format
Base class for exceptions thrown by the runtime
An attempt was made to divide by zero
The format of an argument is wrong
An array index is out of bounds
An attempt was made to cast to an invalid class
A method was called at an invalid time
An invalid version of a DLL was accessed
A number is not valid
Indicates that a method is not implemented by a class
Attempt to use an unassigned reference
Not enough memory to continue execution
A stack has overflowed

SYNTAX OF EXCEPTION HANDLING CODE

{
statement; /! generates an exception
3
catch (Exception e}
{
statement; // processes the exception
}
t
Bk Exception object
_| Slatement that creator
Throws causes an exception
exception
object
- catch Block _
e Exception handler
handle the exception

Fig. 18.1 Exception handling mechanism

Program 18.3 | USING TRY AND CATCH FOR EXCEPTION HANDLING
|

using System;
class Error3
{
public static void Main()
{
int a = 10;
intb=5;
int c = 5;
intx, y;
try
{

}
{
3

y=a/ (b+c);
Console, WriteLine(“y = " + y);

x=a/ (b-c); /I Exception here
catch (Exception e)

Console.WriteLine(“Division by zero”);

Throw point l<—

Method that :
causes an exception

Invoke
Try block method

Throw Invokes a method
exception that contains an error

Catch block

»| Catches and handles
the exception

Fig. 18.2 Invoking a method that
contain exceptions

MULTIPLE CATCH STATEMENTS

..........

try
{
statement ; / | generates an exception
}
catch (Exception-Type-1 e)
{
statement; / | processes exception type 1
}
catch (Exception-Type-2 e)
{
statement; [I processes exception type 2

}

catch (Exception-type-N e)
{

statement ; / I processes exception type N

}

Program 18.4 | USING MULTIPLE CATCH BLOCKS
I

using System;
class Error4

{
public static void Main()

{
int[]a={510};
intb=5;
try
{

}

catch{ArithmeticException e)

{

§
catch(IndexOutOfRangeException e)

f

}
catch(ArrayTypeMismatchException e)

{

}
inty = a[1] / a[0];
Console.WriteLine(“y = " + y);

intx=a[2] /b -a[1];

Console.WriteLine(“Division by zero”);

Console.WriteLine("Array index error”);

Console. WriteLine({“Wrong data type");

THANK YOU

This content is taken from the text books and reference books prescribed in
the syllabus.

