

18MCA42C

 .NET PROGRAMMING (C#)

Introduction to .NET Framework

 .NET is a software framework which is designed and developed by Microsoft.

 The first version of .Net framework was 1.0 which came in the year 2002.

 It is a virtual machine for compiling and executing programs written in different

languages like C#, VB.Net etc.

 It is used to develop Form-based applications, Web-based applications, and Web

services.

 There is a variety of programming languages available on the .Net platform like VB.Net

and C# etc.,.

 It is used to build applications for Windows, phone, web etc. It provides a lot of

functionalities and also supports industry standards.

 .NET Framework supports more than 60 programming languages in which 11

programming languages are designed and developed by Microsoft.

11 Programming Languages which are designed and developed by Microsoft are:

 C#.NET

 VB.NET

 C++.NET

 J#.NET

 F#.NET

 JSCRIPT.NET

 WINDOWS POWERSHELL

 IRON RUBY

 IRON PYTHON

 C OMEGA

 ASML(Abstract State Machine Language)

Main Components of .NET Framework

1.Common Language Runtime(CLR):

 CLR is the basic and Virtual Machine component of the .NET Framework.

https://www.geeksforgeeks.org/introduction-to-c/
https://www.geeksforgeeks.org/introduction-to-c/
https://www.geeksforgeeks.org/common-language-runtime-clr-in-c/

 It is the run-time environment in the .NET Framework that runs the codes and helps in

making the development process easier by providing the various services such as

remoting, thread management, type-safety, memory management, robustness etc..

 Basically, it is responsible for managing the execution of .NET programs regardless of

any .NET programming language.

 It also helps in the management of code, as code that targets the runtime is known as the

Managed Code and code doesn’t target to runtime is known as Unmanaged code.

2. Framework Class Library (FCL):

 It is the collection of reusable, object-oriented class libraries and methods etc that can be

integrated with CLR.

 Also called the Assemblies.

 It is just like the header files in C/C++ and packages in the java.

 Installing .NET framework basically is the installation of CLR and FCL into the system.

Overview of .NET Framework

CIL or MSIL | Microsoft Intermediate Language or Common

Intermediate Language

 The Microsoft Intermediate Language (MSIL), also known as the Common Intermediate

Language (CIL) is a set of instructions that are platform independent and are generated

by the language-specific compiler from the source code.

 The MSIL is platform independent and consequently, it can be executed on any of the

Common Language Infrastructure supported environments such as the

Windows .NET runtime.

 The MSIL is converted into a particular computer environment specific machine code by

the JIT compiler.

 This is done before the MSIL can be executed.

 Also, the MSIL is converted into the machine code on a requirement basis i.e. the JIT

compiler compiles the MSIL as required rather than the whole of it.

Execution process in Common Language Runtime (CLR): The execution process that

includes the creation of the MSIL and the conversion of the MSIL into machine code by the

JIT compiler is given as follows:

https://www.geeksforgeeks.org/what-is-just-in-time-jit-compiler-in-dot-net/

 The source code is converted into the MSIL by a language-specific compiler in the

compile time of the CLR.

 Also, along with the MSIL, metadata is also produced in the compilation.

 The metadata contains information such as the definition and signature of the types in

the code, runtime information, etc.

 A Common Language Infrastructure (CLI) assembly is created by assembling the MSIL.

This assembly is basically a compiled code library that is used for security, deployment,

versioning, etc. and it is of two types i.e. process assembly (EXE) and library assembly

(DLL).

 The JIT compiler then converts the Microsoft Intermediate Language(MSIL) into the

machine code that is specific to the computer environment that the JIT compiler runs on.

The MSIL is converted into the machine code on a requirement basis i.e. the JIT compiler

compiles the MSIL as required rather than the whole of it.

 The machine code obtained using the JIT compiler is then executed by the processor of

the computer.

Just-In-Time(JIT) Compiler in .NET

 Just-In-Time compiler(JIT) is a part of Common Language Runtime (CLR) in .NET

 It is responsible for managing the execution of .NET programs regardless of

any .NET programming language.

 A language-specific compiler converts the source code to the intermediate language.

 This intermediate language is then converted into the machine code by the Just-In-Time

(JIT) compiler.

 This machine code is specific to the computer environment that the JIT compiler runs on.

 The JIT compiler is required to speed up the code execution and provide support for

multiple platforms.

Working of JIT Compiler:

https://www.geeksforgeeks.org/common-language-runtime-clr-in-c-sharp/

Types of Just-In-Time Compiler

There are 3 types of JIT compilers

1. Pre-JIT Compiler:

 All the source code is compiled into the machine code at the same time in a single compilation

cycle using the Pre-JIT Compiler.

 This compilation process is performed at application deployment time.

2. Normal JIT Compiler:

 The source code methods that are required at run-time are compiled into machine code the first

time they are called by the Normal JIT Compiler.

 After that, they are stored in the cache and used whenever they are called again.

3. Econo JIT Compiler:

 The source code methods that are required at run-time are compiled into machine code by the

Econo JIT Compiler.

 After these methods are not required anymore, they are removed.

Advantages of JIT Compiler

 The JIT compiler requires less memory usage as only the methods that are required at

run-time are compiled into machine code by the JIT Compiler.

 Page faults are reduced by using the JIT compiler as the methods required together are

most probably in the same memory page.

 Code optimization based on statistical analysis can be performed by the JIT compiler

while the code is running.

Disadvantages of JIT compiler:

 The JIT compiler requires more startup time while the application is executed initially.

 The cache memory is heavily used by the JIT compiler to store the source code

methods that are required at run-time.

Note: Much of the disadvantages of the JIT compiler can be handled using the Ahead-of-time

(AOT) compilation. This involves compiling the MSIL into machine code so that runtime

compilation is not required and the machine code file can be executed natively.

Difference between Managed and Unmanaged code in .NET

Managed code is the code which is managed by the CLR(Common Language Runtime) in .NET
Framework. Whereas the Unmanaged code is the code which is directly executed by the operating
system. Below are some important differences between the Managed code and Unmanaged code:

MANAGED CODE UNMANAGED CODE

It is executed by managed runtime

environment or managed by the CLR.

It is executed directly by the operating

system.

It provides security to the application

written in .NET Framework.

It does not provide any security to the

application.

Memory buffer overflow does not occur. Memory buffer overflow may occur.

It provide runtime services like Garbage

Collection, exception handling, etc.

It does not provide runtime services

like Garbage Collection, exception

handling, etc.

The source code is compiled in the

intermediate language known as IL or

MSIL or CIL.

The source code direclty compiled into

native langugae.

It does not provide low-level access to

the programmer.

It provide low-level access to the

programmer.

Introduction to C#

 It is a general-purpose, modern and object-oriented programming language pronounced as “C

Sharp”.

 It was developed by Microsoft led by Anders Hejlsberg and his team within the .NET initiative and

was approved by the European Computer Manufacturers Association (ECMA) and International

Standards Organization (ISO).

 C# is among the languages for Common Language Infrastructure.

 C# is a lot similar to Java syntactically and is easy for users who have knowledge

of C, C++ or Java.

characteristics of c#

https://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/c-programming-language/
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/java/

Literals

Variables

Datatypes

Boxing and Unboxing

conditional operator

special operators

Arithmetic Expressions

Evaluation of Expressions

if else

THANK YOU

This content is taken from the text books and reference books prescribed in

the syllabus.

