18MCA42C
NET PROGRAMMING (C#)

UNIT I: Introduction To NET and C#:

FACULTY
Dr. K. ARTHI MCA, M.Phil,, Ph.D,,
Assistant Professor,
Postgraduate Department of Computer Applications,
Government Arts College (Autonomous),

Coimbatore-641018.

—_—

Year Subject Title Semester | Sub. Code
2018 - 2019
_ NET PROGRAMMING (C#) v 18MCA42C
Onwards

Objective: To provide good understanding of the role of Web Development using .net with C#. Afier the
successful completion of the course, the students should have the thorough knowledge on Web development.

UNIT I: Introduction To NET and C#: Common Language Runtime, NET frame work, Microsofi
Intermediate Languages, Jitters, Unmanaged code. Evolution of C#, Characteristics of C#, how does C#
differ from C4++ and Java, Data types, Variables and Literals, Boxing and unboxing, Operators and
Expressions, Type conversions, Mathematical functions, Decision making and branching, Decision making

and looping.

UNIT 1II: Object Oriented Programming In C#: Methods, Classes and objects, access specifier,
Inheritance, abstract class, sealed classes, interfaces, delegates, namespaces, exceptions.

UNIT III: Advanced Features Of C#: Serializing objects, deserialization, XML based serialization, Multi-
threading, Reflection Attributes, Properties and Indexers.

UNIT IV: Window Based Programming: Win Forms, Textbox, Buttons, Message Box, List Box,
Handling events.

UNIT V: ADO NET: ADO.Net Object Model - Connecting with database, retrieving results, updating data
in database, Deletion. ASP.NET Using C#: Web Application Project, Web Forms, Controls.

TEXT BOOKS:

1. E. Balagurusamy, “Programming in C#” TMH, 2006.
2. lan Griffiths, Matthew Adams and Jesse Liberty, “Programming C# 4.0 O’ Reilly Sixth Edition.

REFERENCE BOOKS:

1. Stanley B.Lippman, “C# Primer A Practical Approach”, Pearson Education, 2002.
2. Tom archer, “Inside C#", Microsoft Press, 2001.
3. "Microsoft C# Language Specification”, Microsoft Press, 2001.

Introduction to .NET Framework

.NET is a software framework which is designed and developed by Microsoft.

The first version of .Net framework was 1.0 which came in the year 2002.

It is a virtual machine for compiling and executing programs written in different
languages like C#, VB.Net etc.

It is used to develop Form-based applications, Web-based applications, and Web
Services.

There is a variety of programming languages available on the .Net platform like VB.Net
and C# etc.,.

It is used to build applications for Windows, phone, web etc. It provides a lot of
functionalities and also supports industry standards.

.NET Framework supports more than 60 programming languages in which 11
programming languages are designed and developed by Microsoft.

11 Programming Languages which are designed and developed by Microsoft are:

C#NET

VB.NET

C++.NET

J#.NET

F#NET

JSCRIPT.NET

WINDOWS POWERSHELL
IRON RUBY

IRON PYTHON

C OMEGA

ASML(Abstract State Machine Language)

Main Components of .NET Framework

1.Common Language Runtime(CLR):

CLR is the basic and Virtual Machine component of the .NET Framework.

https://www.geeksforgeeks.org/introduction-to-c/
https://www.geeksforgeeks.org/introduction-to-c/
https://www.geeksforgeeks.org/common-language-runtime-clr-in-c/

e It is the run-time environment in the .NET Framework that runs the codes and helps in
making the development process easier by providing the various services such as
remoting, thread management, type-safety, memory management, robustness etc..

e Basically, it is responsible for managing the execution of .NET programs regardless of
any .NET programming language.

e |t also helps in the management of code, as code that targets the runtime is known as the

Managed Code and code doesn’t target to runtime is known as Unmanaged code.

2. Framework Class Library (FCL):
e It is the collection of reusable, object-oriented class libraries and methods etc that can be
integrated with CLR.
e Also called the Assemblies.
e Itis just like the header files in C/C++ and packages in the java.
e Installing .NET framework basically is the installation of CLR and FCL into the system.

Overview of .NET Framework

| .NET Framework |

l I

‘ Common Language ‘ Framework Class Library

Runtime (CLR) (FCL)

A h 4 A

CL) GC a7

(Common Lanaguage .
infraskriicinre) (Garbage Collector) (Just In-Time Compiler)

l I

CLS cTs

{ Common Language
Specification) (Common Type System)

CIL or MSIL | Microsoft Intermediate Language or Common
Intermediate Language

The Microsoft Intermediate Language (MSIL), also known as the Common Intermediate
Language (CIL) is a set of instructions that are platform independent and are generated
by the language-specific compiler from the source code.

The MSIL is platform independent and consequently, it can be executed on any of the
Common Language Infrastructure supported environments such as the
Windows .NET runtime.

The MSIL is converted into a particular computer environment specific machine code by
the JIT compiler.

This is done before the MSIL can be executed.

Also, the MSIL is converted into the machine code on a requirement basis i.e. the JIT
compiler compiles the MSIL as required rather than the whole of it.

Execution process in Common Language Runtime (CLR): The execution process that

includes the creation of the MSIL and the conversion of the MSIL into machine code by the

JIT compiler is given as follows:

https://www.geeksforgeeks.org/what-is-just-in-time-jit-compiler-in-dot-net/

C# Visual Basic JScript F#
Compilation
C# Visual Basic JScript F#
Compiler Compiler Compiler Compiler
.EXe or
Meta Data MSIL or CIL } dll files
JIT Compiler
Native Code Runtime
Execution
oG

The source code is converted into the MSIL by a language-specific compiler in the
compile time of the CLR.

Also, along with the MSIL, metadata is also produced in the compilation.

The metadata contains information such as the definition and signature of the types in
the code, runtime information, etc.

A Common Language Infrastructure (CLI) assembly is created by assembling the MSIL.
This assembly is basically a compiled code library that is used for security, deployment,
versioning, etc. and it is of two types i.e. process assembly (EXE) and library assembly
(DLL).

The JIT compiler then converts the Microsoft Intermediate Language(MSIL) into the
machine code that is specific to the computer environment that the JIT compiler runs on.
The MSIL is converted into the machine code on a requirement basis i.e. the JIT compiler
compiles the MSIL as required rather than the whole of it.

The machine code obtained using the JIT compiler is then executed by the processor of

the computer.

Just-In-Time(JIT) Compiler in NET

Just-In-Time compiler(JIT) is a part of Common Language Runtime (CLR) in .NET

It is responsible for managing the execution of .NET programs regardless of
any .NET programming language.

A language-specific compiler converts the source code to the intermediate language.
This intermediate language is then converted into the machine code by the Just-In-Time
(JIT) compiler.

This machine code is specific to the computer environment that the JIT compiler runs on.
The JIT compiler is required to speed up the code execution and provide support for
multiple platforms.

Working of JIT Compiler:

Working of JIT Compiler
C# Visual Basic] Script Fi#
Compiler Compiler Compiler Compiler
Compilation
Language Specific Compiler

Meta Data Common Intermediate .exe or

Language (CIL) Adll files
JIT Compiler

Native Code Runtime
Execution
oG

https://www.geeksforgeeks.org/common-language-runtime-clr-in-c-sharp/

Types of Just-In-Time Compiler

There are 3 types of JIT compilers
1. Pre-JIT Compiler:

e All the source code is compiled into the machine code at the same time in a single compilation
cycle using the Pre-JIT Compiler.

e This compilation process is performed at application deployment time.
2. Normal JIT Compiler:

e The source code methods that are required at run-time are compiled into machine code the first
time they are called by the Normal JIT Compiler.

o After that, they are stored in the cache and used whenever they are called again.
3. Econo JIT Compiler:

e The source code methods that are required at run-time are compiled into machine code by the
Econo JIT Compiler.

o After these methods are not required anymore, they are removed.

Advantages of JIT Compiler
. The JIT compiler requires less memory usage as only the methods that are required at
run-time are compiled into machine code by the JIT Compiler.
. Page faults are reduced by using the JIT compiler as the methods required together are
most probably in the same memory page.
. Code optimization based on statistical analysis can be performed by the JIT compiler
while the code is running.
Disadvantages of JIT compiler:
. The JIT compiler requires more startup time while the application is executed initially.
. The cache memory is heavily used by the JIT compiler to store the source code
methods that are required at run-time.
Note: Much of the disadvantages of the JIT compiler can be handled using the Ahead-of-time
(AOT) compilation. This involves compiling the MSIL into machine code so that runtime

compilation is not required and the machine code file can be executed natively.

Difference between Managed and Unmanaged code in .NET

Managed code is the code which is managed by the CLR(Common Language Runtime) in .NET
Framework. Whereas the Unmanaged code is the code which is directly executed by the operating
system. Below are some important differences between the Managed code and Unmanaged code:

MANAGED CODE

It is executed by managed runtime

environment or managed by the CLR.

It provides security to the application

written in .NET Framework.

Memory buffer overflow does not occur.

It provide runtime services like Garbage

Collection, exception handling, etc.

The source code is compiled in the
intermediate language known as IL or

MSIL or CIL.

It does not provide low-level access to

the programmer.

UNMANAGED CODE

It is executed directly by the operating

system.

It does not provide any security to the

application.

Memory buffer overflow may occur.

It does not provide runtime services
like Garbage Collection, exception

handling, etc.

The source code direclty compiled into

native langugae.

It provide low-level access to the

programmer.

Introduction to C#

e ltis a general-purpose, modern and object-oriented programming language pronounced as “C
Sharp”.

e It was developed by Microsoft led by Anders Hejlsberg and his team within the .NET initiative and
was approved by the European Computer Manufacturers Association (ECMA) and International
Standards Organization (1SO).

e C#is among the languages for Common Language Infrastructure.

e C#is alot similar to Java syntactically and is easy for users who have knowledge
of C, C++ or Java.

characteristics of c#

C# is designed for building robust, reliable and durable components to handle real-world applications.

Major highlights of C# are:
s Itis a brand new language derived from the C / C++ family

It simplifies and modernizes C++
It is the only component-oriented language available today
It is the only language designed for the NET Framework
It is a concise, lean and modern language
It combines the best features of many commeonly used languages: the productivity of Visual
Basic, the power of C++ and the elegance of Java
It is intrinsically object-oriented and web-enabled
It has a lean and consistent syntax
It embodies today’s concern for simplicity, productivity and robusiness
It will become the language of choice for NET programming
Major parts of NET Framework are actually coded in C#

Simple * Object-oriented e Compatible
Consistent * Type-safe e Interoperable and
Modern » Versionable s Flexible

EVOLUTION OF C# -

NET Platform

.NET Framework

C#

Fig. 1.2 C# inside the .NET

https://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/c-programming-language/
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/java/

e

! M
Object
Crientatiart,

/ i
“;L‘:++ }
l.’.‘.‘-unu:&pt___-" --_--*;‘-.x "ql:unc:ept

- Power ',

Component

Orientation
L]

. &
— Elegance Productivity ~——_—"

Fig. 1.3 Evaluation of C# language

HOW DOES C# DIFFER FROM C++7?

Changes Introduced

01.
02.

03.
04.

05.
06.

07.
D8.
09.
10.
11.
12.

13.
14,

15.
16.
17.
18.
19.
20,
21.
22,
23,
24,

25.
26.

C# compiles straight from source code to executable code, with no object files.

C# does not separate class definition from implementation. Classes are defined and implemented
in the same place and therefore there is no need for header files.

In C#, class definition does not use a semicolon at the end.

The first character of the Main() function is capitalized. The Main must return either int or
void type value.

C# does not support #include statement. (Mote that using is not the same as #include),

All data types in C# are inherited from the object super class and therefore they are
objects.

All the basic value types will have the same size on any system. This is not the case in C or
C++, Thus C# is more suitable for writing distributed applications.

In C#, data types belong to either value types (which are created in a stack) or reference
types (which are created in a heap).

C# checks for uninitialized variables and gives error messages at compile time. In C++, an
uninitialized variable goes undetected thus resulting in unpredictable output.

In C#, structs are value types,

C# supports a native string type. Manipulation of strings are easy.

C# supports a native Boolean data type and bool-type data cannot be implicitly or explicitly
cast to any data type except object.

C# declares null as a keyword and considers it as an intrinsic value.

C# does not support pointer types for manipulating data. However, they are used in what is
known as ‘unsafe’ code.

Variable scope rules in C# are more restrictive. In C#, duplicating the same name within a
routine is illegal, even if it is in a separate code block.

C# permits declaration of variables between goto and label.

We can only create objects in C# using the new keyword.

Arrays are classes in C# and therefore they have built-in functionality for operations such as
sorting, searching and reversing.

Arrays in C# are declared differently and behave very differently compared to C++ arrays.

C# provides special syntax to initialize arrays efficiently.

Arrays in C# are always reference types rather than value types, as they are in C++ and
therefore stored in a heap.

In C#, expressions in if and while statements must resolve to a bool value. Accidental use of
the assignment operator (=) instead of equality operator = = will be caught by the compiler.
C# supports four iteration statements rather than three in C++ . The fourth one is the foreach
statement.

C# does not allow silent fall-through in switch statements. It requires an explicit jump
statement at the end of each case statement.

In C#, switch can also be used on string values.

C# does not support the labeled break and therefore jumping out of nested loops can be messy.

27. The set of operators that can be overloaded in C# is smaller compared to C++.

28. C# can check overflow of arithmetic operations and conversions using checked and unchecked
keywords.

29. C# does not support default arguments.

30. Variable method parameters are handled differently in C#.

31. In exception-handling, unlike in C++, we cannot throw any type in C#. The thrown value has to
be a reference to a derived class or System.Exception object.

32. C# reqguires ordering of catch blocks correctly.

33, General catch statement catch (...) in C++ is replaced by simple catch in C#.

34. C# does not provide any defaults for constructors.

35. Destructors in Ci#f behave differently than in C++.

36. In C#, we cannot access static members via an object, as we can in C++.

37. C# does not support multiple code inheritance.

38. Casting in C# is much safer than in C++,

39. When overriding a virtual method, we must use the override keyword.

40. Abstract methods in C# are similar to virtual functions in C++, but C# abstract methods cannot
have implementations.

41. Command-line parameters array behave differently in C# as compared to C++.

C++ features dropped

The following C++ features are missing from C#:
Macros

Multiple inheritance

Templates

Pointers

Global variables

Typedef statement

Default arguments

Constant member functions or parameters
Forward declaration of classes

008 = O N b bl b =
e OB % F & & % %

Enhancements to C++

C# modernizes C++ by adding the following new features:
Automatic garbage collection

Versioning support

Strict type-safety

Properties to access data members

Delegates and events

Boxing and unboxing

Web services

=] O b L P =
8§ & & AW

HOW DOES C# DIFFER FROM JAVA ?

01.

0z,
03.
04,
05,

06.
07.

08.
09,
10.

11.
12.
13.
14,

15.
16.

17.
18.
19,
20.

1.

22,
23,

24,
5.
26.
27,
18,

Although C# uses .MET runtime that is similar to Java runtime, the C# compiler produces an
executable code.

C# has more primitive data types.

Unlike Java, all C# data types are objects.

Arrays are declared differently in C#.

Although C# classes are quite similar to Java classes, there are a few important differences
relating to constants, base classes and constructors, static constructors, versioning, accessibility
of members etc.

Java uses static final to declare a class constant while C# uses const,

The convention for Java is to put one public class in each file and in fact, some compilers
require this. C# allows any source file arrangement.

C# supports the struct type and Java does not.

Java does not provide for operator overloading.

In Java, class members are virtual by default and a method having the same name in a derived
class overrides the base class member. In C#, the base member is required to have the virtual
keyword and the derived member is required to use the override keyword.

The new modifier used for class members has no complement in Java.

C# provides better versioning support than Java.

C# provides static constructors for initialization.

C# provides built-in delegates and events. Java uses interfaces and inner classes to achieve a
similar result.

In Java, parameters are always passed by value. C# allows parameters to be passed by
reference by using the ref keyword.

C# adds internal, a new accessibility modifier. Members with internal accessibility can be
accessed from other classes within the same project, but not from outside the project.

C# includes native support for properties, Java does not.

Java does not directly support enumerations.

Java does not have any equivalent to C# indexers.

Both Java and C# support interfaces. But, C# does not allow type definitions in interfaces,
while Java interfaces can have const type data.

In Java, the switch statement can have only integer expression, while C# supports either an
integer or string expressions.

C# does not allow free fall_through from case to case.

C# provides a fourth type of iteration statement, foreach for quick and easy iterations over
collections and array type data.

Catch blocks should be ordered correctly in C#.

Ci# checks overflows using checked statements,

C# uses is operator instead of instanceof operator in Java.

C# allows a variable number of parameters using the params keyword.

There is no labeled break statement in C#. The goto is used to achieve this.

Literals, Variables and
Data Types

C# keywords

ct

event
explicit
extern
false
finally
fixed
float
for

foreach

namespace
Ew

null

object
aperator
out
override
params

private

static
string
struct
switch
this
throw
true

try

typeot

Identifiers are programmer-designed tokens. They are used for naming classes, methods, variables,
labels, namespaces, interfaces, etc. C# identifiers enforce the following rules:

« They can have alphabets, digits and underscore characters

» They must not begin with a digit

» Upper case and lower case letters are distinct

» Keywords in stand-alone mode cannot be used as identifiers

C# permits the use of keywords as identifiers when they are prefixed with the ‘@’ character

Literals are the way in which the values that are stored in variables are represented. We shall discuss

these in detail in the next section.

Operators are symbols used in expressions to describe operations involving one or more operands.
Operators are considered in detail in Chapter 5.

Punctuators are symbols used for grouping and separating code. They define the shape and function of a
program. Punctuators (also known as separators) in C# include:

Statements in C# are

Parentheses ()
Braces { }

Brackets []
Semicolon ;

like sentences in

Colon :
Comma ,
Period .

natural languages. A statement is an executable

combination of tokens ending with a semicolon. C# implements several types of statements. They
include:

Empty statements
Labeled statements
Declaration statements
Expression statements
Selection statements
Interaction statements

Jump statements

The try statements

The checked statements
The unchecked statements
The lock statements

The using statements

Literals

Literals are value constants assigned to variables (or results of expressions) in a program. C# supports
several types of literals as illustrated in Fig. 4.1.

C# Literals ‘
— A Y = S
Numeric Boolean Character
Literals Literals Literals
R Y PO, | S y . #98 . : A
Integer Real Single String
Literals Literals character Literals Literals
B |

Fig. 4.1 C# literals

Variables

A variable is an identifier that denotes a storage location used to store a data value, Unlike constants that
remain unchanged during the execution of a program, a variable may take different values at different
times during the execution of the program. Every variable has a type that determines what values can
be stored in the variable.
A variable name can be chosen by the programmer in a meaningful way so as to reflect what it
represents in the program. Some examples of variable names are:
* average + total _height
s height * classStrength
As mentioned earlier, variable names may consist of alphabets, digits and the underscore (_), subject
to the following conditions:
1. They must not begin with a digit.
2. Uppercase and lowercase are distinct. This means that the variable Total is not the same as total
or TOTAL.
3. It should not be a keyword.
4. White space is not allowed.
5. Wariable names can be of any length.

Datatypes

C# Data types

——— G —_ L’ _-—7‘“— —
¢ Value types | Pointers «_Reference Types
e -\\n_/’/,ﬂ N
A _» ¥
/ D £ e - oy
£ ,"‘ \ P \
@) @) (Predefined ' User-defined |
b V R \ Twes | |\ Types |
N . \\» ’ _\.
* Integers * Enumerations * Objects * Classes
* Real Numbers = Structures = Strings = Arrays
« Booleans + Delegates
+ Characters = Interfaces

Fig. 4.2 Taxonomy C# data types

Simple Types j
PV U
(Boolean | ‘\N.:."y";;'c) .-'f?haracte\r'|
\ Types g \ Types
N / Integral / Decimal
Floating-», |)
(Polnlg.) lypes) I‘»_ Types /
_Types R bl
(Signed 1." Unsigned ",
. Types)/ \ Types)/

Fig. 4.3 Categories of simple type data

Boxing and Unboxing

In object-oriented programming, methods are invoked using objects. Since value types such as int
and long are not objects, we cannot use them to call methods. C# enables us to achieve this through
a technique known as hoxing . Boxing means the conversion of a value type on the stack to a object
type on the heap. Conversely, the conversion from an object type back to a value type is known as

unhoxing.

4.12.1 Boxing

Any type, value or reference can be assigned to an object without an explicit conversion. When the
compiler finds a value type where it needs a reference type, it creates an object “box’ into which it places

the value of the value type. The following code illustrates this:

Literals, Variables and Data Types 49

int m = 100;
object om = m; // creates a box to hold m
When executed, this code creates a temporary reference type ‘box’ for the object on heap. We can
also use a C-style cast for boxing.
int m = 100:
object om = {object)m; //C-style casting
Mote that the boxing operation creates a copy of the value of the m integer to the object om. Now
both the variables m and om ¢xist but the value of om resides on the heap. This means that the values
are independent of each other. Consider the following code:
int m=10:
abject om = m;
m = 20:
Console.WriteLine(m); // m =20
Console. WriteLine(om); //om =10
When a code changes the value of m, the value of om is not affected.

4.12.2 Unboxing

Unboxing is the process of converting the object type back to the value type. Remember that we can
only unbox a variable that has previously been boxed. In contrast to boxing, unboxing is an explicit
operation using C-style casting.

int m=10;

objectom=m; J//boxm

intn = {intjom; //unbox om back to an int

When performing unboxing, C# checks that the value type we request is actually stored in the object

under conversion. Only if it is, the value is unboxed,

a e . . 4 o ou l . o N l o~

Operators and Expressions

1. Arithmetic operators 5. Increment and decrement operators
2. Relational operators 6. Conditional operators.

3. Logical operators 7. Bitwise operators

4. Assignment operators B. Special operators

Table 5.1 Arithmetic operators

OrERATOR MEANING
+ Addition or unary plus
- Subtraction or unary minus
¥ Multiplication
/ Division
Y Modulo division

FLOATING-POINT ARITHMETIC

class FloatPoint
{
public static void Main()
{
float a = 20.5F, b = 6.4F;
System.Console.WriteLine(" a ="+ a);
System.Console. WriteLine(* b="* + b);
System.Console. WriteLine(* a+b = “ + (a+b));
System.Console.WriteLine(* a-b = * + (a-b));
System.Console.WriteLine(* a*b = * + (a*b));
System.Console.WriteLine(" a/b =" + (a/b));
System.Console. WriteLine(* a%b = * + (a%b));

Table 5.2 Relational operators

OFPERATOR MEanivGg
= is less than
== 15 less than or equal to
> is greater than
= is greater than or equal to
== is equal to
1= is not equal to

Table 5.3 Relational expressions

EXPrRESSION Varve
4.5== 10 true
4.5 =-10 false
—35==10 false
10 =T7+5 true
50!1=5§ false
at+h==ct+d true*

*only if the sum of the values of'a and b is
equal to the sum of the values of ¢ and d.

IMPLEMENTATION OF RELATIONAL OPERATORS

using System;

class RelationalOperators
{

public static void Main()

{
float a = 15.0F, b = 20.75F, ¢ = 15.0F;

Console.WriteLine(“ a =" + a);

Console WriteLine(" b =" + b);
Console.WriteLine(" ¢ = “ + c);
Console.WriteLine(" a < b is * + (a<b));
Console.WriteLine(" a = b is * + {(a=b));
Console.WriteLine(" a == cis " + (a==C));
Console. WriteLine(" a == c is " + (a<=c));
Console.WriteLine(" a == b is * + (a==b));
Console WriteLine(" b |= c is * + (bl=c));
Console.WriteLine(" b == a+c is “ + (b==a+c));

Table 5.4 Logical operators

OreRaTOR MEeanivG
Sk logical AND
I logical OR
! logical NOT
& bitwise logical AND
| bitwise logical OR

bitwise logical exclusive OR

Table 5.6 Shorthand assignment operators

STATEMENT WITI SIMPLE STATEMENT WITH
ASSIGNMENT OPERATOR SHORTHAND QOPERATOR
a=atl at=1
a=a-l a-—=1
a=a*ntl) a*=ntl
a=alntl) a/=ntl

a=a%hb a%=b

INCREMENT AND DECREMENT OPERATORS

C# has two very useful operators not generally found in many other languages. These are the increment
and decrement operators:

++ and --

The operator ++ adds 1 to the operand while —— subtracts 1. Both are unary operators and are used

in the following form:

++IM; OF M++}

-<Mm; or m--;

++m; is equivalent tom =m + 1; (orm + = 1;)

--m; is equivalent tom=m-1; (orm- = 1;)

INCREMENT OPERATOR ILLUSTRATED

class IncrementOperator

{
public static void Main()
{
intm =10, n = 20;
System.Console.WriteLine(" m = " + m};
System.Console. WriteLine(“ n=" + n);
System.Console.WriteLine(* ++m = " + ++m);
System.Console.WriteLine(" n++ = " + n++);
System.Console WriteLine(* m =" + m);
System.Console.WriteLine(" n =" + n);
1
}

caea . f e - - = oA

conditional operator

The character pair ? : is a ternary operator available in C#. This operator is used to construct conditional
expressions of the form

expl ? exp? : exp3
where expl, exp2 and exp3 are expressions.

Table 5.7 Bitwise operators

OreraTor MEeanivg
& bitwise logical AND
| bitwise logical OR
~ bitwise logical XOR
~ one's complement
< shift left
B shift right

special operators

C# supports the following special operators.

is (relational operator)

as (relational operator)
typeof (type operator)

sizeof (size operator)

new (object creator)

.(dot) (member-access operator)
checked (overflow checking)

unchecked (prevention of overflow checking)

Arithmetic Expressions

Table 5.8 Expressions

ALGEBRAIC
C# EXPRESSION

EXPRESSION
axb-c a*b-c
(m+n)(x+y) (mtn)*(x+y)
ab

— a*blc

c
3xF+2x+1 I*xFx+2*x+1
X

— +c x/yte

y

Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form
variable = expression;

- PRECEDENCE OF ARITHMETIC OPERATORS —

An arithmetic expression without any parentheses will be evaluated from left to right using the rules of
precedence of operators. There are two distinet priority levels of arithmetic operators in C#:

High priority * /"%

Low priority + -

TYPE CONVERSIONS

We often encounter situations where there is a need to convert a data of one type to another before it is
used in arithmetic operations or to store a value of one type into a variable of another type. For example,
consider the code below:
byte b1 = 50;
byte b2 = &0;
byte b3 = b1 + bZ;
This code attempts to add two bytle values and to store the result into a third byte variable. But this

will not work, The compiler will give an error message:
“cannot implicitly convert type int to type byte.”

Type Conversion
1
‘,
A S— Y
Implicit Explicit
Conversion Conversion
A] A
Arithmetic Casting
Operations Operations

Fig. 5.1 Type conversions in C#

8-bit

types ‘ s I ’ l.,yte I

6 ;‘tf&/ o SNEE e

16-bit

types ‘ short |ushort |—7—-‘. char
e

32-bit types int l uint

64-bit types | ulong l

—
double [

Fig. 5.2 C# conversion hierarchy chart

MATHEMATICAL FUNCTIONS -

Table 5.11 Main mathematical methods

MEernon DESCRIPTION
Sin() sine of an angle in radians
Cos () cosine of an angle in radians
Tan () tangent of an angle in radians
Asin() inverse of sine

Acos() inverse of cosine

Atan () inverse of tangent

Atan2 () inverse tangent, with x and y co-ordinates specified
Sinh () hyperbolic sine

Cosh () hyperbolic cosine

Tanh {) hyperbolic tangent

Sqri() square root

Pow () number raised to a given power
Exp(} exponential

Log() natural logarithm (base e)
Logli) base 10 logarithm

Abs () absolute value of a number

Min () lower of two numbers

Max () higher of two numbers

Sign () sign of the number

Decision Making and Branching

C# language possesses such decision-making capabilities and supports the following statements known as
control or decision-making statements.

1. if statement

2. switch statement

3. Conditional operator statement

DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow of execution of
statements. It is a rwo-way decision statement and is used in conjunction with an expression. It takes the
following form:

If {expression)

o ~False

+ True

Fig. 6.1 Two-way branching

[mme e m e —

The if statement may be implemented in different forms depending on the complexity of the conditions
to be tested.
1. Simple if statement 2. if..else statement
3. Nested if..else statement 4. elseif ladder

- SIMPLE IF STATEMENT

Entry
T
f,"’ z\\\'_“‘.\
.~ boolean . False
__ expression > -
'\-\.'\.\\\ ? z;/f‘/
N Jumping
True

Statement |
block
T

T
Mext statement

Fig. 6.2 Flowchart of simple if control

if else

The if....else statement is an extension of the simple if statement. The general form is
if(boolean_expression)

{
}

else

{

True-block statement(s)

False-block statement(s)

}

statement-x
i Entry

AR

True / boolean False
*._expression

N l
N
Ly N (S
True-block False-block
Statements: | Statements
| .

» Statement-x F

Y

Fig. 6.3 Flowchart of if....else control

NESTING OF IF....ELSE STATEMENTS

if (test conditionl)

if (test condition2)
{

statement-1;

~ else

statement-2; ——

> else

statement-3; —

statement-x; — S

‘ Entry

X

AR

™

False 4 y test True
T B condmonj 1

/’\
P
" test
-—Eg-lf'-g::f: condition2 -
_\ ?
N
\\V////
= Y Y
l statement-s‘J 1statement-g] statement-1j
v
statement-x

Y
Next statement

Fig. 6.4 Flowchart of nested if....else statements

THE ELSE IF LADDER

if (condition 1)
statement-1:

else if {condition 2)
statement-2;

else if (condition 3)
statement-3;

else if (condition n)
statement-n;

else
default-statement;

statement-x; = r

THE SWITCH STATEMENT

The general form of the switch statement is as shown below:
switch(expression)
{
case value-1:
block-1
break;

case value-2:
block-2
break;

B

default:
default-block
break;

}

statement-x;

Ent
Y ry
Al
- \
< switch ™
\expressing>
e 4
\\f/
L exprassion =
value-1 :-: blocked |
expression = Y
vae | block2 |~
(no match) default .| default | e
| block +
I statement-x |
A

Fic. 6.6 Selection process of the switch statement

THE ? : OPERATOR -

B e T

conditional expression ? expression1 : expression2

Decision Making and Looping

A looping process, in general, would include the following four steps:
1. Setting and initialization of a counter.

2. Execution of the statements in the loop.

3. Test for a specified condition for execution of the loop.

4. Incrementing the counter.

e e e e e e ol e e e e e e i e e N e s e T = ==l

The C# language provides for four constructs for performing loop operations. They are:
1. The while statement
2. The do statement
3. The for statement
4. The foreach statement

Entry ‘ Entry
Y Y
3 -
/- 3 W" .
Test > False Body of
S condition__..--* the I_qop
Y
True
Y - " Test D _ False
Body of _condition
the loop ' 4
I V True
Y
(a) Entry control (b) Exit control

Fig. 7.1 Loop control structures

THE WHILE STATEMENT

The simplest of all the looping structures in C# is the while statement. The basic format of the while
statement is

initialization;

while(test condition)

{
1

Body of the loop

THE DO STATEMENT -

initialization;

do
i

}

Body of the loop

while (test condition);

THE FOR STATEMENT

for is another entry-controlled loop that provides a more concise loop-control structure. The general
form of the for loop is

for (initialization ; test condition ; increment)

Body of the loop
)

i)

The execution of the for statement is as follows:

1.

2.

Initialization of the control variables is done first, using assignment statements such asi= 1 and
count = 0. The variables i and count are known as loop-control variables.

The value of the control variable is tested using the rest condition. The test condition is a
relational expression, such as i< 10, which determines when the loop will exit. If the condition
is frue, the body of the loop is executed; otherwise the loop is terminated and the execution
continues with the statement that immediately follows the loop.

When the body of the loop is executed, the control is transferred back to the for statement after
evaluating the last statement in the loop. Now, the control variable is incremented using an
assignment statement such as i = i+1 and the new value of the control variable is again tested
to see whether it satisfies the loop condition. If the condition is satisfied, the body of the loop is
again executed, This process continues till the value of the control variable fails to satisfy the
test condition.

Table 7.1 Comparison of the three [oops

FOR | WHILE Do
for(in=1;n==10;++n) n=1; n=1;
{ while (n==10) do
---------- { i
1 . 000 ...
n=mntl; n=ntl
i i
while (n==10);

Program 7.4 illustrates the use of the for loop for computing and printing the “power of 27 table.

7.4.2 Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C#. We have used
this concept in Program 7.2. Similarly, for loops can be nested as follows:

..........

Quter
.......... Toop

) Inner 1 oop

..........

..........

..........

..........

JUMPS IN LOOPS -

While {
if {condition)
break:
Exit from | =00 eeiieaaaas
Toop | eeeeeesens
!
(a)
for (..oovvvnnnn)
if (error)
break;
Exit from | 0 rerseseaes
Toop | . eeeseesess
!
(c)

Exit from
loop

Exit from
inner Toop

do

{
if (condition)

break:

} while (oovoinnn.n)5
(b)

for (coeeeevans)}

{
FOr (oevnnennn.)

break;
_,)

Fig. 7.2 Exiting a loop with break statement

Labelled Jumps

public static void Main(String [] args)
{
if {args.Length == 0)
goto end;
Console.WriteLine(args.Length);
end: // Label name
Console.WriteLine (“end");

THANK YOU

This content is taken from the text books and reference books prescribed in
the syllabus.

