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                   DESIGN AND ANALYSIS OF ALGORITHM   

UNIT IV  

                          Dynamic programming    

  

 

 

 

 

 

 

 

 

 

 

 

 



 

Dynamic programming general method 

Dynamic Programming is also used in optimization problems. Like divide-and-conquer method, 

Dynamic Programming solves problems by combining the solutions of subproblems. Moreover, 

Dynamic Programming algorithm solves each sub-problem just once and then saves its answer in 

a table, thereby avoiding the work of re-computing the answer every time. 

Two main properties of a problem suggest that the given problem can be solved using Dynamic 

Programming. These properties are overlapping sub-problems and optimal substructure. 

Overlapping Sub-Problems 

Similar to Divide-and-Conquer approach, Dynamic Programming also combines solutions to 

sub-problems. It is mainly used where the solution of one sub-problem is needed repeatedly. The 

computed solutions are stored in a table, so that these don’t have to be re-computed. Hence, this 

technique is needed where overlapping sub-problem exists. 

For example, Binary Search does not have overlapping sub-problem. Whereas recursive program 

of Fibonacci numbers have many overlapping sub-problems. 

Optimal Sub-Structure 

A given problem has Optimal Substructure Property, if the optimal solution of the given problem 

can be obtained using optimal solutions of its sub-problems. 

For example, the Shortest Path problem has the following optimal substructure property − 

If a node x lies in the shortest path from a source node u to destination node v, then the shortest 

path from u to v is the combination of the shortest path from u to x, and the shortest path from x 

to v. 



The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford are typical 

examples of Dynamic Programming. 

Steps of Dynamic Programming Approach 

Dynamic Programming algorithm is designed using the following four steps − 

 Characterize the structure of an optimal solution. 

 Recursively define the value of an optimal solution. 

 Compute the value of an optimal solution, typically in a bottom-up fashion. 

 Construct an optimal solution from the computed information. 

Applications of Dynamic Programming Approach 

 Matrix Chain Multiplication 

 Longest Common Subsequence 

 Travelling Salesman Problem 

Multistage graph 

A multistage graph G = (V, E) is a directed graph where vertices are partitioned into k (where k> 

1) number of disjoint subsets S = {s1,s2,…,sk} such that edge (u, v) is in E, then u Є si and v Є s1 + 

1 for some subsets in the partition and |s1| = |sk| = 1. 

The vertex s Є s1 is called the source and the vertex t Є sk is called sink. 

G is usually assumed to be a weighted graph. In this graph, cost of an edge (i, j) is represented by 

c(i, j). Hence, the cost of path from source s to sink t is the sum of costs of each edges in this 

path. 

The multistage graph problem is finding the path with minimum cost from source s to sink t. 

Example 

Consider the following example to understand the concept of multistage graph. 



 

According to the formula, we have to calculate the cost (i, j) using the following steps 

Step-1: Cost (K-2, j) 

In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three options to choose 

the minimum cost at this step. 

Cost(3, 4) = min {c(4, 7) + Cost(7, 9),c(4, 8) + Cost(8, 9)} = 7 

Cost(3, 5) = min {c(5, 7) + Cost(7, 9),c(5, 8) + Cost(8, 9)} = 5 

Cost(3, 6) = min {c(6, 7) + Cost(7, 9),c(6, 8) + Cost(8, 9)} = 5 

Step-2: Cost (K-3, j) 

Two nodes are selected as j because at stage k - 3 = 2 there are two nodes, 2 and 3. So, the value 

i = 2 and j = 2 and 3. 

Cost(2, 2) = min {c(2, 4) + Cost(4, 8) + Cost(8, 9),c(2, 6) + 

Cost(6, 8) + Cost(8, 9)} = 8 



Cost(2, 3) = {c(3, 4) + Cost(4, 8) + Cost(8, 9), c(3, 5) + Cost(5, 8)+ Cost(8, 9), c(3, 6) + Cost(6, 

8) + Cost(8, 9)} = 10 

Step-3: Cost (K-4, j) 

Cost (1, 1) = {c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) + Cost(3, 5) + Cost(5, 8) + 

Cost(8, 9))} = 12 

c(1, 3) + Cost(3, 6) + Cost(6, 8 + Cost(8, 9))} = 13 

Hence, the path having the minimum cost is 1→ 3→ 5→ 8→ 9. 

All pair shortest path 

The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used to find all 

pair shortest path problem from a given weighted graph. As a result of this algorithm, it will 

generate a matrix, which will represent the minimum distance from any node to all other nodes 

in the graph. 

 

At first the output matrix is same as given cost matrix of the graph. After that the output matrix 

will be updated with all vertices k as the intermediate vertex. 

The time complexity of this algorithm is O(V3), here V is the number of vertices in the graph. 

Input − The cost matrix of the graph. 



0 3 6 ∞ ∞ ∞ ∞ 

3 0 2 1 ∞ ∞ ∞ 

6 2 0 1 4 2 ∞ 

∞ 1 1 0 2 ∞ 4 

∞ ∞ 4 2 0 2 1 

∞ ∞ 2 ∞ 2 0 1 

∞ ∞ ∞ 4 1 1 0 

Output − Matrix of all pair shortest path. 

0 3 4 5 6 7 7 

3 0 2 1 3 4 4 

4 2 0 1 3 2 3 

5 1 1 0 2 3 3 

6 3 3 2 0 2 1 

7 4 2 3 2 0 1 

7 4 3 3 1 1 0 

Algorithm 

floydWarshal(cost) 

Input − The cost matrix of given Graph. 

Output − Matrix to for shortest path between any vertex to any vertex. 

Begin 

   for k := 0 to n, do 

      fori := 0 to n, do 

         for j := 0 to n, do 

            if cost[i,k] + cost[k,j] < cost[i,j], then 

               cost[i,j] := cost[i,k] + cost[k,j] 

            done 



         done 

      done 

      display the current cost matrix 

End 

 

Optimal binary search tree 

the Optimal Binary Search Tree Algorithm is presented. First, we build a BST from a set of 

provided n number of distinct keys < k1, k2, k3, ...kn>. Here we assume, the probability of 

accessing a key Ki is pi. Some dummy keys (d0, d1, d2, ...dn) are added as some searches may be 

performed for the values which are not present in the Key set K. We assume, for each dummy 

key di probability of access is qi. 

Optimal-Binary-Search-Tree(p, q, n) 

e[1…n + 1, 0…n],   

w[1…n + 1, 0…n],  

root[1…n + 1, 0…n]   

fori = 1 to n + 1 do  

e[i, i - 1] := qi - 1  

w[i, i - 1] := qi - 1   

for l = 1 to n do  

fori = 1 to n – l + 1 do  

      j = i + l – 1 e[i, j] := ∞  

w[i, i] := w[i, i -1] + pj + qj 

for r = i to j do  

t := e[i, r - 1] + e[r + 1, j] + w[i, j]  

if t < e[i, j]  

e[i, j] := t  

root[i, j] := r  

return e and root  

Analysis 



The algorithm requires O (n
3
) time, since three nested for loops are used. Each of these loops 

takes on at most n values. 

Example 

Considering the following tree, the cost is 2.80, though this is not an optimal result. 

 

Node Depth Probability Contribution 

k1 1 0.15 0.30 

k2 0 0.10 0.10 

k3 2 0.05 0.15 

k4 1 0.10 0.20 

k5 2 0.20 0.60 

d0 2 0.05 0.15 

d1 2 0.10 0.30 

d2 3 0.05 0.20 



d3 3 0.05 0.20 

d4 3 0.05 0.20 

d5 3 0.10 0.40 

Total 

  

2.80 

To get an optimal solution, using the algorithm discussed in this chapter, the following tables are 

generated. 

In the following tables, column index is i and row index is j. 

e 1 2 3 4 5 6 

5 2.75 2.00 1.30 0.90 0.50 0.10 

4 1.75 1.20 0.60 0.30 0.05 

 

3 1.25 0.70 0.25 0.05 

  

2 0.90 0.40 0.05 

   

1 0.45 0.10 

    

0 0.05 

     

w 1 2 3 4 5 6 

5 1.00 0.80 0.60 0.50 0.35 0.10 

4 0.70 0.50 0.30 0.20 0.05 

 

3 0.55 0.35 0.15 0.05 

  

2 0.45 0.25 0.05 

   

1 0.30 0.10 

    



0 0.05 

     

root 1 2 3 4 5 

5 2 4 5 5 5 

4 2 2 4 4 

 

3 2 2 3 

  

2 1 2 

   

1 1 

    

From these tables, the optimal tree can be formed. 

0/1 knapsack problem 

In 0-1 Knapsack, items cannot be broken which means the thief should take the item as a whole 

or should leave it. This is reason behind calling it as 0-1 Knapsack. 

Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other constraints 

remain the same. 

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach does not ensure an 

optimal solution. In many instances, Greedy approach may give an optimal solution. 

The following examples will establish our statement. 

Example-1 

Let us consider that the capacity of the knapsack is W = 25 and the items are as shown in the 

following table. 

Item A B C D 



Profit 24 18 18 10 

Weight 24 10 10 7 

Without considering the profit per unit weight (pi/wi), if we apply Greedy approach to solve this 

problem, first item A will be selected as it will contribute maximum profit among all the 

elements. 

After selecting item A, no more item will be selected. Hence, for this given set of items total 

profit is 24. Whereas, the optimal solution can be achieved by selecting items, B and C, where 

the total profit is 18 + 18 = 36. 

Example-2 

Instead of selecting the items based on the overall benefit, in this example the items are selected 

based on ratio pi/wi. Let us consider that the capacity of the knapsack is W = 60 and the items are 

as shown in the following table. 

Item A B C 

Price 100 280 120 

Weight 10 40 20 

Ratio 10 7 6 

Using the Greedy approach, first item A is selected. Then, the next item B is chosen. Hence, the 

total profit is 100 + 280 = 380. However, the optimal solution of this instance can be achieved by 

selecting items, B and C, where the total profit is 280 + 120 = 400. 

Hence, it can be concluded that Greedy approach may not give an optimal solution. 

To solve 0-1 Knapsack, Dynamic Programming approach is required. 



Problem Statement 

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There are n 

items and weight of i
th

 item is wi and the profit of selecting this item is pi. What items should the 

thief take? 

Dynamic-Programming Approach 

Let i be the highest-numbered item in an optimal solution S for W dollars. Then S
'
 = S - {i} is an 

optimal solution for W - wi dollars and the value to the solution S is Vi plus the value of the sub-

problem. 

We can express this fact in the following formula: define c[i, w] to be the solution for items 1,2, 

… , i and the maximum weight w. 

The algorithm takes the following inputs 

 The maximum weight W 

 The number of items n 

 The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn> 

Dynamic-0-1-knapsack (v, w, n, W) 

for w = 0 to W do  

c[0, w] = 0  

fori = 1 to n do  

c[i, 0] = 0  

for w = 1 to W do  

ifwi ≤ w then  

if vi + c[i-1, w-wi] then  

c[i, w] = vi + c[i-1, w-wi]  

else c[i, w] = c[i-1, w]  

else 

c[i, w] = c[i-1, w]  



The set of items to take can be deduced from the table, starting at c[n, w] and tracing backwards 

where the optimal values came from. 

If c[i, w] = c[i-1, w], then item i is not part of the solution, and we continue tracing with c[i-1, 

w]. Otherwise, item i is part of the solution, and we continue tracing with c[i-1, w-W]. 

Analysis 

This algorithm takes θ(n, w) times as table c has (n + 1).(w + 1) entries, where each entry 

requires θ(1) time to compute. 

 

Travelling salesman problem 

Problem Statement 

A traveler needs to visit all the cities from a list, where distances between all the cities are known 

and each city should be visited just once. What is the shortest possible route that he visits each 

city exactly once and returns to the origin city? 

Solution 

Travelling salesman problem is the most notorious computational problem. We can use brute-

force approach to evaluate every possible tour and select the best one. For n number of vertices 

in a graph, there are (n - 1)!number of possibilities. 

Instead of brute-force using dynamic programming approach, the solution can be obtained in 

lesser time, though there is no polynomial time algorithm. 

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted edges. An 

edge e(u, v) represents that vertices u and v are connected. Distance between vertex u and v is 

d(u, v), which should be non-negative. 



Suppose we have started at city 1 and after visiting some cities now we are in city j. Hence, this 

is a partial tour. We certainly need to know j, since this will determine which cities are most 

convenient to visit next. We also need to know all the cities visited so far, so that we don't repeat 

any of them. Hence, this is an appropriate sub-problem. 

For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, j) be the length of the 

shortest path visiting each node in S exactly once, starting at 1 and ending at j. 

When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and end at j. We 

should select the next city in such a way that 

C(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)wherei∈Sandi≠j 

Algorithm: Traveling-Salesman-Problem 

C ({1}, 1) = 0  

for s = 2 to n do  

for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  

      C (S, 1) = ∞  

for all j Є S and j ≠ 1  

      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  

Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  

Analysis 

There are at the most 2n.n 

sub-problems and each one takes linear time to solve. Therefore, the total running time is 

O(2n.n2) 

. 

Example 



In the following example, we will illustrate the steps to solve the travelling salesman problem. 

 

From the above graph, the following table is prepared. 

 

1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

S = Φ 

Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5 

Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6 

Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8 

S = 1 

Cost(i,s)=min{Cost(j,s–(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]} 

Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+6=15 

Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=18cost(2,{4},1)=d[2,4]+cost(4,Φ,1)=10+8=18 

Cost(3,{2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3,{2},1)=d[3,2]+cost(2,Φ,1)=13+5=18 



Cost(3,{4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3,{4},1)=d[3,4]+cost(4,Φ,1)=12+8=20 

Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+6=15 

Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+5=13 

S = 2 

Cost(2,{3,4},1)=⎧⎩⎨d[2,3]+Cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=10+15=25=25Cost(2

,{3,4},1){d[2,3]+cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=10+15=25=25 

Cost(3,{2,4},1)=⎧⎩⎨d[3,2]+Cost(2,{4},1)=13+18=31d[3,4]+Cost(4,{2},1)=12+13=25=25Cost(

3,{2,4},1){d[3,2]+cost(2,{4},1)=13+18=31d[3,4]+Cost(4,{2},1)=12+13=25=25 

Cost(4,{2,3},1)=⎧⎩⎨d[4,2]+Cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+18=27=23Cost(4,

{2,3},1){d[4,2]+cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+18=27=23 

S = 3 

Cost(1,{2,3,4},1)=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪d[1,2]+Cost(2,{3,4},1)=10+25=35d[1,3]+Cos

t(3,{2,4},1)=15+25=40d[1,4]+Cost(4,{2,3},1)=20+23=43=35cost(1,{2,3,4}),1)d[1,2]+cost(2,{3,

4},1)=10+25=35d[1,3]+cost(3,{2,4},1)=15+25=40d[1,4]+cost(4,{2,3},1)=20+23=43=35 

The minimum cost path is 35. 

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s = 3, select the 

path from 1 to 2 (cost is 10) then go backwards. When s = 2, we get the minimum value for d [4, 

2]. Select the path from 2 to 4 (cost is 10) then go backwards. 

When s = 1, we get the minimum value for d [4, 3]. Selecting path 4 to 3 (cost is 9), then we 

shall go to then go to s = Φ step. We get the minimum value for d [3, 1] (cost is 6). 

 

 

 

 



 

 

 

 

 

 

 

THANK YOU  

 

 

This content is taken from the text books and reference books prescribed in 

the syllabus. 

 

 

 

 


