
1

18MCA34C

 DESIGN AND ANALYSIS OF ALGORITHM

UNIT I

 Introduction

2

18MCA34C DESIGN AND ANALYSIS OF ALGORITHM

UNIT I: Algorithm Specification -Recursive Algorithms - Performance Analysis -

Space Complexity - Time Complexity -Asymptotic Notations - Asymptotic Complexity of

SUM and Recursive SUM and ADD Algorithms - Analysis of Sequential Search.

UNIT II: Elementary Data Structures- Stacks and Queues - Trees - Binary Trees -

Binary Search Trees - Iterative and Recursive Search of BST - Graphs - Konigsberg Bridge

Problem - Graph Representations - Graph Traversals.

UNIT III: Divide and Conquer: General Method - Binary Search - Finding Maximum

and Minimum - Merge Sort - Greedy Algorithms: General Method - Container Loading -

Knapsack Problem.

UNIT IV: Dynamic Programming: General Method - Multistage Graphs - All-Pair

shortest paths - Optimal binary search trees - 0/1 Knapsack - Travelling salesperson problem.

UNIT V: Backtracking: General Method - 8 Queens Problem - sum of subsets -

graph coloring - Hamiltonian problem - knapsack problem.

TEXT BOOKS:

1. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Fundamentals of Computer

Algorithm, Galgotia Publications, 2007.

REFERENCE BOOKS:

1. T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, "Introduction to

Algorithms", Second Edition, Prentice Hall of India Pvt. Ltd, 2003.

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "The Design and analysis of

Computer Algorithms", Pearson Education, 1999.

3

WHAT IS AN ALGORITHM?

An algorithm is a finite set of instructions that,if followed, accomplishes a particular task

All algorithms must satisfy the following criteria:

There are four distinct areas of algorithm study

1. How to devise algorithms ?

2. How to validate algorithm?

3. How to analyze algorithm?

Analysis of algorithms or performance analysis refers to the task of determining how

much

Computing time and storage an algorithm requires.

4. How to test a program Testing a program?

It consists of two phases:

Debugging and profiling (or performance measurement).

 Debugging is the process of executing programs on sample data sets to determine

whether faulty results occur and, ifso,to correct them

Profiling or performance measurement is the process of executing a correct program on

data sets and measuring the time and space it takes to compute the results

4

ALGORITHM SPECIFICATION

1.2.1 Pseudocode Conventions

1.Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces: { and }.

A compound statement (i.e., a collection of simple statements) can be represented as a

block. The body of a procedure also forms a block. Statements are delimited by ;

3. An identifier begins with a letter. The data types of variables are not explicitly

declared.

4. Assignment of values to variables is done using the assignment statement

(variable) := (expression);

5.Thereare two boolean values true and false. In orderto produce these values, the logical

operators and, or, and notand the relational operators <,<,=,/, >, and > are provided.

6. Elements of multidimensional arrays are accessed using [and].

For example, if A is a two dimensional array, the (i,j)th element of the array is denoted as

-A[i,j]. Array indices start at zero

5

6

Here (statement 1), (statement 2), etc. could be either simple statements or compound

statements.

A case statement is interpreted as follows.

If (condition 1) is true, (statement1) gets executed and the case statement is exited.

If statement 1) is false, (condition 2) is evaluated. If (condition 2) is true, (statement 2)

gets executed and the case statement exited, and soon.

If none of the conditions (condition 1), ... , (condition n) are true, (statement n+1) is

executed

and the case statement is exited. The else clause is optional.

9. Input and output are done using the instructions read and write.No format is used to

Specify the size of input or output quantities.

10. There is only one type of procedure: Algorithm.

An algorithm consists of a heading and a body. The heading takes the form

Algorithm Name ((parameter list))

Where Name is the name of the procedure and

({parameter list)) is a listing of the procedure parameters.

7

The body has one or more (simple or compound) statements enclosed within braces { and

}.

An algorithm may or may not return any values.

Simple variablesto procedures are passed by value.

Arrays and records are passed by reference. An array name or a record name is treated as

a pointer to the respective data type.

Example 1.1 [Selection sort] Suppose we must devise an algorithm that sorts a collection

of n > 1 elements of arbitrary type.

A simple solution is given by the following

From those elements that are currently unsorted, find the smallest and place

it next in the sorted list.

We assume that the elements are stored in an array a, such that the ith integer is stored in

the ith position a[i], 1< i < n.

Algorithm 1.1 is our first attempt at deriving a solution

8

1.2.2 Recursive Algorithms

 A recursive function is a function that is defined in terms of itself. Similarly, an

algorithm is said to be recursive if the same algorithm is invoked in the body.

 An algorithm that calls itself is direct recursive. Algorithm A is said to be indirect

recursive if it calls another algorithm which in turn calls A.

Factorial fits this category, as well as binomial coefficients, where

9

1.3 PERFORMANCE ANALYSIS

There are many criteria upon which we can judge an algorithm.

For instance:

1.Does it do what we want it to do?

2. Does it work correctly according to the original specifications of the task?

3. Isthere documentation that describes how to use it and how it works?

4. Are procedures created in such a way that they perform logical sub-functions ?

5. Is the code readable?

Space/Time complexity

The space complexity of an algorithm is the amount of memory it needs to run to

completion.

The time complexity of an algorithm is the amount of computer time it needs to run to

completion.

Performance evaluation can be loosely divided into two major phases:

(1)aprioriestimates (performance analysis) and

(2) a posteriori testing(performance measurement)

10

1.3.1 Space Complexity

The space needed by each of these algorithms is seen to be the sum of the following component

11

Algorithm Add(a,b, c,m,n)

{

 for i := 1to m do

 for

j := 1to n do

c[ij] :=a[i,j] +b[i,j];

}

Algorithm 1.11 Matrix addition

 A fixed part that is independent of the characteristics (e.g., number, size) of the

inputs and outputs.

 This part typically includes the instruction space(i.e., space for the code), space

for simple variables and fixed-size component variables (also called aggregate),

space for constants,

 and so on.

 A variable part that consists of the space needed by component variables whose

size is dependent on the particular problem instance being solved,

 the space needed by referenced variables and the recursion stack space (this space

depends on the instance characteristics)

 The space requirement S(P) of any algorithm P may therefore be written as

S(P) = c+ Sp(instance characteristics),

12

Where c is a constant

 When analyzing the space complexity of an algorithm, we concentrate

solely on

 estimating Sp (instance characteristics).

 For any given problem, determine which instance characteristics to use to

measure the space requirements.

 This is very problem specific, and we resort to examples to illustrate the

various possibilities.

 Generally speaking, our choices are limited to quantities related to the

number and magnitude of the inputs to and outputs from the algorithm.

 At times, more complex measures of the interrelationships among the data

items are used.

1.3.2 Time Complexity

 The time T(P) taken by a program P is the sum of the compile time and the run(or

execution) time.

 The compile time does not depend on the instance characteristics.

 This run time is denoted by tp (instance characteristics)

 Because many of the factors tp depends on are not known at the time a program is

conceived, it is reasonable to attempt only to estimate tp.

 If we knew the characteristics of the compiler to be used, we could proceed to

determine the number of additions, subtractions, multiplications, divisions,

compares, loads, stores, and so on, that would be made by the code for P.

13

 respectively, denote the time needed for an addition, subtraction, multiplication,

division, and so on, and

 ADD, SUB, MUL, DIV, and so on, are functions whose values are the numbers of

additions, subtractions, multiplications, divisions that are performed when the

code for P is used on an instance with characteristic n.

 since the time needed for an addition, subtraction, multiplication, and so on, often

depends on the numbers being added, subtracted, multiplied, and so on.

 The value of tp(n) for any given n can be obtained only experimentally.

 The program is typed, compiled, and run on a particular machine.

 The execution time is physically clocked, and tp(n) obtained

 A program step is loosely defined as a syntactically or semantically meaningful segment

of a program that has an execution time that is independent of the instance

characteristics.

 For example, the entire statement

of Algorithm 1.5 could be regarded as a step since its execution time is independent

of the instance characteristics.

 The number of steps any program statement is assigned depends on the kind of

statement.

 For example, comments count as zero steps; an assignment statement which

does not involve any calls to other algorithms is counted as one step;

 in an iterative statement such as the for, while, and repeat-until statements, we

consider the step counts only for the control part of the statement

14

Asymptotic Complexity of SUM and Recursive SUM and ADD Algorithms

 The second method to determine the step count of an algorithm is to build a

table in which we list the total number of steps contributed by each

statement.

 This figure is often arrived at by first determining the number of steps per

execution (s/e) of the statement and the total number of times (i.e.,

frequency) each statement is executed.

 The s/e of a statement is the amount by which the count changes as a result

of the execution of that statement.

 By combining these two quantities, the total contribution of each statement

is obtained.

 By adding the contributions of all statements, the step count for the entire

algorithm is obtained.

 In Table 1.1, the number of steps per execution and the frequency of each

of the statements in Sum (Algorithm 1.6) have been listed.

 The total number of steps required by the algorithm is determined to be 2n

+ 3.

 It is important to note that the frequency of the for statement is n + 1 and

not n.

 This is so because i has to be incremented to n + 1 before the for loop can

terminate.

 Table1.2 gives the step count for RSum (Algorithm 1.7). Notice that under

the s/e(steps per execution) column, the else clause has been given a count

of 1+ t RSum(n-1).

 This is the total cost of this line each time it is executed.

 It includes all the steps that get executed as a result of the invocation of

RSum from the else clause.

15

 The frequency and total steps columns have been split into two parts:

 one for the case n = 0 and the other for the case n > 0

 Table1.3 corresponds to algorithm Add (Algorithm 1.11).

 Once again, note that the frequency of the first for loop is m + 1 and not m.

 This is so as i needs to be incremented up to m + 1before the loop can

terminate.

 Similarly, the frequency for the second for loop is m(n + 1).

16

17

18

Performance Measurement

 Performance measurement is concerned with obtaining the space and time

requirements of a particular algorithm

 Suppose we wish to measure the worst-case performance of the sequential

search algorithm (Algorithm 1.17).

 Before we can do this, we need to decide on

1)the values of n for which the times are to be obtained and

2)determine, for each of the above values of n, the data that exhibit the

worst-case behavior

Analysis of sequential search

 The decision on which values of n to use is based on the amount of timing

we wish to perform and also on what we expect to do with the times once

they are obtained

 Asymptotic analysis tells us the behavior only for sufficiently large

values of n.

 For smaller values of n, the run time may not follow the asymptotic

curve.

19

THANK YOU

This content is taken from the text books and reference books prescribed in

the syllabus.

