
PYTHON PROGRAMMING

(18MCA31C)

UNIT – II
Functions

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore – 641 018.

Functions

 A function is a block of organized, reusable code that

is used to perform a single, related action. Functions

provides better modularity for your application and a

high degree of code reusing.

 Python gives you many built-in functions like print()

etc. but you can also create your own functions.

These functions are called user-defined functions.

Defining a Function

 Here are simple rules to define a function in Python:

 Function blocks begin with the keyword def followed by the function name
and parentheses (()).

 Any input parameters or arguments should be placed within these
parentheses. You can also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the
documentation string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back
an expression to the caller. A return statement with no arguments is the
same as return None.

 Syntax:

 def functionname(parameters):

 "function_docstring" function_suite return [expression]

 Syntax:

 def functionname(parameters):

 "function_documentatation"

 function_suite

 return [expression]

 By default, parameters have a positional behavior, and you need
to inform them in the same order that they were defined.

 Example:

 def printfunc(str):

 "This prints a string passed to the function"

 print str

 return

Calling a Function

 Following is the example to call printfunc() function:

def printfunc(str): "This is a print function“

print str;

return;

printfunc(“ Welcome to Python”);

printfunc(“ MCA at GAC,CBE");

 This would produce following result:

 Welcome to Python

 MCA at GAC,CBE

Pass by reference vs value

All parameters (arguments) in the Python language are passed by
reference. It means if you change what a parameter refers to within a
function, the change also reflects back in the calling function. For
example:

def changeme(mylist): "This changes a passed list“

mylist.append([1,2,3,4]);

print "Values inside the function: ", mylist

return

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

 So this would produce following result:

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference but
inside the function, but the reference is being over-written.

def changeme(mylist): "This changes a passed list"

mylist = [1,2,3,4];

print "Values inside the function: ", mylist

return

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

 The parameter mylist is local to the function changeme. Changing mylist
within the function does not affect mylist. The function accomplishes nothing
and finally this would produce following result:

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Function Arguments:

A function by using the following types of formal arguments::

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required arguments:

 Required arguments are the arguments passed to a function in correct
positional order.

def printfunc(str): "This prints a passed string"

print str;

return;

printfunc();

 This would produce following result:

Traceback (most recent call last):

File "test.py", line 11, in <module> printfunc();

TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments:

 Keyword arguments are related to the function calls. When
you use keyword arguments in a function call, the caller
identifies the arguments by the parameter name.

 This allows you to skip arguments or place them out of order
because the Python interpreter is able to use the keywords
provided to match the values with parameters.

def printfunc(str): "This prints a passed

string"

print str;

return;

printfunc(str = “MCA at GAC");

 This would produce following result:

MCA at GAC

Following example gives more clear picture. Note, here order of

the parameter does not matter:

def printinfo(name, age): "Test function"

print "Name: ", name;

print "Age ", age;

return;

printinfo(age=50, name="miki");

 This would produce following result:

Name: miki Age 50

Default arguments:

 A default argument is an argument that assumes a default value

if a value is not provided in the function call for that argument.

 Following example gives idea on default arguments, it would

print default age if it is not passed:

def printinfo(name, age = 15): “Test function"

print "Name: ", name;

print "Age ", age;

return;

printinfo(age=20, name=“ANNRIA");

printinfo(name=“ANNRIA");

 This would produce following result:

Name: ANNRIA Age 15 Name: ANNRIA Age 20

Variable-length arguments:

 You may need to process a function for more arguments than

you specified while defining the function. These arguments

are called variable-length arguments and are not named in

the function definition, unlike required and default arguments.

 The general syntax for a function with non-keyword variable

arguments is this:

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

 An asterisk (*) is placed before the variable name that will hold
the values of all nonkeyword variable arguments.

 This tuple remains empty if no additional arguments are specified
during the function call. For example:

def printinfo(arg1, *vartuple):

"This is test"

print "Output is: "

print arg1

for var in vartuple:

print var

return;

printinfo(10);

printinfo(70, 60, 50);

 This would produce following result:

Output is:

10

Output is:

70

60

50

RECURSIVE FUNCTIONS
In Python, a function can call other functions. It is even

possible for the function to call itself. These types of
construct are termed as Recursive functions.

def factorial(x):

"""This is a recursive function to find the factorial of an integer"""

if x == 1:

return 1

else:

return (x * factorial(x-1))

num = 3

print("The factorial of", num, "is", factorial(num))

https://www.programiz.com/python-programming/function

The Anonymous Functions:
We can use the lambda keyword to create small anonymous
functions. These functions are called anonymous because they are
not declared in the standard manner by using the def keyword.

 Lambda forms can take any number of arguments but return just
one value in the form of an expression. They cannot contain
commands or multiple expressions.

 An anonymous function cannot be a direct call to print because
lambda requires an expression.

 Lambda functions have their own local namespace and cannot
access variables other than those in their parameter list and those
in the global namespace.

 Although it appears that lambda's are a one-line version of a
function, they are not equivalent to inline statements in C or C++,
whose purpose is by passing function stack allocation during
invocation for performance reasons.

 Syntax:

lambda [arg1 [,arg2,.....argn]]:expression

Example:

 Following is the example to show how lambda form of

function works:

sum = lambda arg1, arg2: arg1 + arg2;

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

 This would produce following result:

Value of total : 30

Value of total : 40

Scope of Variables:

 All variables in a program may not be accessible at all locations in
that program. This depends on where you have declared a variable.

 The scope of a variable determines the portion of the program
where you can access a particular identifier. There are two basic
scopes of variables in Python:

Global variables

Local variables

 Global vs. Local variables:

 Variables that are defined inside a function body have a local
scope, and those defined outside have a global scope.

 This means that local variables can be accessed only inside the
function in which they are declared whereas global variables can
be accessed throughout the program body by all functions. When
you call a function, the variables declared inside it are brought into
scope.

 Example:

total = 0; # This is global variable.

def sum(arg1, arg2):

"Add both the parameters"

total = arg1 + arg2;

print "Inside the function local total : ", total

return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

 This would produce following result:

Inside the function local total : 30

Outside the function global total : 0

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

