
PYTHON PROGRAMMING

(18MCA31C)

UNIT – I
Introduction to Python

FACULTY:

Dr. R. A. Roseline, M.Sc., M.Phil., Ph.D.,
Associate Professor and Head,

Post Graduate and Research Department of Computer Applications,
Government Arts College (Autonomous), Coimbatore – 641 018.

PYTHON PROGRAMMING

(18MCA31C)
SYLLABUS

 UNIT I: Introduction to Python: Python Overview –

Getting Started with Python – Python Identifiers –

Reserved Keywords – Variables – Standard Data Types

– Operators. Statement and Expression – String

Operations – Boolean Expressions – Control Statements
– Iteration - while Statement – Input.

 UNIT II: Functions: Introduction – Built-in Functions –

Composition of Functions – User Defined Functions –

Parameters and Arguments – Function Calls – The
return Statement – Python Recursive Function – The

Anonymous Functions – Writing Python Scripts.

 Unit III: Strings: Strings – Compound data types – len()
function – String slices – String traversal – String
formatting operators and functions. Lists: Values and
accessing elements – lists are mutable – Traversing
and deleting elements – Built-in operators and
methods.

 Unit IV: Tuples: Creating tuples-accessing values –
tuples assignment – tuples as return values – variable
length argument tuples – basic tuple operations –
built-in tuple functions. Dictionaries: Creating and
accessing a dictionary – updating and deleting –
properties of dictionary keys – operations and built-in
dictionary methods. Exceptions: Exceptions with
Arguments – User-Defined Exceptions.

 Unit V: Classes and Objects: Overview of OOP

(Object-Oriented Programming)- Class Definitions

Creating Objects-Objects as Arguments – Objects as

Return Values – Built-in Class Attributes -Inheritance –

Method Overloading.

 TEXT BOOKS:

 E. Balagurusamy, “Introduction To Computing And

Problem Solving Using Python”, McGraw Hill Education

Private Limited, New Delhi.

 REFERENCE BOOKS:

 Mark Lutz, David Ascher, “Learning Python”, Shroff

Publishers & Distributors Private Limited,2009.

History of Python

 Created in 1989 by Guido van Rossum
 Created as a scripting language for administrative tasks

 Based on All Basic Code (ABC) and Modula-3

 Added extensibility

 Named after comic troupe Monty Python

 Released publicly in 1991

 Growing community of Python developers

 Evolved into well-supported programming language

History of Python

 Modules

 Reusable pieces of software

 Can be written by any Python developer

 Extend Python’s capabilities

 Python Web site at www.python.org

 Primary distribution center for Python source code,

modules and documentation

http://www.python.org/

History of Python

 Python

 Designed to be portable and extensible

 Originally implemented on UNIX

 Programs often can be ported from one operating system to
another without any change

 Syntax and design promote good programming

practices with rapid development times

 Simple enough to be used by beginning programmers

 Powerful enough to attract professionals

World-Class Software

Companies That Use Python

 Google.

 Facebook.

 Instagram.

 Spotify.

 Quora.

 Netflix.

 Dropbox.

Getting Started with

Python

Setting Up Python on

Windows

 Go to http://www.python.org and get the latest

distribution (3.8)

 Online tutorials

 Python related websites

 Use the distribution on the CD ROM supplied with the

textbook

 Examples from the book

 Use all the defaults when installing

http://www.python.org/

Python IDLE

First Python Program

 At the prompt (>>>) type:

 print “MCA AT GAC”

 Press [Enter]

 print “COIMBATORE”

 Press [Enter]

 Programming in Python

 Interactive mode gives you immediate feedback

 Not designed to create programs to save and run later

 Script Mode

 Write, edit, save, and run (later)

 Word processor for your code

 Save your file using the “.py” extension

Program Documentation

 Comment lines provide documentation about your

program

 Anything after the “#” symbol is a comment

 Ignored by the computer

 # I AM A Programmer

 # First Python Program

 # MCA ,GAC

Expressions

 Expression: A data value or set of operations to compute a

value.

 Examples: 1 + 4 * 3

 42

 Arithmetic operators we will use:

 + – * / addition, subtraction/negation, multiplication,
division

 % modulus, remainder

 ** exponentiation

 precedence: Order in which operations are computed.

 * / % ** have a higher precedence than + -
1 + 3 * 4 is 13

 Parentheses can be used to force a certain order of evaluation.
(1 + 3) * 4 is 16

Math commands

Python has useful commands for

performing calculations.

To use many of these

commands, you must write the

following at the top of your

Python program:

from math import *

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

http://docs.python.org/lib/module-math.html

Variables

 Variable: A named piece of memory that can store a value.

 Usage:

 Compute an expression's result,

 store that result into a variable,

 and use that variable later in the program.

 Assignment statement: Stores a value into a variable.

 Syntax:

 name = value

 Examples: a = 15

 pi = 3.14

 a pi

 15 3.14

 A variable that has been given a value can be used in expressions.

 x + 5 is 20

Standard Data Types

 1.Numeric

 2. String

 3.Lists

 4.Tuple

 5.Dictionary

 6.Boolean

 7.Sets

1.Numeric:

 Integers and floating point values are Numeric.

 Examples

 >>> num1=34

 >>>num2=6.89

 >>>num1

 34

 >>num2

 6.89

2.String

 Single quotes or double quotes can be used to

represent strings.

 >>>str1=‘MCA’

 >>>str1

 MCA

 >>>str1 + ‘GAC, Coimbatore’

 >>>MCA GAC, Coimbatore

Lists

 A list is an ordered and indexable sequence and

contain different types of items

 >>>mylist=[1,”two”,3.0]

 >>>mylist

 [1,”two”,3.0]

Tuples

 A Tuple is used to store sequence of items enclosed in

paranthesis.

 Examples

 >>>Tup1={3,”three”,9.7}

 >>>Tup1

 {3,”three”,9.7}

Dictionary

 Python dictionary is a unordered collection of key-

value pairs.

 Examples

 >>>Dict1={1:”first”,”second”:2}

 >>>Dict1

 {1:”first”,”second”:2}

Boolean

 Boolean data type stores TRUE or FALSE values only.

 Example

 >>>A=True

 >>>type(A)

 <type ‘bool’>

Sets

 A set is an unordered collection of data .Sets do not
contain any duplicate values or elements

 It can have any number of items and they may be of
different types (integer, float, tuple, string etc.). But a
set cannot have mutable elements like lists, sets
or dictionaries as its elements.

 Example

 >>>Set1=set([1,2,3,4])

 >>>set1

 ([1,2,3,4])

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/dictionary

print

 print : Produces text output on the console.

 Syntax:

 print "Message"

 print Expression

 Prints the given text message or expression value on the console, and moves

the cursor down to the next line.

 print Item1, Item2, ..., ItemN

 Prints several messages and/or expressions on the same line.

 Examples:

 print “ GAC, CBE!"

 age = 10

 print "You have", 20 – age, "years for 20"

 Output:

 GAC, CBE!

 You have 10 years for 20

input

 input : Reads a number from user input.

 You can assign (store) the result of input into a variable.

 Example:

 age = input("How old are you? ")

 print "Your age is", age

 Output:

 How old are you? 23

 Your age is 23

Operators

 Python language supports the following types of

operators.

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Arithmetic operators

Operator Description Example

+ Addition Adds values on either side of the

operator.

a + b = 30

-

Subtraction

Subtracts right hand operand from left

hand operand.

a – b = -10

*

Multiplicati

on

Multiplies values on either side of the

operator

a * b = 200

/ Division Divides left hand operand by right

hand operand

b / a = 2

% Modulus Divides left hand operand by right

hand operand and returns remainder

b % a = 0

**

Exponent

Performs exponential (power)

calculation on operators

a**b =10 to the power 20

// Floor Division – The division of operands

where the result is the quotient in which

the digits after the decimal point are

removed. But if one of the operands is

negative, the result is floored, i.e.,

rounded away from zero (towards

negative infinity) −

9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -

11.0//3 = -4.0

Comparison operators

Operator Description Example

==

If the values of two

operands are equal, then

the condition becomes

true.

(a == b) is not true.

!=

If values of two operands

are not equal, then

condition becomes true.

(a != b) is true.

<>

If values of two operands

are not equal, then

condition becomes true.

(a <> b) is true. This is similar

to != operator.

>

If the value of left operand

is greater than the value of

right operand, then

condition becomes true.

(a > b) is not true.

Comparison operators

Operator Description Example

<

If the value of left operand

is less than the value of

right operand, then

condition becomes true.

(a < b) is true.

>=

If the value of left operand

is greater than or equal to

the value of right operand,

then condition becomes

true.

(a >= b) is not true.

<=

If the value of left operand

is less than or equal to the

value of right operand,

then condition becomes

true.

(a <= b) is true.

Python Assignment Operators

Operator Description Example

=
Assigns values from right side

operands to left side operand

c = a + b assigns value of a + b into

c

+= Add AND

It adds right operand to the left

operand and assign the result to left

operand

c += a is equivalent to c = c + a

-= Subtract AND

It subtracts right operand from the

left operand and assign the result to

left operand

c -= a is equivalent to c = c – a

*= Multiply AND

It multiplies right operand with the

left operand and assign the result to

left operand

c *= a is equivalent to c = c * a

/= Divide AND

It divides left operand with the right

operand and assign the result to left

operand

c /= a is equivalent to c = c / a

%= Modulus AND
It takes modulus using two operands

and assign the result to left operand
c %= a is equivalent to c = c % a

**= Exponent AND

Performs exponential (power)

calculation on operators and assign

value to the left operand

c **= a is equivalent to c = c ** a

//= Floor Division

It performs floor division on

operators and assign value to the

left operand

c //= a is equivalent to c = c // a

Logical operators

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

Repetition (loops)

and Selection (if/else)

The for loop

 for loop: Repeats a set of statements over a group of values.

 Syntax:

 for variableName in groupOfValues:

 statements

 We indent the statements to be repeated with tabs or spaces.

 variableName gives a name to each value, so you can refer to it in the statements.

 groupOfValues can be a range of integers, specified with the range function.

 Example:

 for x in range(1, 6):

 print x, "squared is", x * x

 Output:

 1 squared is 1

 2 squared is 4

 3 squared is 9

 4 squared is 16

 5 squared is 25

range

 The range function specifies a range of integers:
 range(start, stop) - the integers between start

(inclusive) and stop (exclusive)

 It can also accept a third value specifying the change

between values.
 range(start, stop, step) – the integers between start

(inclusive) and stop (exclusive) by step

 Example:
for x in range(5, 0, -1):

print x

print "Blastoff!“

 Output:
5

4

3

2

1

Blastoff!

Cumulative loops

 Some loops incrementally compute a value that is

initialized outside the loop. This is sometimes called a

cumulative sum.

 sum = 0

 for i in range(1, 11):

 sum = sum + (i * i)

 print "sum of first 10 squares is", sum

 Output:

 sum of first 10 squares is 385

if

 if statement: Executes a group of statements only if a

certain condition is true. Otherwise, the statements

are skipped.

 Syntax:

 if condition:

 statements

 Example:

 gpa = 3.4

 if gpa > 2.0:

 print “GPA is greater than 2."

if/else

 if/else statement: Executes one block of statements if a certain
condition is True, and a second block of statements if it is False.
 Syntax:
 if condition:
 statements
 else:
 statements

 Example:
 if gpa > 5.0:
 print "Welcome to Our University!"
 else:
 print "Your application is rejected."

 Multiple conditions can be chained with elif ("else if"):
 if condition:
 statements
 elif condition:
 statements
 else:
 statements

while

 while loop: Executes a group of statements as long as a condition
is True.

 good for indefinite loops (repeat an unknown number of times)

 Syntax:

 while condition:

 statements

 Example:

 number = 1

 while number < 100:

 print number

 number = number * 2

 Output:

 1 2 4 8 16 32 64

raw_input

 raw_input : Reads a string of text from user input.

 Example:

 name = raw_input(“ What's your name? ")

 print name, " is a lovely name!"

 Output:

 What's your name? Shilpa

 Shilpa is a lovely name!

Text processing

 text processing: Examining, editing, formatting text.

 often uses loops that examine the characters of a string one by one

 A for loop can examine each character in a string in sequence.

 Example:

 for c in “GACCBE":

 print c

 Output:

 G

 A

 C

 C

 B

 E

Thank you
The Content in this Material are from the Textbooks and

Reference books given in the Syllabus

