## Simple Linear Regression

 Review of least squares procedure
## The Model

- The first order linear model

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

$y=$ dependent variable
$x=$ independent variable
$\beta_{0}=y$-intercept
$\beta_{1}=$ slope of the line
$\varepsilon=$ error variable


## The Least Squares (Regression) Line

A good line is one that minimizes the sum of squared differences between the points and the line.

## The Estimated Coefficients

To calculate the estimates of the slope and intercept of the least squares line, use the formulas:
$b_{1}=\frac{S S_{x y}}{S S_{x x}}$
$b_{0}=\bar{y}-b_{1} \bar{x}$
$S S_{x y}=\sum x_{i} y_{i}-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}$
$S S_{x x}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}=(n-1) s_{x}^{2}$

Alternate formula for the slope $b_{1}$

$$
b_{1}=r \frac{s_{y}}{s_{x}}
$$

The regression equation that estimates the equation of the first order linear model is:

$$
\hat{y}=b_{0}+b_{1} x
$$

## The Simple Linear Regression Line

- Example:
- A car dealer wants to find the relationship between the odometer reading and the selling price of used cars.
- A random sample of 100 cars is selected, and the data recorded.
- Find the regression line.

| Car | Odometer | Price |
| ---: | :--- | :--- |
| 1 | 37388 | 14636 |
| 2 | 44758 | 14122 |
| 3 | 45833 | 14016 |
| 4 | 30862 | 15590 |
| 5 | 31705 | 15568 |
| 6 | 34010 | 14718 |
| . |  | Independent |
| . Dependent |  |  |
| . | variable x | variable y |

## The Simple Linear Regression Line

- Solution
- Solving by hand: Calculate a number of statistics

$$
\begin{array}{ll}
\overline{\mathrm{x}}=36,009.45 ; & S S_{x x}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}=43,528,690 \\
\overline{\mathrm{y}}=14,822.823 ; & S S_{x y}=\sum\left(x_{i} y_{i}\right)-\frac{\sum x_{i} \sum y_{i}}{n}=-2,712,511
\end{array}
$$

where $\mathrm{n}=100$.

$$
\begin{aligned}
& b_{1}=\frac{S S_{x y}}{(n-1) s_{x}^{2}}=\frac{-2,712,511}{43,528,690}=-.06232 \\
& b_{0}=\bar{y}-b_{1} \bar{x}=14,822.82-(-.06232)(36,009.45)=17,067
\end{aligned}
$$

$$
\hat{y}=b_{0}+b_{1} x=17,067-.0623 x
$$

