DEPARTMENT OF STATISTICS,
 GOVERNMENT ARTS COLLEGE, COIMBATORE - 641018

SUBJECT TITLE : STATISTICAL QUALTY CONTROL
 SUBJECT CODE : 18 BST 63C
 PREPARED BY : Dr. P. VASANTHAMANI
 MOBILE NUMBER : 9994575462

UNIT V

Sequential-sampling plans In item-by-item sequential sampling, the decision to: accept; reject; continue sampling; is made after each item is inspected. The acceptance and rejection numbers usually correspond to parallel sloping lines on the chart of (number nonconforming) versus (number inspected). Inspection could continue indefinitely but is usually terminated after a reasonable number of items have been inspected.

The parallel lines are found using Wald's sequential probability ratio test.
For given $\operatorname{PRP}=\left(p_{1}, 1-\alpha\right)$ and $C R P=\left(p_{2}, \beta\right)$, the lines are $X_{A}=-h 1+s n$ (acceptance line) and $X_{R}=h_{2}+\operatorname{sn}$ (rejection line) where h_{1}, h_{2}, and s are calculated from $\mathrm{p} 1, \mathrm{p} 2, \alpha$, and β.

The ultimate in multiple sampling is sequential sampling which provides for infinite number of stages for arriving at a decision. In sequential sampling, sample items are examined one at a time and after each item inspected one of three decisions, viz., to accept the lot, to reject the lot or to continue sampling is taken. This scheme provides for a minimum amount of inspection.

Sequential schemes are considered to require most care and supervision in operation. Where the inspection or testing costs per article are high and sampling destructive, utmost economy in the number of articles inspected is important and often outweighs administrative convenience.

Sequential Probability Ratio Test (S.P.R.T.). A sampling plan satisfying the condition that the probability of rejecting the lot does not exceed α whenever $p \leq p_{0}$ and the probability of accepting lots does not exceed β whenever $p \geq p_{1}$ is given by the sequential probability ratio test (SPRT), pioneered by Dr. Abraham Wald, for testing the hypothesis H_{0} : $p=p_{0}$ against the hypothesis $H_{1}: p=p_{1}$.

Here if we take AQL $=p_{0} ;$ LTPD $=100 p_{1}$ or lot tolerance fraction defective $p_{1}: \alpha=$ Probability of Type I error and $\beta=$ Probability of Type II error then α and β are the maximum producer's and consumer's risks respectively. SPRT is defined as follows:

Let the result of the inspection of the i th unit be denoted by a Bernoulli variate X_{i}, i.e.,

$$
\begin{aligned}
X_{i} & =1, \text { if } i \text { th item inspected is found to be defective } \\
& =0, \text { otherwise. }
\end{aligned}
$$

For the incoming lot quality ' p ', if $f(x, p)$ represents the probability function of X then

$$
f(1, p)=p \quad \text { and } \quad f(0, p)=1-p
$$

Let $p_{1 \mathrm{~m}}$ and $p_{0 m}$ be the probabilities of getting d_{m} defectives in the sample ($X_{1}, X_{2}, \ldots, X_{m}$) of size m under H_{1} and H_{0} respectively. Then the Likelihood Ratio λ_{m} is given by :

$$
\lambda_{m}=\frac{p_{1 m}}{p_{o m}}=\frac{\text { II }_{i=1}^{m} f\left(x_{i}, p_{1}\right)}{\mathrm{II}_{i=1}^{m} f\left(x_{i}, p_{0}\right)}=\prod_{i=1}^{m} \frac{f\left(x_{i}, p_{1}\right)}{f\left(x_{i}, p_{0}\right)}=\frac{p_{1}^{d m}\left(1-p_{1}\right)^{m-d_{m}}}{p_{0}{ }^{d m}\left(1-p_{0}\right)^{m-d_{m}}}
$$

SPRT is carried out as follows : At each stage of the experiment, at the inspection of the m th for each possible integral value m, we compute λ_{m} and
(i) If $\lambda_{m} \geq A$, we terminate the process with rejection of the lot.
(ii) If $\lambda_{m} \leq B$, we terminate the process with acceptance of the lot.
(iii) If $B<\lambda_{m}<A$, we continue the sampling by taking an additional observation,
where A and B are constants determined in terms of α and β and are given by

$$
A=(1-\beta) / \alpha \text { and } B=\beta /(1-\alpha)
$$

For computational points of view, it would be much easier to deal with $\log \lambda_{m}$ rather than with λ_{m}. Thus SPRT can be restated as follows:
(i) If $\lambda_{m} \geq \log \log A$, reject the lot,
(ii) If $\log \lambda_{m} \leq \log B$, accept the lot, and
(iii) If $\log B<\log \lambda_{m}<\log A$, continue sampling by taking one more observation.

$$
\log \lambda_{m}=d_{m} \log \left(\frac{p_{1}}{p_{0}}\right)+\left(m-d_{m}\right) \log \left(\frac{1-p_{1}}{1-p_{0}}\right)
$$

$$
\begin{align*}
& \text { Hence accept the lot if } \\
& \qquad d_{m} \log \left(\frac{p_{1}}{p_{0}}\right)+\left(m-d_{m}\right) \log \left(\frac{1-p_{1}}{1-p_{0}}\right) \leq \log B \Rightarrow d_{m} \leq \frac{\log B-m \log \left(\frac{1-p_{1}}{1-p_{0}}\right)}{\log \left(\frac{p_{1}}{p_{0}}\right)-\log \left(\frac{1-p_{1}}{1-p_{0}}\right)}=a_{m} \text { (say) }
\end{align*}
$$

Reject the lot if

$$
\begin{equation*}
d_{m} \log \left(\frac{p_{1}}{p_{0}}\right)+\left(m-d_{m}\right) \log \left(\frac{1-p_{1}}{1-p_{0}}\right) \geq \log A \Rightarrow d_{m} \geq \frac{\log A-m \log \left(\frac{1-p_{1}}{1-p_{0}}\right)}{\log \left(\frac{p_{1}}{p_{0}}\right)-\log \left(\frac{1-p_{1}}{1-p_{0}}\right)}=r_{m} \text { (say) } \tag{1-24b}
\end{equation*}
$$

Continue sampling if $\quad a_{m}<d_{m}<r_{m}$

For each m, a_{m} and r_{m} are known as acceptance number and rejection number respectively.

Procedure. At each stage of the experiment, we compute a_{m} and r_{m} and we continue inspection as long as $a_{m}<d_{m}<r_{m}$. The first time when this inequality is violated, the inspection is stopped and then
(i) if $d_{m} \geq r_{m}$, lot is rejected, and
(ii) if $d_{m} \leq a_{m}$, lot is accepted.

Remark. If we write
and

$$
\begin{align*}
g_{1} & =\log \left(p_{1} / p_{0}\right), g_{2}=\log \left(\frac{1-p_{0}}{1-p_{1}}\right) ; \log A=a, \log B=-b \\
s & =\frac{\log \left(1-p_{0} / 1-p_{1}\right)}{\log \left(p_{1} / p_{0}\right)-\log \left(1-p_{1} / 1-p_{0}\right)}=\frac{g_{2}}{g_{1}+g_{2}} \tag{1.24e}
\end{align*}
$$

then the acceptance and rejection lines L_{1} and L_{2} are given by the following equations:
Acceptance Line $L_{1}: d_{m}=a_{m}=\frac{-b}{g_{1}+g_{2}}+\frac{m g_{2}}{g_{1}+g} \Rightarrow d_{m}=-h_{1}+s m$
where

$$
h_{1}=\frac{b}{g_{1}+g_{2}}
$$

and $-h_{1}$ gives the intercept of the line L_{1} on the d_{m} axis.
Rejection Line L_{2} :

$$
d_{m}=r_{m}=\frac{a}{g_{1}+g_{2}}+m \frac{g_{2}}{g_{1}+g_{2}} \Rightarrow d_{m}=h_{2}+s m
$$

where $h_{2}=\frac{a}{g_{1}+g_{2}}$
is the intercept of the line L_{2} on the d_{m} axis.

It is obvious from the equations $(1.24 e)$ and ($1.24 g$) that the acceptance and the rejection lines are parallel to each other, their slope being s.

It may be pointed out that d_{m} is the cumulative number of defectives, m is the cumulative number of observations, at the stage considered.

First of all, we plot the two lines L_{1} and L_{2}. If at any stage the point (m, d_{m}) lies between the two lines, the sampling is to be continued by taking an additional observation. If the point (m, d_{m}) lies above or one line L_{2}, the lot is rejected and if the point (m, d_{m}) lies below or on the line L_{1}, lot is accepted.

Remark. Dividing (1.24f) by (1.24h), we get :

$$
\begin{equation*}
\frac{h_{1}}{h_{2}}=\frac{b}{a} \quad \Rightarrow \quad a h_{1}-b h_{2}=0 \tag{1-24i}
\end{equation*}
$$

OC of Sequential Sampling Plan. The OC function of a SPRT for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ in sampling from population with density function $f(x, \theta)$ is given by :

$$
\begin{equation*}
L(\theta)=P_{a}(\theta)=\frac{A^{h}(\theta)-1}{A^{h}(\theta)-B^{h}(\theta)} \tag{1-25}
\end{equation*}
$$

where, for each value of θ, the value of $h(\theta)$ is to be determined so that $h(\theta) \neq 0$ and

$$
\begin{equation*}
E\left[\frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{0}\right)}\right]^{h(\theta)}=1 \tag{1-25a}
\end{equation*}
$$

where A and B have been defined in (1.23b).
Thus the O.C. function of S.P.R.T. for testing $H_{0}: p=p_{0}$ against $H_{1}: p=p_{1}$ is given by :

$$
\begin{equation*}
L(p)=\frac{A^{h}-1}{A^{h}-B^{h}}=L(p, h),(\text { say }) \tag{1-26}
\end{equation*}
$$

where $h=h(p)$ is obtained by the equation :

$$
\begin{align*}
& \sum_{x=0}^{1}\left[\frac{f\left(x, p_{1}\right)}{f\left(x, p_{0}\right)}\right]^{h} f(x, p) & =1 \\
\Rightarrow & {\left[\frac{f\left(1, p_{1}\right)}{f\left(1, p_{0}\right)}\right]^{h} f(1, p)+\left[\frac{f\left(0, p_{1}\right)}{f\left(0, p_{0}\right)}\right]^{h} f(0, p) } & =1 \\
\Rightarrow & p\left(\frac{p_{1}}{p_{0}}\right)^{h}+(1-p)\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h} & =1
\end{align*}
$$

The solution of (1-27) for $h=h(p)$ is very tedious. From practical. point of view, to draw the $O C$ curve, it is necessary to solve ($1 \cdot 27$) for $h g$ instead we may regard h as a parameter and solve (1-27) for p thus giving

$$
\begin{equation*}
p=\frac{1-\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h}}{\left(\frac{p_{1}}{p_{0}}\right)^{h}-\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h}}=p(h), \text { (say) } \tag{1-28}
\end{equation*}
$$

Now, various points on the $O C$ curve are obtained by giving arbitrary values to h and computing corresponding values of p and $L(p)$ from (1.28) and (1.26) respectively.

Remark. If h assumes negative values, i.e., if instead of h we take $-h$ where now $h>0$, then

$$
\begin{align*}
L(p,-h) & =\frac{A^{-h}-1}{A^{-h}-B^{-h}}=\left(\frac{1-A^{h}}{B^{h}-A^{h}}\right) B^{h}=\left(\frac{A^{h}-1}{A^{h}-B^{h}}\right) B^{h} \\
\therefore \quad L(p,-h) & =B^{h} \cdot L(p, h) \\
p(-h) & =\frac{\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h}-1}{\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h}-\left(\frac{p_{1}}{p_{0}}\right)^{h}} \cdot\left(\frac{p_{1}}{p_{0}}\right)^{h}=p(h) \cdot\left(\frac{p_{1}}{p_{0}}\right)^{h} \tag{a}
\end{align*}
$$

and

Thus for negative values of h, the points on the $O C$ curve can be obtained from equations (1.29) and (1-29a).

Five Points on OC Curve. Often, a sufficient appraisal of the $O C$ can be obtained from the following five easily computed points on the curve.

Since a lot containing no defective $(p=0)$ will always be accepted and a lot with 100% defective $(p=1)$ is sure to be rejected, we have

$$
\begin{align*}
L(0) & =1 \quad \text { and } L(1)=0 \\
L\left(p_{0}\right) & =P\left(\text { Accepting a lot of quality } p_{0}\right) \\
& =1-P\left(\text { Rejecting a lot of quality } p_{1}\right) \\
& =1-\alpha \\
L\left(p_{1}\right) & =P\left(\text { Accepting a lot of quality } p_{1}\right)=\beta \\
\text { Let } p=p^{\prime} \text { when } h=0, \text { i.e., } p^{\prime} & =\lim _{h_{0} \rightarrow 0} p=\lim _{h_{0} \rightarrow 0} \frac{1-\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h}}{\left(\frac{p_{1}}{p_{0}}\right)^{h}-\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h}}
\end{align*}
$$

Let $p=p^{\prime}$ when $h=0$, i.e., $p^{\prime}=\lim _{h_{0} \rightarrow 0} p=\lim _{h_{0} \rightarrow 0}$

This is the indeterminate form $\frac{0}{0}$ and hence by L'Hospital's rule, we get

$$
\begin{align*}
& p^{\prime}=\lim _{h \rightarrow 0} \frac{\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h} \log \left(\frac{1-p_{1}}{1-p_{0}}\right)}{\left(\frac{p_{1}}{p_{0}}\right)^{h} \log \frac{p_{1}}{p_{0}}-\left(\frac{1-p_{1}}{1-p_{0}}\right)^{h} \log \frac{1-p_{1}}{1-p_{0}}}=\frac{-\log \left(\frac{1-p_{1}}{1-p_{0}}\right)}{\log \left(\frac{p_{1}}{p_{0}}-\log \frac{1-p_{1}}{1-p_{0}}\right)} \\
& p^{\prime}=\lim _{h \rightarrow 0} L(p)=\lim _{h \rightarrow 0} \frac{A^{h}-1}{A^{h}-B^{h}}=\frac{\log A}{\log A-\log B} \quad \text { (L'Hospital's Rule) }
\end{align*}
$$

Remark. Using the notations of $(1 \cdot 24 d)$, we get from (1.30) and (1.30a)

$$
\begin{align*}
p^{\prime} & =\frac{g_{2}}{g_{1}+g_{2}}=s \\
L\left(p^{\prime}\right) & =\frac{a}{a+b}=\frac{h_{2}}{h_{1}+h_{2}} \tag{1-30c}
\end{align*}
$$

[On dividing numerator and denominator by $g_{1}+g_{2}$ and using ($1.24 f$) and ($1.24 h$).]
The five points for the $O C$ curve are expressed in a tabular form in the adjoining table :

h	p	$L(p)$
∞	0	1
1	$p_{0}=A Q L$	$1-\alpha$
0	p^{\prime}	$\frac{a}{a+b}=\frac{h_{2}}{h_{1}+h_{2}}$
-1	$p_{1}=L T F D$	β
$-\infty$	1	0

ASN Function of Sequential Sampling Plan. The sample size n in sequential testing is a random variable which can be determined in terms of the density function $f(x, \theta)$. The ASN function of an SPRT for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ is given by :

$$
\begin{equation*}
E(n)=\frac{L(\theta) \log L(\theta) \log B+[1-L(\theta)] \log A}{E(z)}, \text { where } z=\log \frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{0}\right)} \tag{1•31}
\end{equation*}
$$

Thus for sequential sampling plan with AQL p_{0} and LTFD p_{1} (i.e., for testing
where

$$
\begin{gather*}
E(n)=\frac{L(p) \log B+[1-L(p)] \log A}{E(z)} \\
z=\log \frac{f\left(x, p_{1}\right)}{f\left(x, p_{0}\right)} ; A=\frac{1-\beta}{\alpha} ; B=\frac{\beta}{1-\alpha}
\end{gather*}
$$

Hence,

$$
\begin{align*}
E(z) & =E \log \frac{f\left(x, p_{1}\right)}{f\left(x, p_{0}\right)}=\sum_{x=0}^{1} f(x, p) \cdot \log \frac{f\left(x, p_{1}\right)}{f\left(x, p_{0}\right)} \\
& =p \log \frac{p_{1}}{p_{0}}+(1-p) \log \frac{1-p_{1}}{1-p_{0}} \\
E(n) & =\frac{L(p) \log B+[1-L(p)] \log A}{p \log \left(\frac{p_{1}}{p_{0}}\right)+(1-p) \log \left(\frac{1-p_{1}}{1-p_{0}}\right)}
\end{align*}
$$

which is the required ASN function.
Five Points on ASN Curve. A sufficiently good idea of ASN curve for the sequential sampling plan can be obtained from suitably chosen five points which are easy to obtain. The ASN curve so obtained is referred to as 5 -point ASN curve.

The general 5-points on ASN curve corresponding to $p=0,1, p_{1}$ (LTFD), p_{0} (AQL) and s are obtained from ($1.32 b$) as explained below.

$$
\begin{array}{ll}
\text { When } & p=0, L(p)=1 \\
\therefore & E(n)=\frac{\log B}{\log \left[\left(1-p_{1}\right) /\left(1-p_{2}\right)\right]}=\frac{-b}{-g_{2}}=\frac{b}{g_{2}}=\frac{b /\left(g_{1}+g_{2}\right)}{g_{2} /\left(g_{1}+g_{2}\right)}=\frac{h_{1}}{s}
\end{array}
$$

When

$$
p_{1}=p, L\left(p_{1}\right)=\beta
$$

$$
\begin{aligned}
& \quad \begin{aligned}
E(n) & =\frac{\beta \log B+(1-\beta) \log A}{p_{1} \log \frac{p_{1}}{p_{2}}+\left(1-p_{1}\right) \log \frac{1-p_{1}}{1-p_{0}}} \\
& =\frac{a-(a+b) \beta}{p_{1} g_{1}-\left(1-p_{1}\right) g_{2}}=\frac{(1-\beta) a-b \beta}{\left(g_{1}+g_{2}\right)-g_{2}} \\
& =\frac{(1-\beta) h_{2}-\beta h_{1}}{p_{1}-s}\left[\text { Dividing numerator and denominator by } g_{1}+g_{2}\right] \ldots(1 \cdot 33 b)
\end{aligned} . . .(1 \cdot 33 a)
\end{aligned}
$$

When

$$
p=p_{0}, L\left(p_{0}\right)=1-\alpha
$$

$$
\begin{align*}
\therefore \quad E(n) & =\frac{-(1-\alpha) b+\alpha a}{p_{0} g_{1}-\left(1-p_{0}\right) g_{2}}=\frac{\alpha(a+b)-b}{p_{0}\left(g_{1}+g_{2}\right)-g_{2}} \\
& =\frac{-(1-\alpha) h_{1}+\alpha h_{2}}{p_{0}-s} \\
& =\frac{(1-\alpha) h_{1}-\alpha h_{2}}{s-p_{0}}
\end{align*}
$$

When

$$
p=1, L(p)=0
$$

$$
\begin{array}{rlrl}
\therefore & E(n) & =\frac{a}{g_{1}}=\frac{h_{2}}{1-s} \\
& \text { When } & p & =s, L(p)=\frac{h_{2}}{h_{1}+h_{2}}
\end{array}
$$

[c.f. (1.30b) and (1-30c)]
FIVE POINTS ON ASN CURVE
FIVE PONNTIAL SAMPLING PLAN
FOR SEQUENTI

P	$\frac{b}{g_{2}}$ or $\frac{h_{1}}{s}$
0	$\frac{\alpha(a+b)-b}{p_{0}\left(g_{1}+g_{2}\right)-g_{2}}$ or $\frac{(1-\alpha) h_{1}-\alpha h_{2}}{s-p_{0}}$
$p_{0}(A Q L)$	
s	$\frac{h_{1} h_{2}}{s(1-s)}$
$p_{1}(L T F D)$	$\frac{a-\beta(a+b)}{p_{1}\left(g_{1}+g_{2}\right)-g_{2}}$ or $\frac{(1-\beta) h_{2}-\beta h_{1}}{p_{1}-s}$
1	$\frac{a}{g_{1}}$ or $\frac{h_{2}}{1-s}$

Remarks 1. Although sequential inspection plan provides for an infinite number of stages, it has Remablished mathematically that sequential process ultim book been estailed discussion on SPRT the reader is referred to the book 'Sequ A. Wald, published by John Wiley \& Sons, New York (1947). sampling plan, sequential plan requires, on the average, 33% to 50% less inspection the degree of protection, i.e., for same values of α and β.
3. $A S N$ is maximum at $p=s$.
4. $p_{0}<s<p_{1}$

Proof. In the usual notations : $s=\frac{g_{2}}{g_{1}+g_{2}} \quad \Rightarrow \quad 1-s=\frac{g_{2}}{g_{1}+g_{2}}$
Dividing, we get

$$
\frac{s}{1-s}=\frac{g_{2}}{g_{1}}
$$

We have

$$
g_{1}=\log \left(p_{1} / p_{0}\right)=\log p_{1}-\log p_{0}
$$

Using mean value theorem from differential calculus, viz.,

$$
f(b)-f(a)=(b-a) f^{\prime}(c) ; \quad a<c<b \text {, }
$$

with

$$
f(x)=\log x \text {, we get }
$$

$$
g_{1}=\left(p_{1}-p_{0}\right)\left(\frac{1}{c_{1}}\right) ; \quad p_{0}<c_{1}<p_{1}
$$

Similarly,

$$
\begin{gathered}
g_{2}=\log \left(\frac{1-p_{0}}{1-p_{1}}\right)=\log \left(1-p_{0}\right)-\log \left(1-p_{1}\right) \\
=\left(p_{1}-p_{0}\right) \frac{1}{c_{2}}, 1-p_{1}<c_{2}<1-p_{0}
\end{gathered}
$$

Substituting in (1), we get

$$
\frac{s}{1-s}=\frac{c_{1}}{c_{2}}
$$

$$
\begin{array}{rlrl}
\therefore & E(n) & =\frac{a}{g_{1}}=\frac{h_{2}}{1-s} \tag{3}\\
& \text { When } & p & =s, L(p)=\frac{h_{2}}{h_{1}+h_{2}}
\end{array}
$$

[c.f. $(1.30 b)$ and $\left(1.30_{c}\right)$]
FIVE POINTS ON ASN CURVE FOR SEQUENTIAL SAMPLING PLAN

$$
\begin{gathered}
\therefore \quad E(n)=\frac{-\left(\frac{h_{2}}{h_{1}+h_{2}}\right) b+\left(\frac{h_{1}}{h_{1}+h_{2}}\right) a}{s g_{1}-(1-s) g_{2}} \\
=\frac{a h_{1}-b h_{2}}{h_{1}+h_{2}} \frac{1}{s\left(g_{1}+g_{2}\right)-g_{2}}\left(\frac{0}{0} \text { Form }\right)
\end{gathered}
$$

[From (1.24i) and (1.30b)] $=\frac{h_{1} h_{2}}{s(1-s)} \quad \ldots(1.33 f)$
These five points obtained in equations (1.33) to (1.33) are expressed in the tabular form in the adjoining table :
FIVE POINTS ON ASN CURVE

FOR SEQUENTIAL SAMPLING PLAN $|$| P | $\frac{b}{g_{2}}$ or $\frac{h_{1}}{s}$ |
| :---: | :---: |
| 0 | $\frac{\alpha(a+b)-b}{p_{0}\left(g_{1}+g_{2}\right)-g_{2}}$ or $\frac{(1-\alpha) h_{1}-\alpha h_{2}}{s-p_{0}}$ |
| $p_{0}(A Q L)$ | $\frac{h_{1} h_{2}}{s(1-s)}$ |
| s | $\frac{a-\beta(a+b)}{p_{1}\left(g_{1}+g_{2}\right)-g_{2}}$ or $\frac{(1-\beta) h_{2}-\beta h_{1}}{p_{1}-s}$ |
| $p_{1}(L T F D)$ | |
| 1 | $\frac{a}{g_{1}}$ or $\frac{h_{2}}{1-s}$ |

Remarks 1. Although sequential inspection plan provides for an infinite number of stages, it has been established mathematically that sequential process ultimately terminals with probability one. For a detailed discussion on SPRT the reader is referred to the book 'Sequential Analysis' by A. Wald, published by John Wiley \& Sons, New York (1947).
2. The chief advantage of sequential plan is the reduction in the A.S.N. As compared with single sampling plan, sequential plan requires, on the average, 33% to 50% less inspection for the same degree of protection, i.e., for same values of α and β.
3. $A S N$ is maximum at $p=s$.
4. $p_{0}<s<p_{1}$

Proof. In the usual notations : $s=\frac{g_{2}}{g_{1}+g_{2}} \quad \Rightarrow \quad 1-s=\frac{g_{2}}{g_{1}+g_{2}}$
Dividing, we get

$$
\begin{equation*}
\frac{s}{1-s}=\frac{g_{2}}{g_{1}} \tag{1}
\end{equation*}
$$

We have

$$
g_{1}=\log \left(p_{1} / p_{0}\right)=\log p_{1}-\log p_{0}
$$

Using mean value theorem from differential calculus, viz.,
with

$$
f(b)-f(a)=(b-a) f^{\prime}(c) ; \quad a<c<b,
$$

$$
f(x)=\log x \text {, we get }
$$

$$
\begin{equation*}
g_{1}=\left(p_{1}-p_{0}\right)\left(\frac{1}{c_{1}}\right) ; \quad p_{0}<c_{1}<p_{1} \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
g_{2}= & \log \left(\frac{1-p_{0}}{1-p_{1}}\right)=\log \left(1-p_{0}\right)-\log \left(1-p_{1}\right) \\
& =\left(p_{1}-p_{0}\right) \frac{1}{c_{2}}, 1-p_{1}<c_{2}<1-p_{0} \tag{3}
\end{align*}
$$

Substituting in (1), we get $\frac{s}{1-s}=\frac{c_{1}}{c_{2}}$

From (2) and (3), we get

$$
\left.\begin{array}{ll}
c_{1}<p_{1}, \frac{1}{c_{2}}<\frac{1}{1-p_{1}} & c_{1}>p_{0}, \frac{1}{c_{2}}>\frac{1}{1-p_{0}} \\
\frac{c_{1}}{c_{2}}<\frac{p_{1}}{1-p_{1}}
\end{array} \right\rvert\, \Rightarrow \quad \frac{c_{1}}{c_{2}}>\frac{p_{0}}{1-p_{0}}
$$

Hence,

$$
\begin{equation*}
\frac{p_{0}}{1-p_{0}}<\frac{c_{1}}{c_{2}}<\frac{p_{1}}{1-p_{1}} \Rightarrow \frac{p_{0}}{1-p_{0}}<\frac{s}{1-s}<\frac{p_{1}}{1-p_{2}} \tag{Using4}
\end{equation*}
$$ $\Rightarrow 1+\frac{p_{0}}{1-p_{0}}<1+\frac{s}{1-s}<1+\frac{p_{1}}{1-p_{1}} \Rightarrow \frac{1}{1-p_{0}}<\frac{1}{1-s}<\frac{1}{1-p_{1}}$ or $1-p_{1}<1-s<1-p_{0}$ or $p_{0}<s<p_{1}$.

Example 1.18. It is desired to run a risk of 1 in 100 in rejecting a lot which is as good as 15% defective and 2 in accepting a lot which is as bad as 30% defective. Draw the decision lines and plot the OC and ASN curves for the above sequential sampling plan. How many units would you require to arrive at a decision for the following sequence of inspected items :
 $\begin{array}{llllllllllllllll}N & N & N & N & N & N & N & N & N & D & N N N\end{array} \quad N N N, \quad N N "$. where D stands for defective item and N for non-defective item.

Solution. For the above sequential sampling plan, we have in the usual notations :
$p_{0}(\mathrm{AQL})=0.15 ; p_{1}(\mathrm{LTFD})=0.30 ; \alpha($ Producer's risk $)=0.01 ; \beta$ (Consumer's risk $)=0.02$

$$
\begin{aligned}
a & =\log A=\log \left(\frac{1-\beta}{\alpha}\right)=\log \left(\frac{0.98}{0.01}\right)=1.99123 \\
b & =-\log B=\log \left(\frac{1}{B}\right) \quad=\log \left(\frac{1-\alpha}{\beta}\right)=\log \left(\frac{.99}{.02}\right)=1.69461
\end{aligned}
$$

$$
\begin{array}{rl|l}
\log \left(\frac{p_{1}}{p_{0}}\right) & =\log \left(\frac{0.30}{0.15}\right)=0.30103 \\
\log \left(\frac{1-p_{1}}{1-p_{0}}\right) & =\log \left(\frac{0.70}{0.85}\right)=\log 0.8235=\overline{1} \cdot 91567 & g_{1}+g_{2}=0.30103+0.08433=0.38536 \\
g_{1} & =\log \frac{p_{1}}{p_{0}}=0.30103 & s=\frac{g_{2}}{g_{1}+g_{2}}=\frac{0.08433}{0.38536}=0.2188 \\
g_{2} & =\log \left(\frac{1-p_{0}}{1-p_{1}}\right)=-\log \left(\frac{1-p_{1}}{1-p_{0}}\right) \\
& =-(\overline{1} \cdot 91567)=0.08433 & h_{1}=\frac{b}{g_{1}+g_{2}}=\frac{1.69461}{0.38536}=4.3975
\end{array}
$$

Hence, the acceptance and rejection lines are given by :
[c.f. ($1.24 e$) and c.f. ($1 \cdot 24 g)$]

Acceptance Line (L_{1})

$$
\begin{align*}
& d_{m}=-h_{1}+s m \\
\Rightarrow \quad & d_{m}=-4 \cdot 3975+0.2188 m \tag{}
\end{align*}
$$

Rejection Line $\left(L_{2}\right)$.

$$
\begin{align*}
& d_{m}=h_{2}+s m \\
\Rightarrow \quad & d_{m}=5 \cdot 1672+0.2188 m \tag{**}
\end{align*}
$$

For plotting the lines in $\left(^{*}\right)$ and $\left({ }^{* *}\right)$, we need two points for each line which are obtained in the following table :

THE SEQUENTIAL SAMPLING PLAN

Fig. 1-25

m	0	L_{1}		L_{2}	
	-4.3975	$-2 \cdot 2095$	5.1672	7.3552	
OC Curve. When $p=s=0.2188, P(p)=\frac{h_{1}}{h_{1}+h_{2}}=\frac{4.3975}{9.5647}=0.46$					

5 POINTS OF THE OC CURVE	
p	$L(p)$
(Submitted lot quality)	(Probability of Acceptance)
0	1.00
$p_{0}=0.15$	$1-\alpha=0.99$
$s=0.22$	0.46
$p_{2}=0.30$	$\beta=0.02$
1.00	0

Fig. 1-26

The OC curve is drawn in adjoining Fig. 1.26.
ASN Curve. The general five points on the ASN curve are obtained as follows:
When $\quad p=0, E(n)=\frac{b}{g_{2}}=\frac{1.69461}{0.08433}=20.095$

$$
p=p_{0}=0.15
$$

When $E(n)=\frac{(1-\alpha) h_{1}-\alpha h_{2}}{s-p_{0}}=\frac{0.99 \times 4.3975-0.01 \times 5.1672}{0.2188-0.15}=62.5262$
When

$$
p=s=0.2188, E(n)=\frac{h_{1} h_{2}}{s(1-s)}=\frac{4.3975 \times 5.1672}{0.2188 \times 0.7812}=132.96
$$

For

$$
p=p_{1}=0 \cdot 30
$$

$$
\begin{aligned}
E(n) & =\frac{(1-\beta) h_{2}-\beta h_{1}}{p_{1}-s} \\
& =\frac{0.98 \times 5.1672-0.02 \times 4.3975}{0.30-0.2188}=61.28
\end{aligned}
$$

For

$$
p=1, E(n)=\frac{a}{g_{1}}=\frac{1.99123}{0.30103}=6.61472
$$

Fig. 1.27
Sample Size for arriving at a Decision
SEQUENTIAL SAMPLING PLAN

$$
a_{m}=-4.3975+0.2188 m \quad ; \quad r_{m}=5.1672+0.2188 m
$$

m	d_{m}	a_{m}	r_{m}	m	d_{m}	a_{m}	r_{m}
1	0	-4.1787	5.386	18	2	-0.4591	9.1056
2	0	-3.9599	5.6048	19	2	-0.2403	9.3244
3	1	-3.7411	5.8236	20	2	-0.0215	9.5432
4	1	-3.5223	6.0424	21	2	0.1973	9.7620
5	1	-3.3035	6.2612	22	2	0.4161	9.9808
6	1	-3.0847	6.4800	23	2	0.6349	10.1996
7	1	-2.8659	6.6988	24	2	0.8537	10.4184
8	1	-2.6471	6.9176	25	2	1.0725	10.6372
9	1	-2.4283	7.1364	26	2	1.2913	10.856
10	1	-2.2095	7.3552	27	3	1.5110	11.0748
11	1	-1.9907	7.5740	28	3	1.7289	11.2936
12	1	-1.7719	7.7928	29	3	1.9477	11.5124
13	1	-1.5531	8.0116	30	3	2.1665	11.7312
14	1	-1.3343	8.2304	31	3	2.3853	11.9500
15	1	-1.1155	8.4492	32	3	2.6041	12.1688
16	1	-0.8967	8.6680	33	3	2.8229	12.3876
17	2	-0.6779	8.8868	34	3	3.0417	12.6064

For $m=34, d_{m}$ lies outside a_{m} and r_{m}. In fact $d_{m}<a_{m}$ at $m=34$. Hence, sequential sampling plan is terminated with the acceptance of the lot after inspecting the 34 th item.

