6.8.1 Testing the ratio of variances:

CF lest forSuppose we are interested to test whether the two normal population have same variance or not. Let $x_{1}, x_{2}, x_{3} \ldots \ldots x_{n_{1}}$, be a random sample of size n_{1}. from the first population with variance $\sigma_{1}{ }^{2}$ and $y_{1}, y_{2}, y_{3} \ldots y_{n_{3}}$, be random sample of size n_{2} form the second population with a variance σ^{2}. Obviously the two samples are independent.

Null hypothesis:

$$
\mathrm{H}_{0}=\dot{\sigma}_{1}^{2}=\sigma_{2}{ }^{2}=\sigma^{2}
$$

i.e. population variances are same. In other words H_{0} is that the two independent estimates of the common population variance do not differ significantly.

Calculation of statistics:

Under H_{0}. the test statistic is

$$
\mathrm{F}_{0}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}
$$

Where $S_{1}{ }^{2}=\frac{1}{n_{1}-1} \sum(x-\bar{x})^{2}=\frac{n_{1} s_{1}{ }^{2}}{n_{1}-1}$

$$
S_{2}{ }^{2}=\frac{1}{n_{2}-1} \sum(y-\bar{y})^{2}=\frac{n_{2} s_{2}{ }^{2}}{n_{2}-1}
$$

It should be noted that numerator is always greater than the denominator in F -ratio
$F=\frac{\text { Larger Variance }}{\text { Samller Variance }}$
$v_{1}=$ d.f for sample having larger variance
$t_{2}=$ d.f for sample having smaller variance Expected value :
$\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}$ follows F - distribution with $\mathrm{v}_{1}=\mathrm{m}_{1}-1, v_{2}=\mathrm{n}_{2}-1$ d.f

The calculated value of F is compared with the table value for v_{1} and v_{2} at 5% or 1% level of significance If $F_{0}>F_{\text {e then }} w_{e}$ reject H_{0}. On the other hand if $\mathrm{F}_{0}<\mathrm{F}_{\mathrm{c}}$ we accept the null hypothesi, and it is a inferred that both the samples have come from the population having same variance.

Since F- test is based on the ratio of variances it is als, known as the variance Ratio test. The ratio of two variances follow a distribution called the F distribution named after the famou statisticians R.A. Fisher.

Example 14:

Two random samples drawn from two normal population are :
Sample I: $\quad \begin{array}{lllllllllll}20 & 16 & 26 & 27 & 22 & 23 & 18 & 24 & 19 & 25\end{array}$
Sample II: $\begin{array}{lllllllllllll}27 & 33 & 42 & 35 & 32 & 34 & 38 & 28 & 41 & 43 & 30 & 37\end{array}$
Obtain the estimates of the variance of the population and test 5% level of significance whether the two populations have the same variance.

Solution:

Null Hypothesis:
$\mathrm{H}_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ i.e. The two samples are drawn from two populations having the same variance.
Alternative Hypothesis:
$\mathrm{H}_{1}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}$ (two tailed test)

$$
\begin{aligned}
\overline{x_{1}} & =\frac{\sum x_{1}}{n_{1}} \\
& =\frac{220}{10} \\
& =22 \\
\overline{x_{2}} & =\frac{\sum x_{2}}{n_{2}} \\
& =\frac{420}{12} \\
& =35
\end{aligned}
$$

	$x_{1}-\overline{x_{1}}$	$\left(x_{1}-\overline{x_{1}}\right)^{2}$	x_{2}	$x_{2}-\overline{x_{2}}$	$\left(x_{2}-\overline{x_{1}}\right)^{2}$
20	-2	4	27	-8	64
16	-6	36	33	-2	4
26	4	16	42	7	49
27	5	25	35	0	0
22	0	0	32	-3	9
23	1	1	34	-1	1
18	-4	16	38	3	9
24	2	4	28	-7	49
19	-3	9	41	6	36
25	3	9	43	8	64
220	$\mathbf{0}$	$\mathbf{1 2 0}$	30	-5	25
			37	2	4
			$\mathbf{4 2 0}$	$\mathbf{0}$	$\mathbf{3 1 4}$

Level of significance :

0.05

The statistic F is defined by the ratio

$$
\mathrm{F}_{0}=\frac{\mathrm{S}_{1}^{2}}{\mathrm{~S}_{2}^{2}}
$$

Where $S_{1}^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}}{n_{1}-1}=\frac{120}{9}=13.33$

$$
\mathrm{S}_{2}^{2}=\frac{\sum\left(\mathrm{x}_{2}-\overline{\mathrm{x}_{2}}\right)^{2}}{\mathrm{n}_{2}-1}=\frac{314}{11}=28.54
$$

Since $\mathrm{S}_{2}{ }^{2}>\mathrm{S}_{1}{ }^{2}$ larger variance must be put in the numerator and Taler in the denominator

$$
F_{0}=\frac{28.54}{13.33}=2.14
$$

tweeted value:
$\frac{S}{S}$ follows F-distribution with

$$
12-1=11: v_{2}=10-1=9 \mathrm{~d} . f=3.10
$$

Inference :

Since $\mathrm{F}_{0}<\mathrm{Fe}$ we accept null hypothesis at 5% level of significance and conclude that the two samples may be regarded as drawn from the populations having same variance.

Example 15:

The following data refer to yield of wheat in quintals on plots of equal area in two agricultural blocks A and B Block A was a controlled block treated in the same way as Block B expect the amount of fertilizers used.

	No of plots	Mean yield	Variance
Block A	8	60	50
Block B	6	51	40

Use F test to determine whether variance of the two blocks differ significantly?

Solution:

We are given that
$\mathrm{n}_{1}=8 \quad \mathrm{n}_{2}=6 \quad \overline{\mathrm{x}}_{1}=60 \quad \overline{\mathrm{x}}_{2}=51 \quad \mathrm{~s}_{1}{ }^{2}=50 \quad \mathrm{~s}_{2}{ }^{2}=40$
Null hypothesis:
$\mathrm{H}_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ ie there is no difference in the variances of yield of wheat.

Alternative Hypothesis:

$\mathrm{H}_{1}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}$ (two tailed test)

Level of significance:

Let $\alpha=0.05$
Calculation of statistic:

$$
\begin{aligned}
\mathrm{S}_{1}^{2} & =\frac{\mathrm{n}_{1} \mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}-1}=\frac{8 \times 50}{7} \\
& =57.14 \\
\mathrm{~S}_{2}^{2} & =\frac{\mathrm{n}_{2} \mathrm{~s}_{2}^{2}}{\mathrm{n}_{2}-1}=\frac{6 \times 40}{5} \\
& =48
\end{aligned}
$$

Since $\mathrm{S}_{1}{ }^{2}>\mathrm{S}_{2}{ }^{2}$

$$
\mathrm{F}_{0}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}=\frac{57.14}{48}=1.19
$$

Expected value:

$\mathrm{F}_{\mathrm{e}}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}$ follows F-distribution with $v_{1}=8-1=7 \quad v_{2}=6-1=5$ d.f

$$
=4.88
$$

Inference:
Since $F_{0}<F_{e}$, we accept the null hypothesis and hence infer that there is no difference in the variances of yield of wheat.
x^{2}-Distribution:
The square of a standard normal variads is know as a x^{2} variate with a one degree of freedom then $X \sim N\left(\mu, \sigma^{2}\right)$
when $z=\left(\frac{x-\mu}{\sigma}\right) \sim N(0,1)$
Therefore $x^{2}=\left(\frac{x-\mu}{\sigma}\right)^{2}$ is a x^{2}-variate with one degree of freedom.
2 In genial if $x_{i}(i=1,2, \ldots n)$ are independent normal variates with mean μ_{i} and variance $\sigma_{i}^{2},(i=1,2, \ldots n)$ therefore $x^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-\mu_{1}}{\sigma_{i}}\right)^{2}$ is x^{2} variate with n degrees of freedom.

Applications of x^{2}-Distribution:-
1 To test if the hypothetical value of the population variance is $\sigma^{2}=\sigma^{2} 0$

2 To test the goodness of fit
3. To test the independents of attributes
4. To test homogenity of independent estimates of the population variance
5. To test homogenity of independent estimate of the population correlation co-efficient.

Explain x^{2}-test for croodness fit:-
A very powerful test for testing the significance of the discreprancy between the or and Expriment was given Prof karl-pearson is 1960 and is known as x^{2} test of goodmess of fit It enable us to find if the deviation of the Experiment from theory is just by chance
or is it rearly due to the in ${ }^{6}$ adaquaty of the theory.

If $f_{i}(i=1,2, \ldots n)$ is a set of observed [Experimental] observe frequenco and $e_{i}(i=1,2, n)$ is the corresponding set of expected frequences, then karl-pearson x^{2} is given by $x^{2}=\sum_{i=1}^{n}\left[\frac{\left(f_{i}-e_{i}\right)^{2}}{Q_{i}}\right.$ If i $=$ sci follows x^{2} distribution with $n-1$ degrees of freedom.

6.6 Test of independence

Let us suppose that the given population consisting of N items is divided into r mutually disjoint (exclusive) and exhaustive classes $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{r}}$ with respect to the attribute A so that randomly selected item belongs to one and only one of the attributes $A_{1}, A_{2}, \ldots, A_{r}$ Similarly let us suppose that the same population is divided into c mutually disjoint and exhaustive classes $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{c}}$ w.r.t another attribute B so that an item selected at random possess one and only one of the attributes $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{c}}$. The frequency distribution of the items belonging to
the classes $A_{1}, A_{2}, \ldots, A_{r}$ and $B_{1}, B_{2}, \ldots, B_{c}$ can be represented in the following $r \times c$ manifold contingency table.
$r \times c$ manifold contingency table

B	B_{1}	B_{2}	\ldots	B_{j}	\ldots	$\mathrm{B}_{\text {c }}$	Total
A						$\left(\mathrm{A}_{1} \mathrm{~B}_{\mathrm{c}}\right)$	(A_{1})
A_{1}	$\left(\mathrm{A}_{1} \mathrm{~B}_{1}\right)$	$\left(A_{1} B_{2}\right)$ $\left(A_{2} B_{2}\right)$...	$\frac{\left(A_{1} B_{1}\right)}{\left(A_{2} B_{1}\right)}$	\ldots	$\left(A_{1} B_{c}\right)$ $\left(\mathrm{A}_{2} \mathrm{~B}_{\mathrm{c}}\right)$	$\left(\mathrm{A}_{1}\right)$
A_{2}	$\left(\mathrm{A}_{2} \mathrm{~B}_{1}\right)$	$\left(A_{2} B_{2}\right)$	\ldots	$\left(A_{2} B_{1}\right)$	\ldots	$\left(\mathrm{A}_{2} \mathrm{~B}_{\mathrm{c}}\right)$	$\left(\mathrm{A}_{2}\right)$
-					.		
				.			
A,	($\mathrm{A}_{1} \mathrm{~B}_{1}$)	($\mathrm{A}_{1} \mathrm{~B}_{2}$)	...	$\left(A_{1} B_{1}\right)$	\ldots	$\left(A_{i} B_{c}\right)$	(A_{1})
.		
.		
$\mathrm{A}_{\text {t }}$	($\mathrm{A}_{\mathrm{t}} \mathrm{B}_{1}$)	$\left(\mathrm{A}_{1} \mathrm{~B}_{2}\right)$	\ldots	$\left(\mathrm{A}_{\mathrm{t}} \mathrm{B}_{\text {, }}\right)$	\ldots	$\left(A_{t} B_{c}\right)$	($\mathrm{A}_{\text {t }}$)
Total	(B_{1})	(B_{2})	\ldots	(B_{j})	\ldots	(B_{c})	
							$\Sigma \mathrm{B} \dot{\mathrm{i}}=\mathrm{N}$

$\left(A_{1}\right)$ is the number of persons possessing the attribute A_{i}. $(\mathrm{i}=1,2, \ldots \mathrm{r}),(\mathrm{Bj})$ is the number of persons possing the attribute $B_{J},(j=1,2,3, \ldots, c)$ and $\left(A_{1} B_{B}\right)$ is the number of persons possessing both the attributes A_{i} and $B_{1}(i=1,2, \ldots r, j=1,2, \ldots c)$.

Also $\Sigma \mathrm{A}_{1}=\Sigma \mathrm{B}_{1}=\mathrm{N}$
Under the null hypothesis that the two attributes A and B are independent, the expected frequency for $\left(\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{j}}\right)$ is given by

$$
=(\mathrm{Ai})(\mathrm{Bj})
$$

Calculation of statistic:

Thus the under null hypothesis of the independence of attributes, the expected frequencies for each of the cell frequencies of the above table can be obtained on using the formula

$$
x_{0}^{2}=\Sigma\left(\frac{\left(O_{1}-E_{1}\right)^{2}}{F}\right)
$$

6.6.1 2×2 contingency table :

Under the null hypothesis of independence of attributes, the value of χ^{2} for the 2×2 contingency table

is given by

$$
\chi_{0}^{2}=\frac{N(a d-b c)^{2}}{(a+c)(b+d)(a+b)(c+d)}
$$

6.6.2 Yare's correction

In a 2×2 contingency table, the number of d.f. is $(2-1)(2-1)=1$. If any one of the theoretical cell frequency is less than 5 ,the use of pooling method will result in d.f $=0$ which is meaningless. In this case we apply a correction given by F.Yate (1934) which is usually known as "Yates correction for continuity". This consisting adding 0.5 to cell frequency which is less than 5 and then adjusting for the remaining cell frequencies accordingly. Thus corrected values of χ^{2} is given as

$$
\chi^{2}=\frac{N\left[\left(a \mp \frac{1}{2}\right)\left(d \mp \frac{1}{2}\right)-\left(b \pm \frac{1}{2}\right)\left(c \pm \frac{1}{2}\right)\right]^{2}}{(a+c)(b+d)(a+b)(c+d)}
$$

Example 9:

1000 students at college level were graded according u their I.Q. and the economic conditions of their homes. Use γ^{2}. test to find out whether there is any association between economic condition at home and I.Q.

Economic Conditions	High	Total	
	460	140	600
Rich	240	160	400
Poor	700	300	1000
Total			

Solution:

Null Hypothesis:

There is no association between economic condition at home and I.Q. i.e. they are independent.

$$
E_{11}=\frac{(A)(B)}{N}=\frac{600 \times 700}{1000}=420
$$

The table of expected frequencies shall be as follows.

	180	Total	
	120	600	
	300	1000	

Observed Frequency O	Expected Frequency E	$(\mathrm{O}-\mathrm{E})^{2}$	$\left(\frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}\right)$
460	420	1600	3.81
240	280	1600	5.714
140	180	1600	8.889
160	120	1600	13.333
			31.746

$$
z_{0}^{2}=2\left(\frac{(O-E)^{2}}{E}\right)=31.746
$$

Expected Value:

$\Sigma\left(\frac{(O-E)^{2}}{\mathrm{~L}}\right)$ follow χ^{2} distribution with $(2-1)(2-1)=1$ d.f
$=3.84$

Inference :

$\chi_{0}{ }^{2}>\chi_{e}{ }^{2}$, hence the hypothesis is rejected at 5% level of significance. \therefore there is association between economic condition at home and I.Q.

Example 10:

Out of a sample of 120 persons in a village, 76 persons were administered a new drug for preventing influenza and out of them, 24 persons were attacked by influenza. Out of those who were not administered the new drug .12 persons were not affected by nfluenza.. Prepare
(i) 2×2 table showing actual frequencies.
(ii) Use chi-square test for finding out whether the new drug is effective or not.

Solution:

The above data can be arranged in the following 2×2 contingency able.

Table of observed frequencies			
New drug	Effect of Influenza	Total	
	Attacked	Not attacked	
Administered	24	$76-24=52$	76
Not administered	$44-12=32$ 120.76	12	$120-76=44$
Total	$120-64=56$ $24+32=56$	$52+12=64$	120

ull hypothesis:
ack of influenza and the administration of the new drug ndependent

Computation of statistic:

$$
\begin{aligned}
& \chi_{0}^{2}=\frac{N(a d-b c)^{2}}{(a+c)(b+d)(a+b)(c+d)} \\
&=\frac{120(24 \times 12-52 \times 32)^{2}}{56 \times 64 \times 76 \times 44} \\
&=\frac{120(-1376)^{2}}{56 \times 64 \times 76 \times 44}=\frac{120(1376)^{2}}{56 \times 64 \times 76 \times 44} \\
&=\text { Anti } \log [\log 120+2 \log 1376-(\log 56+\log 64+\log 76+\log 44
\end{aligned}
$$

$$
=\text { Antilog }(1.2777)=18.95
$$

Expected value:

$$
\begin{aligned}
\chi_{\mathrm{e}}^{2} & =\Sigma\left(\frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}\right) \text { follows } \chi^{2} \text { distribution with }(2-1) \times(2-1) \mathrm{d}: \\
& =3.84
\end{aligned}
$$

Inference:

Since $\chi_{0}^{2}>\chi_{\mathrm{e}}^{2}, \mathrm{H}_{0}$ is rejected at 5% level of significance Hence we conclude that the new drug is definitely effective controlling (preventing) the disease (influenza).

