SKEWNESS

Definition:

Skewness is the degree of the asymmetry, or departure from symmetry of a distribution.

1. Karl Pearson's coefficient of Skewness $\left(\mathrm{Sk}_{\mathrm{p}}\right)$
(i)

$$
\begin{aligned}
& \text { Mean - Mode } \\
S k_{p}= & ------------------------ \\
& \text { Standard Deviation } \\
S k_{p}= & \frac{\bar{X}-Z}{\sigma}
\end{aligned}
$$

(ii) When mode is ill-defined, the following formula can be used:

$$
\begin{array}{r}
3(\text { Mean }- \text { Median }) \\
\text { Sk }_{\mathrm{p}}=------------------------\quad \\
\text { Standard Deviation }
\end{array}
$$

$$
S k_{p}=\frac{3(\bar{X}-M)}{\sigma}
$$

2. Bowley's coefficient of Skewness $\left(\mathrm{Sk}_{\mathrm{B}}\right)$

$$
\begin{gathered}
\mathrm{Q}_{3}+\mathrm{Q}_{1}-2 \mathrm{M} \\
\mathrm{Sk}_{\mathrm{B}}=--\cdots---------- \\
\mathrm{Q}_{3}-\mathrm{Q}_{1} \\
S k_{B}=\frac{Q_{3}+Q_{1}-2 M}{Q_{3}-Q_{1}}
\end{gathered}
$$

Karl Pearson's coefficient of Skewness $\left(\mathrm{Sk}_{\mathrm{p}}\right)$

1. From the marks secured by 120 students in Section A and B of a class, the Following measures are obtained:

Section A: $\bar{X}=46.83 ;$ S.D $=14.8 ;$ Mode $=51.67$
Section B: $\bar{X}=47.83 ;$ S.D $=14.8 ;$ Mode $=47.07$
Determine which distribution of marks is more skewed.
Solution: Karl Pearson's coefficient of Skewness
For Section A: $S k_{p}=\frac{\bar{X}-Z}{\sigma}=\frac{46.83-51.67}{14.8}=\frac{-4.84}{14.8}=-0.3270$

For Section B: $S k_{p}=\frac{\bar{X}-Z}{\sigma}=\frac{47.83-47.07}{14.8}=\frac{0.76}{14.8}=0.05135$
Marks of Section A is more Skewed. But marks of Section A is negatively Skewed. Marks of Section B are Positively skewed.
2. From a moderately skewed distribution of retail prices for men's shoes, it is found that the mean price is Rs. 20 and the median price is Rs. 17. If the coefficient of variation is 20%, find the Pearsonian coefficient of skewness of the distribution.

Solution: Given: C.V. $=20, \bar{X}=20, \mathrm{M}=17$

$$
\begin{aligned}
& \text { C. V. }=\frac{\sigma}{\bar{X}} \times 100 \\
& 20=\frac{\sigma}{20} \times 100=20 \times 20 / 100=400 / 100=4 \\
& \sigma=4 \\
& S k_{p}=\frac{3(\bar{X}-M)}{\sigma}=\frac{3(20-17)}{4}=9 / 4=2.25
\end{aligned}
$$

3. Calculate Karl Pearson's coefficient of Skewness for the following data.

X	X^{2}
25	625
15	225
23	529
40	1600
27	729
25	625
23	529
25	625
20	400
$\sum X=223$	$\sum X^{2}=5887$

$$
\begin{aligned}
& \bar{X}=\frac{\sum X}{N}=\frac{223}{9}=24.78 \\
& \quad \sigma=\sqrt{\frac{\sum X^{2}}{N}-\left[\frac{\sum X}{N}\right]^{2}}=\sqrt{\frac{5887}{9}-(24.78)^{2}} \\
& =\sqrt{654.1111-614.0484}=\sqrt{40.06}=6.33 \\
& \quad \mathrm{Z}=25 \\
& \quad S k_{p}=\frac{\bar{X}-Z}{\sigma}=\frac{24.78-25}{6.33}=\frac{-0.22}{6.33}=-0.0348
\end{aligned}
$$

4. Calculate Karl Pearson's coefficient of Skewness for the following data.

Wage per Item	Number of items			

Rs.(x)	f	fx	x^{2}	fx^{2}
12	10	120	144	1440
15	25	375	225	5625
20	40	800	400	16000
25	70	1750	625	43750
30	32	960	900	28800
40	13	520	1600	20800
50	10	500	2500	25000
	$\sum f=200$	$\sum f x=5025$		$\sum f X^{2}=141415$

$$
\bar{X}=\frac{\sum f X}{\sum f}=\frac{5025}{200}=25.13
$$

$$
\sigma=\sqrt{\frac{\sum f X^{2}}{\sum f}-\left[\frac{\sum f X}{\sum f}\right]^{2}}=\sqrt{\frac{141415}{200}-(25.13)^{2}}=\sqrt{707.075-631.5169}=\sqrt{75.5581}=8.69
$$

Greatest frequency $=70, \quad Z=25$

$$
S k_{p}=\frac{\bar{X}-Z}{\sigma}=\frac{25.13-25}{8.69}=0.13 / 8.69=0.0149
$$

5. Calculate Karl Pearson's coefficient of Skewness for the following data.

Profit (Rs.Lakhs)	No Companies f	m	fm		
$10-20$	18	15	270	$\mathrm{~m}^{2}$	fm^{2}
$20-30$	$20=\mathrm{f}_{0}$	25	500	225	4050
$30-40$	$30=\mathrm{f}_{1}$	35	1050	625	12500
$40-50$	$22=\mathrm{f}_{2}$	45	990	1225	36750
$50-60$	10	55	550	2025	44550
	$\sum f=100$		$\sum f m=3360$	3025	30250

$$
\bar{X}=\frac{\sum f m}{\sum f}=3360 / 100=33.6
$$

$$
\begin{gathered}
\sigma=\sqrt{\frac{\sum f m^{2}}{\sum f}-\left[\frac{\sum f m}{\sum f}\right]^{2}}=\sqrt{\frac{128100}{100}-(33.6)^{2}}=\sqrt{1281-1128.96}=\sqrt{152.04}=12.33 \\
\mathrm{D}_{1}=\mathrm{f}_{1}-\mathrm{f}_{0}=30-20=10: \mathrm{D}_{2}=\mathrm{f}_{1}-\mathrm{f}_{2}=30-22=8: \mathrm{L}=30: \mathrm{i}=10 \\
\mathrm{Z}=L+\left[\frac{D_{1}}{D_{1}+D_{2}}\right] i=30+\left[\frac{10}{10+8}\right] 10=30+\left[\frac{10}{18}\right] 10=30+5.56=35.56 \\
S k_{p}=\frac{\bar{X}-Z}{\sigma}=\frac{33.6-35.56}{12.33}=-1.96 / 12.33=-0.1590
\end{gathered}
$$

6. Calculate Karl Pearson's coefficient of Skewness for the following data.

Weight llbs)	No of Students f		m	fm	m^{2}	fm^{2}
cf						
$90-100$	4	95	380	9025	36100	4
$100-110$	2	105	210	11025	22050	6
$110-120$	18	115	2070	13225	238050	24
$120-130$	22	125	2750	15625	343750	46
$130-140$	21	135	2835	18225	382725	67
$140-150$	19	145	2755	21025	399475	86
$150-160$	10	155	1550	24025	240250	96
$160-170$	3	165	495	27225	81675	99
$170-180$	2	175	350	30625	61250	101
	$\sum f=101$		$\sum f m=$		$\sum f^{2}=$	
			13395		1805325	

$$
\begin{aligned}
& \begin{aligned}
\bar{X} & =\frac{\sum f m}{\sum f}=13395 / 101=132.62 \\
\sigma & =\sqrt{\frac{\sum f m^{2}}{\sum f}-\left[\frac{\sum f m}{\sum f}\right]^{2}}==\sqrt{\frac{1805325}{101}-(132.62)^{2}}=\sqrt{17874.51-17588.06} \\
& =\sqrt{286.45}=16.9
\end{aligned} \\
& \begin{aligned}
\frac{\sum f}{2} & =101 / 2=50.5, \text { Median Class }=130-140, \mathrm{~L}=130, \text { p.c.f }=46, \mathrm{f}=21, \mathrm{i}=10
\end{aligned} \\
& \mathrm{M}=L+\left[\frac{\sum f / 2-p . c . f}{f}\right] i=130+\left[\frac{50.5-46}{21}\right] 10=130+\left[\frac{4.5}{21}\right] 10=130+2.14= \\
& S k_{p}=
\end{aligned}
$$

BOWLEY'S COEFFICIENT OF SKEWNESS

7. Compare the Skewness of A and B

	Q_{1}	M	Q_{3}
Series A	40	60	80
Series B	62.85	65.25	72.15
Series A			
$S k_{B}=\frac{Q_{3}+Q_{1}-2 M}{Q_{3}-Q_{1}}=\frac{80+40-2(60)}{80-40}=\frac{120-120}{40}=0$			

Series B
$S k_{B}=\frac{Q_{3}+Q_{1}-2 M}{Q_{3}-Q_{1}}=\frac{72.15+62.85-2(65.25)}{72.15-62.85}=\frac{135-130.5}{9.3}=4.5 / 9.3=0.4839$
In series A there is no skewness, In Series B there is moderate positive skewness.
8.. Calculate Bowley's coefficient of Skewness.

No of child per family	No of	
Families		

x	f	cf
0	7	7
1	10	17
2	16	33
3	25	58
4	18	76
5	11	87
6	8	95
	$\sum f=95$	

Solution:

$$
\text { Position of } \mathrm{Q}_{1}=\frac{\sum f+1}{4}=95+1 / 4=96 / 4=24
$$

$$
\begin{aligned}
& \mathrm{Q}_{1}=2 \\
& \text { Position of } \mathrm{Q}_{3}=3\left(\frac{\sum f+1}{4}\right)=3(24)=72 \\
& \mathrm{Q}_{3}=4 \\
& \text { Position } \mathrm{M}=\frac{\sum f+1}{2}=95+1 / 2=96 / 2=48 \\
& \mathrm{M}=3 \\
& S k_{B}=\frac{Q_{3}+Q_{1}-2 M}{Q_{3}-Q_{1}}=\frac{4+2-2(3)}{4-2}=\frac{6-6}{2}=0
\end{aligned}
$$

9. Calculate Bowley's coefficient of Skewness.

Weekly Wages (Rs.)	No of Workers f	cf
Below 200	10	10
$200-250$	25	35
$250-300$	145	180
$300-350$	220	400

$350-400$	70	470
$400 \&$ above	30	500
	$\sum f=500$	

$$
\begin{aligned}
& \begin{array}{l}
\frac{\sum f}{4}=\frac{500}{4}=125, \mathrm{Q}_{1} \text { Class }=250-300, \mathrm{~L}_{1}=250, \mathrm{p} . \mathrm{c} . \mathrm{f}_{1}=35, \mathrm{f}_{1}=145, \mathrm{i}_{1}=50 \\
\\
\mathrm{Q}_{1}=L_{1}+\left[\frac{\sum f / 4-\text { p.c. } f_{1}}{f_{1}}\right] i_{1}=250+\left[\frac{125-35}{145}\right] 50=250+\left[\frac{90}{145}\right] 50 \\
\mathrm{Q}_{1}=250+31.03=\text { Rs. } 281.03
\end{array} \\
& 3\left(\frac{\sum f}{4}\right)=3(125)=375, \mathrm{Q}_{3} \text { Class }=300-350, \quad \mathrm{~L}_{3}=300, \text { p.c. } \mathrm{f}_{3}=180, \mathrm{f}_{3}=220, \mathrm{i}_{3} \\
& =50
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{Q}_{3}=L_{3}+\left[\frac{3\left(\sum f / 4\right)-\text { p.c. } f_{3}}{f_{3}}\right] i_{3}=300+\left[\frac{375-180}{220}\right] 50=300+\left[\frac{195}{220}\right] 50 \\
\mathrm{Q}_{3}=300+44.32=\text { Rs. } 344.32
\end{gathered}
$$

Median:

$$
\begin{aligned}
& \frac{\sum f}{2}=500 / 2=250, \text { Median Class }=300-350, \mathrm{~L}=300, \text { p.c.f }=180, \\
& \mathrm{f}=220, \mathrm{i}=50 \\
& \mathrm{M}=L+\left[\frac{\sum f / 2-\text { p.c. } f}{f}\right] i=300+\left[\frac{250-180}{220}\right] 50=300+\left[\frac{70}{220}\right] 50=300+15.91 \\
& \mathrm{M}=\text { Rs. } 315.91 \\
& S k_{B}=\frac{Q_{3}+Q_{1}-2 M}{Q_{3}-Q_{1}}=-0.1022
\end{aligned}
$$

