UNIT IV

LATIN SQUARE DESIGN

In RBD whole of the experimental area is divided into relatively homogeneous groups (blocks) and treatments are allocated at random to units within each block, i.e., randomisation was subjected to one restriction i.e., within blocks. A useful method of eliminating fertility variations consists in an experimental layout which will control variation in two perpendicular directions. Such a layout is a Latin Square Design (LSD).

LAYOUT OF THE DESIGN

In this design the number of treatments is equal to the number of replications. Thus in the case of m treatments there have to be $\mathrm{m} x \mathrm{~m}=\mathrm{m}^{2}$ experimental units. The whole of the experimental area is divided into m^{2} experimental units (plots) arranged in a square so that each row as well as each column contains m units (plots). The m treatments are then allocated at random to these rows and columns in such a way that every treatment then occurs once and only once in each row and in each column. Such a layout is known as $m \times m$ Latin Square Design (LSD).

STANDARD LATIN SQUARE

A Latin square in which the treatments say A, B, C... occur in the first row and first column in alphabetical order is called a Standard Latin Square Design or Latin Square in Canonical form.

For 2×2 and 3×3 Latin square design only one standard square exists.

A	B
B	A

A	B	C
B	C	A
C	A	B

For 4 x 4 Latin Square Design 4 standard squares are possible as given in figures.

A	B	C	D
B	C	D	A
C	D	A	B
D	A	B	C

A	B	C	D
B	D	A	C
C	A	D	B
D	C	B	A

A	B	C	D
B	A	D	C
C	D	B	A
D	C	A	B

A	B	C	D
B	A	D	C
C	D	A	B
D	C	B	A

4 X 4 Standard Latin Square Designs

From a standard Latin square design we can generate a number of Latin Squares by permutating the rows, columns and treatments which are known as transformation sets of Latin Squares. The number of squares that can be generated from a standard $\mathrm{m} \times \mathrm{m}$ Latin squares by permutating the rows, columns and letters(treatments) is $(\mathrm{m}!)^{3}$. These are not necessarily all different. If all the rows except the first and all columns are permuted, we generate $[(\mathrm{m}!)(\mathrm{m}-1)!]$ squares.

Total number of positive Latin squares of order $\mathrm{m} \times \mathrm{m}=(\mathrm{m}!) \times(\mathrm{m}-1)!\mathrm{x}$ (number of standard squares)

m	Number of standard squares(k)	$(\mathrm{m}!)(\mathrm{m}-1)!$	Total number of Latin squares $(\mathrm{m}!)(\mathrm{m}-1)!\mathrm{x} \mathrm{k}$
3	1	$6 \times 2=12$	12
4	4	$24 \times 6=144$	576
5	56	$120 \times 24=2880$	161280
6	9408	$720 \times 120=86400$	812851200

Statistical Analysis of $\mathbf{m} \mathbf{x} \mathbf{m}$ LSD for one observation per experimental unit;

Let $\mathrm{y}_{\mathrm{ijk}}(\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2 \ldots \mathrm{~m})$ denote the response from the ith row, jth column and receiving the kth treatment.

The linear additive model is

$$
\begin{aligned}
\mathrm{y}_{\mathrm{ijk}} & =\mu_{\mathrm{ijk}}+\epsilon_{\mathrm{ijk}} \\
& =\mu+\left(\mu_{\mathrm{i} . .}-\mu\right)+\left(\mu_{\mathrm{j} .}-\mu\right)+\left(\mu_{. . \mathrm{k}}-\mu\right)+\left(\mu_{\mathrm{ijk}}-\mu_{\mathrm{i} . .}-\mu_{\mathrm{j} .}-\mu_{. . \mathrm{k}}+2 \mu\right) \\
& =\mu+\alpha_{\mathrm{i}}+\beta_{\mathrm{j}}+\tau_{\mathrm{k}}+\epsilon_{\mathrm{ijk}}
\end{aligned}
$$

Efficiency of LSD relative to RBD

Case 1 Rows of LSD as Blocks
Let s_{E}^{2}, be the error mean sum of squares for RBD with rows of LSD as blocks.
Then the efficiency of LSD relative to RSD is given by

$$
E 1=\frac{s_{E^{\prime}}^{2}}{s_{E}^{2}}
$$

Advantages of Latin Square Design (L.S.D)

* with two way grouping or stratification L.S.D controls more of the variation than $C \cdot R \cdot D$ or $R \cdot B \cdot D$
* L.S.D is an incomplete 3 -hay. layout. Its advantage over the complete 3-way layout is that insted of m^{3} experimental units of m^{2} units are neoded..
* The statistical analysis is simple though slightly complicated than for R.B.D Even with 1 or 2 missing observations the analysis remains relatively simple.
* More than once factor can be investigated simultaneously and with fever trails than more complicated design.

Disadvantages
$\times k$

* The fundemental assumption than there is no interaction between the three Sectors of variation (i.e the factors act idopondently) may not be true in general.
* Unlike R.B.D in L.S.D the number of Ercatments is restricted to the number of -plications and this limits field of application.
* In case of missing plots, when several lion are missing the statistical analysis -its are missing fumes complox.
* In the fold layout, R.B.D is much Duly to manage than SS.D since the former ayout
\qquad = be porformod equally well on a square yr retangular field.
=atistical Analysis of $m \times m$ L.S.D for ono observation per Experimental Unit
- $=y_{i j k}(i, j, k=1,2, \ldots, m)$ denote the response

On the unit (plot, in field experimentation)
= the $i^{\text {th }}$ row, $j^{\text {th }}$ column and receiving tod -c $k^{\text {th }}$ treatment.

- linear additive model is

$$
\varphi_{i: h}=\mu_{i i h}+\epsilon_{i i \omega}
$$

$$
\begin{aligned}
& =\mu+\left(\mu_{i, 1}-\mu\right)+\left(\mu_{i,}-\mu\right)+\left(\mu_{1 . k}-\mu\right)+\left(\mu_{i j k}-\mu_{i,-}-\mu_{i j}\right. \\
& =\mu+\alpha_{i}+\beta_{j}+\tau_{k}+\epsilon_{i j k}
\end{aligned}
$$

where $W=$ constant mean effect
$\alpha_{i}=\mu_{i .}-\mu=$ constant effects due to the i th row

$\epsilon_{i j k}=$ error term due to unspocified causes.

Least Square Estimates of paramotors $5 M$ The least square estimates. of the $(3 m+1)$ parameters $\mu, \alpha_{i}, \beta_{j}$ and $\tau_{k}(i, j, k=1,2, \ldots m)$ in are obtained by minimising the residual sum of squares E given by

$$
E=\sum_{i, j, k}^{m} \epsilon_{i j k}^{2}=\sum_{i, j, k}^{m}\left(y_{i j k}-\mu-\alpha_{i}-\beta_{j}-T_{k}\right)^{2}
$$

According to the principle of least squares, the normal equations for estimating μ, ∞_{i}, B_{j} and T_{k} are given by

$$
\begin{aligned}
& u_{i .1}-\mu_{j i} \quad \frac{\partial E}{\partial \mu}=0=\sum_{(i, j, k) e s}\left(y_{i j k}-\hat{\mu}-\hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{\tau}_{k}\right) \\
& \frac{\partial E}{\partial \alpha_{i}}=0=\sum_{(j, k) e s}\left(y_{i j k}-\hat{\mu}-\hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{\tau}_{k}\right) \\
& \frac{\partial F}{\partial \beta_{j}}=0=\sum_{(i, k) \in s}\left(y_{i j k}-\hat{\psi}-\hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{\tau}_{k}\right) \\
& \frac{\partial E}{\partial \tau_{k}}=0=\sum_{(i, j) \in \rho} \quad\left(y_{i j k}-\tilde{\mu}^{A}-\hat{\alpha}_{e}-\hat{\beta}_{j}, \hat{t}_{k}\right)
\end{aligned}
$$

2s. The moan values of α_{i}, β_{j} and τ_{k} are 5 Mana busted to be 0 . (i.e) is.

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i}=\sum_{i=1}^{m}\left(\mu_{i n}-\mu\right)=0 \\
& \sum_{j=1}^{m} \beta_{j}=\sum_{j=1}^{m}\left(v_{j}-\mu\right)=0 \\
& \text { and } \sum_{k=1}^{m} \tau_{k}=\sum_{k=1}^{m}\left(\mu_{\cdots k^{\prime}}-\mu\right)=0
\end{aligned}
$$

$J^{2} \quad$ Estimate of Ve

$$
\begin{aligned}
l \mid & -2 \sum_{i, j, k}\left(y_{i j k}-\hat{\mu}-\hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{T}_{k}\right)=0 \\
\Rightarrow & \sum_{i, j, k} y_{i j k}-\sum_{i, j} \hat{\mu}^{\hat{\mu}}-\sum_{i} \hat{\alpha}_{i}-\sum_{j} \hat{\beta}_{j}-\sum_{k} \hat{\tau}_{k}=0 \\
& \leqslant 10 \ldots-m^{2} \cdot \hat{u}=0 \quad \cdots \quad \hat{\alpha}_{i} \cdot=\sum \hat{\beta}_{i}=\sum \hat{\tau}_{k}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \hat{\mu}=\frac{1}{m^{2}} \sum y_{i j k} \\
& \Rightarrow \hat{\mu}=\bar{y}_{1} \ldots
\end{aligned}
$$

Estimate of $\hat{\alpha}_{i}$

$$
\begin{gather*}
\frac{\partial_{E}}{\partial \alpha_{i}}=-2 \sum_{i, j, k}\left(y_{i j k}-\mu^{n}-\hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{\tau}_{k}\right)=0 \\
\sum y_{i j k}-\sum_{i} \hat{\mu}^{\prime}-\sum_{i}^{n} \hat{\alpha}_{i}=0 \\
\sum y_{i j k}-m^{-} \hat{\mu}-m \hat{\alpha}_{i}=0 \\
m \hat{\alpha}_{i}=\sum y_{i j k}-m \hat{\mu} \\
\hat{\alpha}_{i}=\bar{y}_{i, \ldots}-\bar{y} \ldots-\text { (2) } \tag{2}
\end{gather*}
$$

Estimate of $\hat{\beta}_{j}$

$$
\begin{aligned}
& \frac{\partial E}{\partial \beta_{j}}=-2 \sum_{i, j, k}\left(y_{i j k}-\mu \hat{\mu}_{-j} \hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{\tau}_{k}\right)=0 \\
& \sum y_{i j k}-\sum_{j} \hat{\mu}-\sum_{j} \hat{\beta}_{j}=0 \\
& \sum y_{i j k}-m \hat{\mu}-m 凶 \hat{\beta}_{j}=0 \\
& m \hat{\beta}_{j}=\sum y_{i j k}-m \hat{\mu} \\
& \hat{B}_{j}=\hat{y}_{i j}-\hat{y}_{\cdots}=\text { (3) }
\end{aligned}
$$

Estimate of l_{k}

$$
\begin{aligned}
& \frac{\partial E}{\partial \tau_{k}}=-2 \sum_{i, j, k}\left(y_{i j k}-\hat{\mu}-\hat{\alpha}_{i}-\hat{\beta}_{j}-\hat{\tau}_{k}\right)=0 \\
& \sum y_{i j k}-\sum_{k} \hat{\mu}-\sum_{k} \hat{\tau}_{k}=0 \\
& \sum y_{i j k}-m \mu^{n}-m \hat{\tau}_{k}=0 \\
& \quad m \hat{\tau}_{k}=\sum_{i} y_{i j k}-m \hat{\mu} \\
& \quad \hat{\tau}_{k}=\bar{y}_{\cdots k}-\bar{y}_{\ldots} \quad \text { (4) }
\end{aligned}
$$

Null Hypotheses
H_{0} : $\alpha_{1}=\alpha_{2}=x_{m} \ldots=\alpha_{m}=0$,
Ho : $\beta_{1}=\beta_{2}=\cdots \beta_{m}=0$ and
Hot: $\tau_{1}=\tau_{2}=\cdots=\tau_{m}=0$
Alternative Hypotheses
$H_{1 \alpha_{2}}$: At least two α_{i} 's are different
Hipreni at least two $\mathrm{Bi}_{i} s$ are different
$H_{1 \tau}$: At least two τ_{k} s are different
Sum of squares of calculation
$G=y_{\ldots}=$ Total of all the m^{2} observations
$R_{i}=y_{i .}=$ Total of the m obsorvatinne in
$c_{j}=y_{i j}=$ Total of the m Observations in the $j^{\text {th }}$ column
$T_{k}=\varphi_{1 . k}=$ Total of the m observations from $k^{\text {th }}$ treatment
then heuristically, we have

$$
\begin{aligned}
& \sum_{i, j, k \in S}\left(y_{i j k}-\bar{y}_{\ldots}\right)^{2}=\sum_{i, j, k \in s}\left[\left(\bar{y}_{i \ldots}-\bar{y}_{\ldots}\right)+\left(\bar{y}_{0 j}-\bar{y}\right)\right. \\
& +\left(\bar{y}_{\cdots k}-\bar{y}_{\ldots}\right)+\left(\bar{y}_{i j k}-\bar{y}_{i .0}-\bar{y}_{1 j}-\bar{y}_{\ldots k}+2 \bar{y}^{2}\right. \\
& =m \sum_{i}\left(\bar{y}_{i .0}-\bar{y}_{. \ldots}\right)^{2}+m \sum_{j}\left(\bar{y}_{0 j}-\bar{y}_{\ldots . .}\right)^{2}+m \sum_{k}\left(\bar{y}_{0 . k}-\bar{y}_{\ldots .0}\right)^{2} \text { Error } \\
& +\sum_{i, j, k e s}\left(y_{i j k}-y_{i . .}-y_{j . j}-\bar{y}_{1.0}+2 \bar{y}_{\ldots . . j}\right)^{2}-\text { ot }
\end{aligned}
$$

The product terms vanish, since the algebraic con sum of deviations from mean is zero

$$
\therefore T \cdot S \cdot S=S \cdot S \cdot R+S \cdot S \cdot C+S \cdot S \cdot T+S \cdot S \cdot E
$$

where T.S.S is the total sum of squares and S.S.R., S.S.C., S.S.T and S.S.E represent Sum of squares due to rows, columns, treatments and error respectively, given by

$$
\begin{aligned}
& \text { T.S.S }=\sum_{i j, k \in S}\left(y_{i j k}-\bar{y}_{\ldots \ldots}\right)^{2} ; \quad S \cdot S \cdot R=S_{R}^{2}=m \sum_{i}\left(\bar{y}_{i, n}-\bar{y}_{-}-\right. \\
& \text {S.S.C }=S_{c}^{2}=m \sum_{i}\left(\bar{y}_{. j .}-\bar{y}_{\ldots \ldots}\right)^{2} ; \text { S.S.T }=S_{T}^{2}=m \sum_{k}\left(\bar{y}_{n \cdot k}-\bar{y}_{\ldots \ldots}\right.
\end{aligned}
$$

$$
S . S . E=S_{E}^{2}=T . S . S-S . S \cdot R-S . S . C-S . S T
$$

ANOVA Table for $m \times m$ L.S.D paimoudo roitomordo aith his

Conclusion
Lot $F_{\alpha}=F_{\alpha}\{(m-1),(m-1)(m-2)\}$ be the tabutated value of F for $[(m-1),(m-1)(m-2)] d \cdot f$ at the level of significance ' α '
Thus if $F_{R} \leq F_{\infty}$, we accept $H_{0 \infty}$, othornise reject $H_{0 \infty}$
if $F_{c} \leq F_{\alpha}$, wo accopt $H_{O \beta}$, otherwise wordti ant तi hoiloynezdo swonl rejoct Hop
if $F_{T} \leq F_{\infty}$, we accept $H_{O \tau}$, otherwise
 as prícistran anulas ant (0.3) rajact $H_{0 T}$

Estimation of ono missing value fo L.S.D Lot us suppose that in $m \times m$ Latin square, the observation occurring in the $i^{\text {th }}$ row .y $j^{\text {th }}$ coloumb and receriving the $k^{\text {th }}$ treatment is missing. Let us assume that its value is n, ie. \square $y_{i j k}=2 n$ $y_{i j k}=2 x$

	1		\cdots	j	\cdots	m	Total
1	y_{111}	y_{121}	\cdots	$y_{i j 1}$	\cdots	$y_{1 m 1}$	
2	y_{212}	y_{222}	\cdots	$y_{2 j 2}$	\cdots	$y_{2 m 2}$	
\vdots	\vdots						
j	$y_{i j k}$	$y_{i 2 k}$	\cdots	$y_{i j k}=n$	\cdots	$y_{i m k}$	$R+n$
\vdots	\vdots						
m	$y_{m 1 m}$	$y_{m 2 m}$	\cdots	$y_{m j m}$	\cdots	$y_{m m m}$	
Total			$c+n$		$s+n$		

$R=$ Total of the known observation in the $i^{\text {th }}$ row, (ie), the row containing ' n '
$C=$ Total of known observations in the $j^{\text {th }}$ column (i.e) the column containing ' n '
$T=$ Total of known observations receiving $k^{\text {th }}$ froatment, (i.c) total of all known troatront vacues containing ' x '
$S=$ Total of known obsorvations

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { corroction } \\
\text { factor }
\end{array}\right\}=C F=\frac{(s+n)^{2}}{n^{2}} \\
& \text { Total s. } s g=\Sigma y_{i j k}^{2}-C F \\
& =n^{2}+\text { constant w.r. to } n-\frac{(s+n)^{2}}{m^{2}} \\
& \text { S.S.R }=\frac{(R+n)^{2}}{m^{2}}+\text { constant w.r.to. } x-\frac{(s+n)^{2}}{m^{2}} \\
& \text { S.S.C }=\frac{(c+n)^{2}}{m}+\text { constant w.r.t. } n-\frac{(s+n)^{2}}{m^{2}} \\
& \text { S.S.T }=\frac{(T+a)^{2}}{m}+\text { constant w.r.t. } n-\frac{(s+n)^{2}}{m^{2}} \\
& E=T \cdot S \cdot S-S \cdot S \cdot R-S \cdot S \cdot C-S \cdot S \cdot T \\
& =n^{2}-\frac{(s+2)^{2}}{m^{2}}-\left[\frac{(R+n)^{2}}{m}+\frac{(s+n)^{2}}{m^{2}}\right]-\left[\frac{(C+x)^{2}}{m}-\frac{(s+x)^{2}}{m^{2}}\right. \\
& -\left[\frac{(T+n)^{2}}{m}-\frac{(s+n)^{2}}{m^{2}}\right]+\text { constant } \\
& E=n^{2}-\frac{(R+n)^{2}}{m}-\frac{\left((+n)^{2}\right.}{m}-\frac{(T+n)^{2}}{m}+2 \frac{(S+n)^{2}}{m^{2}}
\end{aligned}
$$

we will choose ' n ' 80 as to minimiso

$$
\begin{aligned}
& \Rightarrow 2 n-\frac{2(R+n)}{m}-\frac{2(C+n)}{m}-\frac{2(T+n)}{m}+4 \frac{(9+n)}{m^{2}}=0 \\
& \Rightarrow 2 n-\frac{2}{m}[R+n+C+n+T+n]+4 \frac{(S+n)}{m^{2}}=0 \\
& \Rightarrow 2 n-\frac{2}{m}[R+c+T+3 n]+4 \frac{(s+n)}{m^{2}}=0 \\
& \frac{2 m^{2} x-2 m[R+C+T+3 n]+4(\delta+x)}{m^{2}}=0 \\
& 2 m^{2} x-6 m x+4 x-2 m(R+c+T)+4 s=0 \\
& \div 2 m^{2} x-3 m x+2 x-m(R+C+T)+2 S=0 \\
& \frac{m^{2} n-3 m x+2 n=m(R+c+T)-2 S}{6 m} \\
& +2\left(m^{2}-3 m+2\right) n=m(R+C+T)-2 S \\
& -1=2(m-1)(x-2) x=m(R+c+T)-25 \\
& \hat{n}=\frac{m(R+c+T)-2 S}{(m-1)(m-2)}
\end{aligned}
$$

