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Multicollinearity 

So far we have considered the classical normal linear regression model ad 

showed how it can be used to handle the twin problems of statistical inferene

namely, estimation and hypothesis testing, as well as the problem of prediction 

However, this model is based on several simplifying assumptions and hereafter 

we consider the theoretical and practical consequences of the violation of the 

classical assumptions of ordinary least squares.

nd 

nce, 

MULTICOLLINEARITY 

The only additional assumption of the multiple regression model is that the 
independent variables are not perfectly correlated with each other. If this 

assumption is violated, a problem that potentially occurs which is caed 

multicollinearity. It is a condition where the independent variables are not 
independent of one another. The term multicollinearity originally meant the 

existence of a "perfect" or exact linear relationship among some or all-explanatory 
variables of a regression model. One explanatory variables can be compleey 
explained by a linear combination of other explanatory variables. In pracuce 

perfect multicollinearity occurs only from an error in model specification. Peri 
multicollinearity is an extreme situation. While perfect multicollinearity 1s O 
the result of model misspecification, near-perfect multicollinearity is a 
common phenomenon. Near or imperfect multicollinearity refers to Situ 

more 

related. While this does not constitute a violation of the classical linear reg 

inearly 

properties), in this situation the separate effects of the explanatoy by 

stimates

uations

in which two or more of the the explanatory variables are "almost
assumptions (and therefore the BLUE / Minimum Variance Unbiased Ees 

"ession 

Variables 

cannot be estimated "precisely". This is a problem because our linear " 
by 

including a separate term for each explanatory variable with its own pa 
meter, 

requires that the individual effect of each explanatory variable on 
ro 

variable be estimated. Today multicollinearity is used in a broader seiian exa interpreted multicollinearity refers to the situation where there is either 

Broadly 



eween explanatory variables. 

tionship between wealth 

mately exact relationshir 

conometric 

ately 
analysis is Orthogonality , which refers to no relationship 

between the iticollinearity 445 variables. nother term used 
thogonality , which refers to no relationship 

yr s9pr0ximate 

l econ 

on wealth ,income and liquid assets and their effect on 

AS 
an 

example of multicollinearity suppose that we are 
investigating the But these variables all share some information (that is they 

I28umption 

pt not indepen

on levels. But 

gative conscquencesi 

ysis related. The correlation coefficient measures the strength and 

t) they provide redundant information and may have serious
nces in a regression model. An analyst can perform a correlationn each independent variable to determine to what degree the 

slysis be 

bles are related

of a i a relationship between two variables with ranges from -I to 1. The 
r the correlati. anrrelation coefficient is to -1 or 1 the stronger the relationship is 

trw een 
the variables. As noted in the correlation matrix below, wealth and 

Dme have a. have a correlation of 1, so these variables contain identical information. 

kalth and liquid assets also have a high correlation. The analyst should omit 

nd ahindant variables from the regression model since their inclusion may have 

rimental effects. The presence of multicollinearity can seriously damage the 

iorts to determine which explanatory variables are important and to measure

e effect each has on the response variable. 

Wealth Income 
Liquid Assets 

Wealth 1.00000

Income 
1.00000

One way to indicate this idea visually is using a 
Ballantine diagrarn or venn 

dlowing igure, the circle Y at the center
represents 

the 
outcome

vaiiable and 

1.00000 1.00000

quid Assets 0.86002 
0.86002

for the two-independent 

variable 
model as 

illustrated in Figure 12.1. a 
Ballantine diagrarn or Venn 

uagram

bl 
Dagram,

multicollinearity 

is shown by 
overlapping 

circics. In the 

a Venn Diagrar 

ones 

represent 
the 

independent 

variables. 
The 

overlapping 
area 

aation 
explained. 

When 
there are too many 

variables, 
it is likely 

hotes the variation explained 
asurrounding ones 

PainedOSt 

entirely
covered by many 

inter-related 
Xs. 

The 
variance

ined is very 
buat Y is 

7y high but this 
model is 

over-specified 

and 
thus 

useless. 



448: Econometrics 

(Exyx)-(2x,y)(Ex,x,) 
)(x-(Ex,x,) 

Substituting kx, for x, 

Ex,kx-(k ExykEx?)
b, ('ni)-*(2x?) 

kx,yE -k'Ex,yEx? 
k(-k(sxi) 

0 
Similarly b, can also be proved to be indeterminate. 

(xi)-(Exy)xx) 
b i) (xi)-(EM*) 

Substituting kx, for X2 

(kxykEx)-(kEx1yExi) 
(E) -k(Ex b, 

k(Ex y-K{ExyExi) 

Therefore the parameters are indeterminate. There is no way of finding values of b, and b, separately. 
Case 2: The variances of the estimates become infinitely large 

the 

Var (b) (zxi \2x3)-(Ex,x, 
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ko x 

Var (b) (xi Nk'za}}-k'(i)** 
Similarly. 

Var (b)(2)-KP(x) 

Var (b)(zx Yk*2«;)-*'(x}) 0 

Note: kx, = X and Ex = (kEx, 
Thus, when two variables are perfectly correlated, OLS estimates (b,'s) can 

RY be 
ebtained and the variances of these estimates are infinitely large. 

As an example, suppose we consider the following data on Y, X, and X, 

hviously X, equals five times X, (Table 12.1). 

TABLE 12.1 DATA ONY, X1 AND X2 

Consumption (Y) Income( X,) Wealth (X) 

20 

25 10 
10 30 
15 33 

36 A 20 
25 

38 5 

he variables X, and X, are perfectly correlated. The variable X, is a linear

dON of X, (X, = 5X,). When two variables are perfectly correlated, OLS 

aies (b s) can not be obtained and the variances of these estimates are 

Aumat 

large. All the output is meaningless except for the degrees of freedom 

nfinitely large. 
CoTelation matrix, which contains a one for the correlation of X, with 
d 

hus, when two or more independent variables are perfectly correlated or 

inear, the method of Ordinary Least Square is not applicable. 

et et for the Multiple Linear Regression Model 

x,Y X,Y X,X X2 
25 400 

5 
1 5 20 100 100 625 

20 4 
2 10 50 250 100 900 

20 4 

2 10 60 300 
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15 99 495 45 9 
225 

33 3 

\e9 400 y 
720 80 16 144 20 36 

190 950 125 25 625 
25 38 

X,=EX, = ZX,Y= 2X,Y=2X,X 2X 
59 

= Ex: 
1475 

4 
5154 

Y= 
295 85 563 2815 182 17 

Intermediate Results

563 2X,Y= 
x,Y= 
2X,X= x=15 EY 513 

N( or) n 
2815 Y 182 

295 17 X, = 

X Mean 14.166 
of X 

Mean 2.833 85 Mean 30.333 
of Y = 3333 of X = 33333 

61 
(a) The OLS estimates (b,'s) can not be obtained. Recall 

x) (x)-(x;y) (xx;) 

xi)x)-%xb, 

(47.33333) (270833333)-(2366666667) (64166667) 
(1083333) (27083333)- (541666667) (S4.167)

12819444 12819.444 
2934.0278-2934.0278 

0 

(x9)0i)-(x,y) (x,x,) 
3-3 b, 

(2366667) (108333333)-(4733333333) (54.1666660 
(10833333) (2708333333)-(54.16666667) (54166667) 

2563.8889-25638889 
2934.0278-2934.0278 

(b) The variances of the estimates become infinitely large. Recall 
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x Var b, Ex.Ex-(Ex,x2) 

ou Ex Var b,2xEx3 -(2x,x,

Var (b) (2934.0278)- (2934.0278) 
Var (b) = 

0 

Similarly, 

Var (b,) (2934.0278)-(2934.0278) 

2x Var (b,) = 
0 

CONSEQUENCES OF IMPERFECT MULTICOLLINEARITY 

1. Imperfect or extreme or near multicollinearity is the more common problem
and it arises when two or more of the explanatory variables are 
pproximately linearly related. If collinearity is high but not perfect the 

estimation of the coefficients is possible but the following are some of the 

4 Even extreme multicollinearity (so long as it is not perfect) does not violate
OLS assumptions. OLS estimates are unbiased, consistent, and efficient 

and are BLUE (Best Linear Unbiased Estimators) in the presence of 

collinearity. However, they may be 'unstable'. By unstable we mean 

y may be particularly sensitive to model spccification, or to outliers

consequences . 

ard errors of the regression coefficients will be high. Though in fact 

S not necessarily the result of multicollinearity alone. The greater the 

in the data. 

high 
o be ver 

nu ucollinearity is present, 
confidence 

intervals for coefficients tend 

to be very wide andt statistics tend to be very 
small. 

Coefficients will bave 

be 
ariances (and standard errors) of some coefficient estimates will 

highe 
tha nearity, the greater the standard errors.The main consequence is 

nan they would be in the absence of multicollinearity. 
When 

eCt the 
order to be statistically 

significant, 
i.e. it will be harder to 

test ul when 
multicollinearity 

is present.
In some cases, high R`and 

latistics, but low 
individual 

significance 
of the 

individual 

F test 

significant, i.e. it will be harder to 

to be ger in reject the null 
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coeficients. Thus the presence of a high degree of multicollinearity 
result in the following combination: 

High R model will appear to fit the data well. 

High calculated F value indicates the model explains a statisticalt 
significant portion of the variation in the dependent variable (The variah 
are jointly significant ). 
Low t values indicate the variables are not statistically significa 
.Coefficients may have very high standard errors and low 1levels o 
significance in spite of the fact that they are jointly highly significant 

This combination of result gives an indication that multicollinearity ma 
be a problem.

4. Addition/deletion of an independent variable iesults in large changes of 
regression coefficients or signs. Signs and magnitudes of regression 
coefficients may be different from what are expected. 

5. The overall fit of the equation (R^ and adjusted R) will be largelv
unaffected. 

will 

may 

6. The estimated coefficients of non-multicollinear variables will be largelv
unaffected. 

DETECTION OF MuLTICOLLINEARITY: 

The easiest way to do this is to examine the correlations between each pair of explanatory variables. If two of the variables are highly correlated (e.g., they have a correlation less than -0.80 or greater than 0.80), then multicollinearity 
may be a problem. The correlation approach can only detect when pairs of 
variables are highly (linearly) related. High values of simple correlation 
coefficients may be considered to be sufficient, but not necessary for 
multicollinearity. It is possible for a group of independent variables, acting 
together, to cause multicollinearity. The form of multicollinearity can be much 
more complicateu, involving a relationship between three or more variables, and, 

thus, will not necessarily be detected by the simple correlation approach. Hence, 
these relationships are measured by the partial correlation coefficients, which 
measure the correlation between two variables after holding the others constant. 
This will provide information on the existence of more complex relationships 
between or among the independent variables. 

1. Multicollinearity can also be detected after the model has been fitted to the data by looking at the output for the linear regression. Very unreasonabie 
estimates or extremely large estimated standard errors for some slope 
parameters can be an indication that multicollinearity is present.

Additionally, if the linear model seems to fit the data well overall (e8, n null hypothesis of no effect is rejected in the F-test for overall significanco 
or, identically, R is high), but most of the coefficients are not significan 
according to their p-values, then multicollinearity might be the cause. in 
regression model, the high R is not a result of good independent predictoi 



Multicollinearity 453 453 necified model that carries mutually dependent and thus 
hut at predictors! Variance inflation factor (VIF) is common way for 

but a mis-s, 

ndant predictors 

etecting multicollinearity. 
conometrics texts outline methods designed to detect the presence

Many economet Many nd form of multicollinearity and top econometricians have 
seve variance inflation factors, auxiliary regressions (i.e., regressing 
suggested 

one 
lanatory variable on another), computing the determinants of the characteristie roots. (X'X) and its 

*ce: Multicollinearity is measured by the tolerance statistic, defined3. 10p? predicting each predictor using all other predictors (values close 

Tolerance: Multi 

s1 - R2 pred 

1 are better, values close to 0 are bad) The tolerance of X, is the 
to 1 are 

anortion that is not explained by the other variables, i.e. tolerance of X, R 2It is the proportion of the variance of X, that is not shared withthe 
ather variables in our analySIs. If the tolerances are low (say .1 or .2) there 

emulticollinearity problems.. A tolerance close to 1 means there is little 
multicollinearity, whereas a value close to 0 suggests that multicollinearity 

may be a threat. The reciprocal of the tolerance is known as the Variance
Inflation Factor (VIF).

VIF = 1/(1-R)

Auxiliary Regressions: The problenm of multicollinearity may arise due to 

relationship between more than one independent variable. For example: X = 

+b, X + b, *z; + V, To find these types of relationships, you can you can 

roceed by estimating separate regressions of each of your independent variables 

gainst all of the remaining independent variables. These regressions are called 

auriliary regressions.If there are k independent variables (X, X2 ... X, run an 

LS regression for each regressor as a function of all the other explanatory 

ariables. For example, estimate auxiliary regression equations and calculate 

he VIF as discussed below 

Xj= ao +aX2 
+a2Xzit...+-1Xki+V 

8o +8,X1i +6,X2j 
t..+8,-1A-i +o; 

"ariance Inflation Factor 

ne variance inflation factor associated 
with A, 

1 

VIF (X= 1-Rh 

Ris the Rv value 
obtained 

for the 
regression 

of X on the 

other independent variables. 

where 
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Relationship between R and VIF. Numerical example:

1. IfR = 0.1. then the VIl =l.11. 

2. IfR=0.25, then the VIF = 1.33. 
3 IR=0.5, then the VIF = 2 

4. If R=0.75, then the VIF = 4 

5. 1fR =09. then the VIF = 10 

6. If R=0.99. then the VIF= 100. 

VIF 10 

50 

00 10 R 0.5 

FIGURE 12.3 RELATIONSHIP BETWEEN R?,AND VIF 

The VIF shows us how much the variance of the coefficient estimate is beinginflated by multicollinearity. The square root of the VIF tells you how much 
larger the standard errTor is ,compared with what it would be if that variable were uncorrelated with the other X variables in the equation. For example, if the Vi for a variable were 9, its standard error would be three times as large as it Woul be if its VIF was 1. In such a case, the coefficient would have to be 3times ad large to be statistically significant. High VIFs suggest the presencemulicollinearity problem . The higher a VIF, the higher the variance of estimated coefficient of that explanatory variable. When R = 1, there is a per multicollinearity and the VIF is infinity:; when R, = 0, there is multicollinearity and the VIF is one. VIF> 30 usually indicates a seve multicollinearity problem.

A common rule of thumb is that a problem exists when any VIF exceeds
10 



oding 100 (and 

ed data and/or 

ht by step regression method may be used to test for the presence of 

unusual. Th 
no (and one above O00)). Such VIFs almost certainly indicateill 

suggested 

. sHEE ual. The Longley data (Barone et al. 1976) has several VIFs 

4 that 5 ) or when the sum of all VIFs exceeds 10. But VIl's above 
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re not 

and/or inappropriate model specification. 

$tCplinearity. If introduction of a variable in a model increases the 
5. Step by step regressio 

multicollinearity 

standard
error sharply, so as to make the coefficient insignificant while R nearly same, multicollinearity is present The first method is the 

remains ncarly 

computation retation of a correlation matrix of the independent regression variables. orrelation matrix allows us to identify those explanatory variables 
af are highly correlated with one another and this causes the problem of 
that are 

lticollinerity. Colinearity is often suspected when R2 is high (between
and 1.0) and none or very few estimated coefficients are individually 
signi 
ianificant on the basis of the students t-Test. To measure the ill-effect of 
multicollinearity we use the variance inflation factor (VIF). 

h Klein Suggests that multicollinearity should not be considered serious 

unless the simple correlation coeffticient between any two explanatory 
un 

variables is greater then or equal to the multiple correlation coefficient 

(R2). Klein's Rule says that multicollinearity becomes a problem only if 

R. y.XX 2 
wherer is the square of the simple correlation coefficient between any two 

explanatory variables (X;X;) and R? is the multiplecorrelation coefficient 

L.R. Klein, Introduction to Economics, Prentice Hall International, 

Landon, pp.64 & 101]. 
T. Check to see how stable coefficients are when different samples are used. 

ror example, you might randomly divide your sample in two. If coefficients 

difer dramatically, multicollinearity may be a problem.

.The presence and degree of multicollinearity are more precisely deternmined 

y an examination of the characteristic roots and vectors of the X X matrix 

udge, et al., 1985). Collinearity is present when one or more characteristics 

0Os are "small." This measure was developed in detail by Belsley, Kuh, 

Welsch (1980), who suggested that a more precise method of defining 

involves the formation of condition indices" and a corresponding 

i O cross variances between variables and eigenvalues. The condition 

lar Cers to a vector consisting of the square 
root of the ratio of the 

eigen value to each individual eigenvalue. 
Elements in the cross 

V e matrix are calculated as the proportion of the variance of each 

den 
associated with each single 

characteristic 
root. In case of linear 

eigen 
pendence between the variables the eigenvalues 

of all different 

eigenv nvectors will differ much from each other, such that the ratio 
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Condition number 

becomesquite large. Collinearity cxists when the conditir
around 5. 10 for weak dependencien and 30-10) for moderae l 

relationships and when the associatcd row vector in the cCt 
matrix contains two or more large values usually vales at 

0.50 (Judge,et al.. 1985). If the square root of k (c.q. the conditi
is much larger than (approx.) 30 this could be, according to ma 
a sign of harmful mulucollincarity 

umt 
autens 

Solutions to the Problemof Multicollinearity: 
. If multicollincarity doest not seriously affect the cstimates od 

coefficients, one may tolerate its presence in the regression model 
2. Drop redundant variable and this applies to the case that two or mee 

variables in an equation are measuring essentially the same thing. It se 
make no statistical difference in which variable is dropped.

3. A solution to the perfect multicollinearity is to drop one or more colinee

variables, but one has to be careful about the interpretation of the 

coefficients. But, if the variable really belongs in the model, this can lead 

to specification error, which can be even worse than multicollinearity 

Eliminating variables to "solve" multicollinearity problems results

estimators that are biased, inconsistent, and inefficient. 

4. Step by step regression method may be used to eliminate the variable 

introduction of. which in the model does not increase R2 but increascw 

standard eror of significantly. One of the best solutions to the problem

multicollinearity is to delete collinear variables from the regression mode 
We have a regression of Y on X,. X X, and X, and we find that X, is highy 

correlated with X,. By comparing the R? and adjusted R' of ditee 

regression with and without one of the variables, we can decide whicn o 

the two independent variables to drop from regression. We want to main 

a high R and therefore should drop a variable of R2 is not reduced mu 

when the variable is dropped from the equation. When the adjusieu
increase when a variable is removed, we certainly want to drop the va 

For example that the R?of the regression with all four independent a 

1R 

ariables

is 0.94, the R, when X, is removed is 0.87, and the R of the regress th 
on X,, X, and X, (X, deleted) is 0.92. In this case, we shoula 

should dropt 

variable X, and not X, 
5. Multicollinearity often occurs in small samples and mablesj 

many include

variables (low degrees of freedom). With a few observationsOn s 

happen to be closely related. Repeated observations will 
lesson 

sUCr 

ta, one may 

conclude that the data available does not permit one to reliabiy 

termine chance occurrences. If it is not possible to get more data, onc eter 
have ! 



the 
individual idual effects of each varialble. But what is important is not the 

ber of obse nher of servations but the informational content.
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nu fundamental problem is that if two variables are highly correlated,
6. 1 hecomes difficult to identify the independent impact of the two 

variables. heles, One possible solution to the problem is to increaset the sample 
size, which which should introduce grealer variation to allow the independent 

then 

effects to be seto be disentangled. A larger data set will allow more accuratetimates and will reduce somewhat the variance of the estimated 

estimate and will re 

coet fficients .In time series contexts, this may not be all that feasible as additional data may take some time to become available. .1 the purpose of the analysis is to predict future values of the dependent arable ,and we are not interested in the values of the individual parameters,then we may regress the dependent variables, even when a set of independent variables is highly (but less than perfectly) correlated. However, if the goal is explanation, measures other than increasing the sample size are needed. 

s Coliinearity is problematic when one's purpose is explanation rather than 
mere prediction. Collinearity makes it more difficult to achieve significance 
of the collinear parameters. But if such estimates are statistically significant, 
they are as reliable as any other variables in a model. And even if they are 

not significant, the sum of the coefficient is likley to be reliable. In this 
case, increasing the sample size is a viable remedy for collinearity when 

prediction instead of explanation is the goal . 

9. Multicollinearity often occurs when several variables seem to be moving

together, particularly in the case of nominal time - series data. For iustance, 
both investment spending and government spending tend to move together

as the price level rises. Translation of nominal variables into real magnitudes 

through the use of a price index may alleviate this joint movement. A 

Common remedy to the multicollinearity problem is deflating time series 

(mostly prices, or price indexes) by some time series measuring e-g. 

consumption prices. Thus, instead of working with nominal quantities it is 

preferred to use real quantities. 
. Yariables may be highly correlated through time, but not across space, or 

ICe versa. If data sources are available, multicollinearity can sometimes 

essened by using cross section data instead of time series, or in pooling 
be 
ume series and cross section observations. 

PEViously, the multicollinear 
relationship 

between explanatory variables 

Oen be very complex in nature, 
therefore not lending itself to this 

can 

Use other statistical methods rather than OLS approach . As stated 

approach. If this is the case, then a fairly sophisticated
solution

De 
to use one of the biased regression 

techniques 
such as ridge 

would be to 

on 
orprincipal 

components 
regression; 

these regression techniques 

uce (biased) parameter 

estimates that are 
typically 

snaler in 

produce (biased

ller in 
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magnitude than the corresponding least squares estimates. 

ative to 
12. The problem of multicollinearity may be solved by using an alternati 

the 
cffective counter measure because it allows better interpretation of 

the least squares method called ridge regression. Ridge regression is. s an 

interpretation of regression coefficients by imposing some bias on the regresecoefficients.. Although the cocfficient estimators produced by ri 
regression are biased, in some cases, it may be worthwhile to tolerate s 

the high 
bias in the regression estimators in exchange for a reduction in the hi. variance of the estimators that results from multicollinearity. 13. Use information from prior research to place justifíable constraints on on parameters and imposing restrictions on coetticients.For example,might know from prior research that b, =3 b,. Another form of extranco

For example, we 

information that can be used is a constraint, or restriction, on the parameters being estimated. For example, in the estimation of a Cobb-Douglas production function it is possible to restrict it to be homogenous of degree 1. Suppose that a researcher estimated.

Y boXx? 

where Y is the output, X, is input I and X, is input 2, with a sample where X, and X, are "highly" correlated. Introduce the constraint 

.(12.1) 

b, +b 12.2) which states that (12.1) is homogeneous of degree one. With this information, 
we can substitute b, = (1 - b,) into (12.2) to obtain 

Y bx-b)xb2
.(12.3)

Taking logs, we now get 

Y = Co+(1-b,)X +b,X2 . 12.4) 
where the asterisk denotes the natural logs of the original variables and 

C L,bo.(Ln = log). This yields 

r C+X+b,(x-x) 
. (12.5) 

(r-x) = Co+b,(x%-Xi) 
.(12.6)

Let Q=|Y-Xi| and I =X-Xi| and obtain an estimate of b, from 

...(12.7) Q Co+b,I 
And obtain the estimate of b, from (12.2)14. If the three X's are all indicators of the same concept, create some sort composite scale and use it instead.

15. Do nothing.

(a) It is possible to have severe multicollinearity, but yet have ea"



individual t-statistic be significant. 
1f we 

riable bias (that is a more serious problem). 

ollinearity 459 
drop nearly mult multicollinear variables, we might have created 

(b) omitted variable

af avoiding multicollinearity is through the use of instrumental 
way of avoiding multi 

16 A final 

yarna favored by many experts would be "nothing," a view nicely 

A fina which are discusscd in the later chapter.
ariables, which 

An ans1lanchard (1987):"Multicollincarity is God's will, not a problemessed atistical echniques in general. Other possiblc actions are 

An answer 

Apresse

pr 
statistical tec 

with OL, 

arized in Table 12.2. 

TABLE 
12.2. BLE ACTIONS AND THEIR CONSEQUENCES 

Action Consequence 
If the model was correctly specified, you 
now have a specification bias 
Predictive power may be lost and you 
may introduce specification bias 
Results may be impossible to interpret in 
the context of the original problem 
Reduces standard errors but may not be 

op one or more predictors 

ransform one or more variables 

Iik factor analysis, principal 

gomponents, or ridge regression 

Enlarge the sample 
possible

The following figure 12.4 provides some idea about the model building

when the explanatory variables are highly correlated with each other. 

Model Building
Flowchart 

Choose 
Run Subsets

Regressilon to Obtain 

"est models in 

tems of C, 
un Regression 
ofind VIFs 

Any 
VIF5? 

No 

Do Complete Analysis

Yes 

Remov 
anable withYesMore thar 

Highest
VIF 

Add 
Cuvilinear 

Tem and/or 

One? 
INo 
Remove 
this X 

| Transfom
Variables as ndicated

Perfurn
Predictions 

MODEL BUILDING

where Cp 
FIGURE 12.4. VIF AND 

MODEL 

BUILDING

he Mallows Cp 
criterion to select the regressors. 
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EXERCISES 

.What is meant by 
multicollinearity

7. 

What is the diferenee 
between perfect multi- collineari 

3 Define 
mlticollineanty 

and orthogonality

4 Disthnguish 
between

multicollinearity 
and orthogonalit 

5. How do we corect for perfect multi-collinearity. 

How do we detet ncar multi-collinearity. 

Answer the following questions about multicollinearity 

(a Define what it is. 

(b) Why does it occur? 

(c)What are its consequences? 

earity ; 
near 

ality. 

(e Is it true that multicollinear1ty is always a bad thing and noh. 

about it? Give reasons for your answer together with illustrative e 

(d) How can it be detected? 

8.What are the problems with perfect multicollinearity ? 

What are the problems with imperfect multicollinearity? 

10. Give the sources of multicollinearity 
11. Explain the various consequences of multicollinearity 
2 Discuss the problem of collinearity 
13. Give solutions to remove multicollinearity 
14. Explain Multcollinearity. 

What are the consequences and solutions for multicollinearity? 
16. Give the sources of multicollinearity. 
17. Bring out the test of multicollinearity. 
18. Examine the meaning of multicollinearity. Also eExplain the sources and oinse 

of multicollinearity 
19. Define multicollinearity, Describe the sources and solutions forit. 
20. Discuss the effects of multicollinearity for Y.X, X, . R = 0.943, n= 

15 

Y = 1.48 -0.65 X, R = 0.78 
(SE=0.12) 

Y =1.21 +0.128 X,, R = 0.941 
(SE-0.011) 

Y=-1.92+0.19X1 +0.16 X, R2=0.943SE =(0.19) (0a.03)



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

