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Multicollinearity

So far we have considered the classical normal linear regression mog and
showed how it can be used to handle the twin problems of statistical inference
namely, estimation and hypothesis testing, as well as the problem of predictmn?
However. this model is based on several simplifying assumptions and hereafye,
we consider the theoretical and practical consequences of the violation of
classical assumptions of ordinary least squares.

MULTICOLLINEARITY

The only additional assumption of the multiple regression model is that the

independent variables are not perfectly correlated with each other . If this °
assumption is violated, a problem that potentially occurs which is called

multicollinearity. It is a condition where the independent variables are not
independent of one another. The term multicollinearity originally meant the
existence of a “‘perfect” or exact linear relationship among some or all-explanatory
vanables of a regression model. One explanatory variables can be completely
explained by a linear combination of other explanatory variables. In practice.
perfect multicollinearity occurs only from an error in model specification. Perfect

multicollinearity is an extreme situation. While perfect multicollinearity is ofte?

the result of model misspecification, near-perfect multicollinearity is a M°®

common phenomenon. Near or imperfect multicollinearity refers to situation’
in which two or more of the the explanatory variables are “almost” linearly

related. While this does not constitute a violation of the classical linear rcgfesslon.
assumptions (and therefore the BLUE / Minimum Variance Unbiased Estm®®
properties), in this situation the separate effects of the explanatory variabl®

cannot be estimated “precisely” is i

. ely”. This is a pro \ . aar modeh

including a problem because our linea

requi i ¢
quires that the individua] effect of each explanatory variable on the respon’

interpre icollineari
rpreted multicollinearity refers (o the situation where there is either a1 -

by -

1,
separate term for each explanatory variable with its own par™®

estimated. Toda icolli Shar 2 . 03 |
y multicollinearity is used in a broader sense: Bf o
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(2x,y)(£x§)> (Xx,y)(2x;x,)
b, = (L\(,’)(in) (2x,x,)’
Substituting kx, for x,.

2 y(k*2x3) - (k 2x,y)(k2x] )

2= (kaxd) -k (2x])]

k?Ex,yZx] - k’Ex,yEx}
=K (=) -k (2xd)

0

0
Similarly b, can also be proved to be indeterminate.

(ley)(ZXf) —(Ex,y)(Ex,x%)
b, = (2‘.xf)(2x§)—(23xlx2)2

Substituting kx, for x,

.

(ka,y)(kZfo)—(ka,y)(fo) .
b = zx? (1<2>:x,2)2 —1(2(>:x,2)2

k(Zx,y)(2x) - k(Zx,y)(zx})
€ (o< & (o)

values of b, and b, separately,

Case - 2 : The variances of the estimates become infinitely large
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Var (b,) = (EXf)(kZEXf)~k7(i¥f)i_ =

Adeol
Gl,Zx,

(Ex )(RZEXZ) k (Zx ) =0

Var (b)) =

Note: KX =Xy and 3x; = (kEx, )2

Thus, when two variables are perfectly correlated, OLS estimates (b;'s) can
e ebtained and the variances of these estimates are infinitely large.

As an example, suppose we consider the following dataon Y , X, and X,
)mously X, equals five times X, (Table 12.1).

TABLE 12.1 DATA ON Y, X1 AND X2

Consumption (Y) Income( X)) Wealth (X,)
20 1 5
25 2 10
30 2 10
;s 3 :
50 : 25
R 5

The variables X, and X, are perfectly correlated . The variah ¢ X;_;;Z hgeLaSr
nction of X, X,= 5X1) When two variables are perfc;:ct:ly (;0::1 imat‘es -
“mates (b, s) can not be obtained and the vanances;,) éee:ees of freedom
tnitely large. All the output is meaningless except for the e%auon o X, with
‘“d the correlation matrix, which contains a one for the COrfr ctl correlated or
> Thus, when two or more independent variables are perfectly

linear, the method of Ordinary Least Square is not applicable.

\
°rksh , : : Regression Model
W 2 0 30 = 20 4 100 90

'] 2 10 60
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33 3 15 99 495 45 9 26
36 4 20 144 720 80 16 40y g
38 5 25 190 950 125 25 625 1y,
ZY= IX,= EIX,=ZXY= IX)Y=IXX=ZX?2=3y%, !y
182 17 85 563 2815 298§ 59 14,,; Iy
§

Intermediate Results N
N(or)n= 6 XY= 563 m

LY = 182 IX,Y= 2815 IX2, 159
X, = 17 IXX= 295 AR 5:(15
IX,= 85  Mean 30333 Mean 2833 Mear |, 14 ‘
of Y= 3333 ofX = 33333 of X, = 623
—__ &

(a) The OLS estimates (b,’s) can not be obtained. Recall

(x,y) (x%)—(xzy) (x;x;)
T (xd) () - (xx)’

(47.33333) (270.8333333) - (236.6666667) (54.16666667)
(10833333) (2708333333) - (54.16666667) (54.166667)

12819.444 - 12819.444
2934.0278 -2934.0278

0

0

(x2y) (xlz) ~(xy) (x)x,)
b) = 2 2
(xl ) (xz)'(xn"z)z
(236.66667) (10.83333133) —(4733333333)( 54.16666667)
(10833333) (2708333333) - (54.16666667) (54.166667)

25638889 - 2563.8889
29340278 -2934.0278

"

|
oo

(b) The variances of the estimates become infinitely large. Recall
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Varb, = \-\9&.):‘53
L\lz.sz Ay
2~ (Ex, .)*
2. 9
Varb, = 7T—5— .. »»23-5.' -
2 foixg (X’HX;))
(29340278) - (29340375,
) 2
Var (b)) = KOuIX{ _ o
0
similarly,
Var (b)) = &ﬁ}:xf
(2934.0278) —( 2934.0278)
2252
Var (b)) = c“(z)x‘ =

JONSEQUENCES OF IMPERFECT MULTICOLLINEARITY

l. Imperfect or extreme or near multicollinearity is the more common problem
and it arises when two or more of the explanatory variables are
approximately linearly related. If collinearity is high but not perfect the
estimation of the coefficients is possible but the following are some of the
consequences . ,

2. Even extreme multicollinearity (so long as it is not perfect) does not violate

OLS assumptions. OLS estimates are unbia§ed, consistent, and efﬁcnen;

and are BLUE (Best Linear Unbiased Estlmato,rs) in the tﬁre\sf:;ee:n

multicollinearity. However, they may be ‘unstable’. BY nie e we 110

that they may be particularly sensitive to model specification,

In the data. ,

Standard errors of the regression coefficie

this i not necessarily the result of multico The main consequence 18
multicol]inearity, the greater the standard errors .

. o aceiaras will

fficient estimates wi
o e _PaEnges (and SATGAN, CITOFS)bOf SOL“ zfc ::ullicollincarily. When
1 : senc e . d

® higher th Id be in the absen . for coefficients ten

an they wou _ : Is for cc
igh multicollint:ar)i/t is present, confidence mler;’la Coefficients will have
0 be very wide and tystatistiCs tend to b€ Yer)" rs:g:l]t .j e. it will be harder (o
0 be larger in order to be statistically significant,

. 2 d
. ases, high R*an
) : - hearity 18 present: In some? o B idual
JﬁCl the null when mulucollm;' : Ll signiflcance o
Statistice but low

nts will be high. Though in fact
llinearity alone. The greater the
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coefficients. Thus the presence of a high degree of multicolline
result in the following combination:

High R? model will appear to fit the data well.
High calculated F value indicates the model explains a statj
significant portion of the variation in the dependent variable (The y

arity wi

Sli(:a”

. . . g arlablcS
are jointly significant ) .
Low t values indicate the variables are not statistically significam
.Coefficients may have very high standard errors and low levels

significance in spite of the fact that they are jointly highly signiﬁcam.

This combination of result gives an indication that multicollinear;

be a problem.

4. Addition/deletion of an independent variable iesults in large changes of
regression coefficients or signs. Signs and magnitudes of regression
coefficients may be different from what are expected.

5. The overall fit of the equation (R? and adjusted R2) will be largely
unaffected.

6. The estimated coefficients of non-multicollinear variables wil] be la
unaffected.

ty May

rgely

DETECTION OF MULTICOLLINEARITY:

The easiest way to do this is to examine the correlations between each pair
of explanatory variables. If two of the variables are highly correlated (e.g., they
have a correlation less than -0.80 or greater than 0.80), then multicollinearity
may be a problem. The correlation approach can only detect when pairs of
variables are highly (linearly) related. High values of simple correlation
coefficients may be considered to be sufficient, but not necessary for
multicollinearity. It is possible for a group of independent variables, acting
together, to cause multicollinearity. The form of multicollinearity can be much
more complicated, involving a relationship between three or more variables, and,
thus, will not necessarily be detected by the simple correlation approach. Hence,
these relationships are measured by the partial correlation coefficients, which
measure the correlation between two variables after holding the others constant.
This will provide information on the existence of more complex relationships
between or among the independent variables,

1. Multicollinearity can also be detected after the model has been fitted to
the data by looking at the output for the linear regression. Very unreasonable
estimates or extremely large estimated standard errors for some slope
parameters can be an indication that multicollinearity is present.
Additionally, if the linear model seems to fit the data well overall (e.g., the
null hypothesis of no effect is rejected in the F-test for overall significance
or, identically, R is high) , but most of the coefficients are not significant
according to their p-values, then multicollinearity might be the cause. In
regression model, the high R? is not a result of good independent predictor

-
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as 1 — R? predicting each predictor using all other Crdn.cc statistic, defined
o 1 are better, values close to 0 are bad) The l:fidlctors (values close
p,-oporuon that is not explained by the other varia olerance of X, is the

27¢ 4 . . bles, 1.
= 1-R,*Itis the proportion of the variance of X t I.e. tolerance of X
h

. : _ hatis not s i
other variables 1n our analysis. If the tolerances are low (sa;haluz(r, ;;(thh(he
< : . €re

are n'lulm.:ollm.eanty problems.. A tolerance close to 1 means there is little
mulucollmeamy, whereas a value close to 0 suggests that multicoll; ‘
may be a threat. The reciprocal of the tolerance is known as the0 vla"r‘:jarny
1 ance
Inflation Factor (VIF).
VIF, =1/(1-R?%

Auxiliary Regressions: The problem of multicollinearity may arise due to
relationship between more than one independent variable. For example: X, =
,+ by Xy + by X35 + Vi To find these types of relationships, you can you can
roceed by estimating separate regressions of each of your independent variables
oainst all of the remaining independent variables. These regressions are called
Y k independent variables X, Xy -+ X, runan
f all the other explanatory
n equations and calculate
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X, = %o + 0ty Xpi + 0Ly Xgjtee

X, = yo+viXuty2Xat Y X T

X, = 50"'61)(1i+62X2i+ """
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1
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VIF(X,) = 1-Ri

e Oblaincd

The variance inflation facto

where Rf' is the R? valu
¢ variables-
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on R? VIF . Numerical example:
Relationship between R and

If R = 0.1, thenthe VIF = 111

l. .
2 II'R’: =().2S, then lhvVllj -—l’.N.
3. IR =05, then the VIE =2
4 IfRY =0.75. then the VIIF =4
CUR snthe VIE = 10
S IfR: =09, thentheV
6 IR ~0.99. then the VIE = 100,
0. IfR? =099,
T

VIF 100 —

a) —

0 : ' .

00 05 10 R

FIGURE 12.3 RELATIONSHIP BETWEEN R?, AND VIF

The VIF shows us how much the variance of the coefficient estimate is being
inflated by multicollinearity. The Square root of the VIF tells you how much
larger the standard error is ,compared with what it would be if that variable were
uncorrelated with the other X variables in the equation. For example, if the VIF
for a variable were 9, its standard error would be three times as large as it would
be if its VIF was 1. In such a case, the coefficient would have to be 3times &
large to be statistically significant. High VIFs suggest the presence of 3
multicollinearity problem . The higher a VIF, the higher the variance of the
estimated coefficient of that explanatory variable. When R.. = 1, there is a perfect
multicollinearity and the VIF is infinity; when Ri. = 0, there is 0
multicollinearity and the VIF is one, VIF > 30 usua]lz; indicates a severe
multicollinearity problem.

A common rule of thumb is that g problem exists when any VIF exceeds 10
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-uug""wd that S)l g en the sum of all Vg exceeds 10, But Vi
L gnusual. he Longley daw (Barone et al
o :

- 100 (and one above 1,000)). Such vii
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;andard error sharply, so as to make the
S . ~ ¢ » 1 1
qins nearly same, multicolline

J s above
; 1976) has several VI
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cification,

\ ;lﬂ'

used to test for the presence of
ariable in a model increases the
) .cocl'ﬁcicnl insignificant while R?
i : . arity 1s present The first me 1S the
i ,mputation .nl a corrgflauon matrix of the independent rcgrcs:::::: l:/(;(ljlln(;)ltch:
The correlation matrix alloyvs us to identify those explanatory variahlcs:
(hat are highly corrcla_ited with one another and this causes the problem of
qulticollinerity. Collinearity is often suspected when R? is high (between
0.8 and 1.0) and none or very few estimated coefficients are individually
significant on the basis of the students t-Test. To measure the ill-effect of
nulticollinearity we use the variance inflation factor (VIF).

Klein Suggests that multicollinearity should not be considered serious
unless the simple correlation coefficient between any two explanatory
variables is greater then or equal to the multiple correlation coefficient
(R2). Klein’s Rule says that multicollinearity becomes a problem only if

=

r?‘ > R2

X ix J y .xl X Q cernen X k
where 12 is the square of the simple correlation coefficient between any two
explanatory variables ( X;X;) and R? is the multiple correlation coefficient

[L.R. Klein, Introduction to Economics, Prentice Hall International,
Landon, pp.64 & 101].

7. Check topslz'e how stagle coefficients are when differgm samples afrfc_t qsectis.
For example, you might randomly divide your sample in two. If coetficien
differ dramatically, multicollinearity may be a problem. Iy determined

5. The presence and degree of multicollinearity arc more premfsthg X’ X matrix
by an examination of the characteristic roots and vectors ore N acteristics
(Judge, et al., 1985). Collinearity is present when one or n'110b Soldley, ik
roots are *“‘small.” This measure was developed 1n d_‘;f,'neg,od of defining
and Welsch (1980), who suggested that Qe e and a corresponding
“small” involves the formation of condition indices values. The condition
Matrix of cross variances between variables and Clgcgot of the ratio of the
index refers to a vector consisting of the Squa?:er Elements in the cross
larges eigen value to each individual eigenvait o.f the variance of each
Variance matrix are calculated as the Proporllzl:ic root. In case of linear
:’iariable associated with each Singbllc Cr:ﬁ::acc:?;;nvalues of all different

¢pendence between the variables

t1o
.r. such that the ra
®igenvectors will differ much from each other,
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A X
Condition numbel \/ e JI(

Collinearity exists when the condy, e
L

becomes quite large
around 510 tor weak dependencies and 30100101 imodey 4, iy,
Py

relatonships and when the assoc iated row vector in the Crig | ¢
L T

matrix contains (wWo or more large values usually value, Weatn,
4 s ¥ ‘, ‘, .

0.50 (Judge, et al.. 1985). If the square root of k (c.q. the conditgy, ,
i

is much larger than (approx.) 30 this could be, according 1 ANy )

W s

a sign of harmful multcollincanty.

Solutions to the Problem of Multicollinearity :

l.

!‘J

If multicollinearity doest not scriously affect the cstimate, of
coefficients, onc may tolerate its presence in the regression mode) ’
Drop redundant variable and this applies to the case that two o .
variables in an equation are measuring essentially the same thing, |
make no statistical difference in which variable is dropped.

A solution to the perfect multicollinearity is to drop one or more colfirey
variables. but one has to be careful about the interpretation of
coefficients. But, if the variable really belongs in the model, this can lex
to specification error, which can be even worse than multicollineanty
Eliminating variables to “solve” multicollinearity problems results
estimators that are biased, inconsistent, and inefficient.

Step by step regression method may be used to eliminate the vanass
introduction of. which in the model does not increase R? but increz
standard error of significantly. One of the best solutions to the problem o
multicollinearity is to delete collinear variables from the regression mod
We have a regression of Y on X, X,, X, and X, and we find that X, is hig"
correlated with X,. By comparing the R? and adjusted R’ of differen
regression with and without one of the variables, we can decide which

the two independent variables to drop from regression. We want 10 i’
a high R? and therefore should drop a variable of R? is not reduced M
when the variable is dropped from the equation. When the adi"“‘jf
increase when a variable is removed, we certainly want to drop the ¥4
For example that the R? of the regression with all four independent V¥ ’“‘“f'.,
is 0.94, the R, when X  is removed is 0.87, and the R* of the regressi” p :
on X,, X, and X, (X, deleted) is 0.92. In this case, we should drop”
variable X, and not X,. e
Multicollinearity often occurs in small samples and ma")’"nc,s};)
variables (low degrees of freedom). With a few observations, yariabl "
happen to be closely related. Repeated observations will "’Ssonavcti
chance occurrences. If it is not possible to get more data, 0n€ may erm”
conclude that the data available does not permit one to reliably de
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¢ available.

sample size are needed.

linearity is prob i ’ :
Col redigﬁonp h :;’fmau.c when One's purpose is explanation rather than
mere p ” - —ollinearity makes it more difficult to achieve significance
of the collinear parameters. But if such estimates are statistically significant,
they are as reliable as any other variables in a model. And even if they are
not sngmﬁcapt,, the sum of the coefficient is likley to be reliable. In this
case, increasing the sample size is a viable remedy for collinearity when
prediction instead of explanation is the goal .
Multicollinearity often occurs when several variables seem to be moving
together, particularly in the case of nominal time - series data. For iustance,
both investment spending and government spending tend to move together
as the price level rises. Translation of nominal variables into real magnitudes
through the use of a price index may alleviate this jomt.moyement..A
common remedy to the multicollinearity problem is df:ﬂatmg time series
. 1 o ohme
(mostly prices, or price indexes) by some time series measuring €.g
' : ' d of working with nominal quantities 1t 18
consumption prices. Thus, instead 0
ities.
prefened ruse rea.l quant;tle hrough time, but not across space, or
Variables may be highly correlated through W =0 :
. y ilable mulucollmearlly can sometimes
vice versa. If data sources are avaliabrie

i [ ies, or in poolin
be lessened by using cross section data instead of time series, orinp g

' i ; ions.
time series and cross section observation

her than OLS approach . As §tated‘
|ationship between expla‘nato.ry‘ \lftarllat:‘\:::
re, therefore not lchnqg itse lo |

’ hen a fairly sophlsucatcd SO u.uon
l ression techniques §uch a;‘ p.-uig;
ssion; these regression tec Tq n
at are lypically smaller 1

previously, the multicollinear r
can often be very complex 1n natu
Simple approach. If this 1S thc? case,
would be to use one Of the biased ereie
regression or principal comP"”e""tSi ;1 ft es th
produce (biased) parameter €
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magnitude than the corresponding least squares estimates.
2. The problem of multicollincarity may be solved by using ;

the least squares method called ridge regression. Ridge

effective counter measure because it allows better inlcrprctuli(m
regression coefficients by impnsing some bias on the re

of the
- e ' gr(‘ﬂsi()n
cocthicients.. Although the coefficient estimators produced rid

regression are biased, in some cases, it may be worthwhile to olerate be

50me

bias in the regression estimators in exchange for a reduct high

vanance of the estimators that results from multicollineari
Use information from prior research to place justifiable Constraings
parameters and imposing restrictions on coefficients For xample, v,
mught know from prior research that bI =3 bz. Another form of €Xtraneqy,
information that can be used is a constraint, or restriction, on the Parameter
being estimated. For example, in the estimation of a CObb'DOUglas

production function it is possible to restrict it to be homogenous of degree
I. Suppose that a researcher estimated.

Y = byXPIxh? ~(121)

where Y is the output, X, is input 1 and X, is input 2, with a sample where
X, and X, are “highly” correlated. Introduce the constraint
b +b, =1

on in the
ty.

«(122)
which states that (12.1) is homogeneous of degree one. With this information,
we can substitute b, = (1 - b,) into (12.2) to obtain
Y = byX{"t)xb2 .(123)
Taking logs, we now get
Y' = Co+(1-by)X;] +b,X; (124)

where the asterisk denotes the natural lo

gs of the original variables and
Co=L,bg,(Ln= log) . This yields '

Y = c0+x;+b2(x; —x;) (125
(Y—_x;) - co+b2(x;_x;) .(126)

Let Q= [Y - X.] and I = [X; - X;] and obtain an estimate of b, from
Q =Cy+b,I (127
And obtain the estimate of b, from (12.2)
14. If the three X’s are all indicators of the sam

composite scale and use it instead.
15. Do nothing.

i
€ concept, create some sort 0

() It is possible to have severe multicollinearity, but yet have each
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mdividual t-statistic be significan
: if we drop .nearly. multicollineyy v‘-nri'l
| (b) Omi“ed varlabl.e bias (that iy a ll]Ol‘Cj § :l ‘)ICS‘ we Might have created
al way of avoiding multico]linearity SETIOus probley,

. : 1),
A fin ) i e d 18 lhl'()u 'h . . i
16. ariables’ which are discussed ip the later Ch"l’lt the uge of Instrumental
v 5 ’ . T,
| ansWer favored by many experrs would be
A"ed by Blanchard (l987):“Mullicol]incurity
1SS 5 or statistical techniques in genera] »

g .
S ABLE 12.2 . POSSIBLE

l “I]O‘hing‘n
1s God's will,
Other possib

a4 view nicely
not a problem
le actions are

ACTIONS AND THEIR CONSEQUENCES

//A’C—t—i;; Consequence
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The following figure 12.4 provides some idea about the model building
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. A the following que stions about mulncollmcaruy,
T AW

Define what itis.

Why does it occur?
What are its consequences?

@ How can it be detected? | |
Is it true that multicollinearity is always a bad thing ang ot

(e 1S e
ahout it? Give reasons for your answer together with tHustratjye -

What are the problems with perfect multicollinearity ?

What are the problems with imperfect multicollinearity?

Give the sources of multicollinearity

Explain the various consequences of multicollinearity

Discuss the problem of collinearity

Give solutions to remove multicollinearity

Explain Multcollinearity .

What are the consequences and solutions for multicollinearity?

Give the sources of multicollinearity.

Bring out the test of multicollinearity.

Examine the meaning of multicollinearity. Also eExplain the sources and e
of multicollinearity.

- Define multicollinearity, Describe the sources and solutions for it ‘
Discuss the effects of multicollinearity for Y, X (X, R?=0.943,n=1>.

V=148 065X, R? =0.78
(SE=0.12)

Y-|21+0178x R
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