## Meaning of Skewness:

- Skewness means lack of symmetry .
- We study skewness to have an idea about the shape of the curve which we can draw with the help of the given data.
- If, in a distribution, Mean = Median = Mode, then that distribution is known as Symmetrical Distribution.
- If, in a distribution, Mean  $\neq$  Median  $\neq$  Mode, then it is not a symmetrical distribution and it is called a Skewed Distribution and such a distribution could either be positively skewed or negatively skewed.

## a) Symmetrical distribution:



It is clear from the above diagram that in a symmetrical distribution the values of mean, median and mode coincide. The spread of the frequencies is the same on both sides of the centerpoint of the curve.

## b) Positively skewed distribution:



Mode < Median < Mean

It is clear from the above diagram, in a positively skewed distribution, the value of the mean is maximum and that of the mode is least, the median lies in between the two. In the positively skewed distribution, the frequencies are spread out over a greater range of values on the right-hand side than they are on the left hand side.



It is clear from the above diagram, in a negatively skewed distribution, the value of themode is maximum and that of the mean is least. The median lies in between the two. In the negatively skewed distribution the frequencies are spread out over a greater range of values on the left hand side than they are on the right hand side.

#### Measures of skewness:

The important measures of skewness are

- [1] Karl Pearson's coefficient of skewness
- [2] Bowley's coefficient of skewness
- [3] Measure of skewness based on moments.We are interested in studying only the **first two** methods only.

## 1. Karl-Pearson's Coefficient of skewness:

According to Karl – Pearson, the absolute measure of skewness = mean – mode. This measure is not suitable for making valid comparison of the skewness in two or more distributions because the unit of measurement may be different in different series. To avoid this difficulty, we use relative measure of skewness, called Karl-Pearson's coefficient of skewness given by:

Karl-Pearson's Coefficient of Skewness = 
$$\frac{Mean - Mode}{Mean - Mode}$$

In case of mode is ill- defined, the coefficient can be determined by

Coefficient of skewness = 
$$\frac{3(\text{Mean - Median})}{2}$$

S.D.

2. Bowley's coefficient of Skewness (SkB)

$$Sk_{B} = \frac{Q_{3} + Q_{1} - 2M}{Q_{3} - Q_{1}}$$

# Karl Pearson's coefficient of Skewness (Skp)

1. From the marks secured by 120 students in Section A and B of a class, the following measures are obtained:

Section A:  $\overline{X} = 46.83$ ; S.D = 14.8; Mode = 51.67 Section B:  $\overline{X} = 47.83$ ; S.D = 14.8; Mode = 47.07 Determine which distribution of marks is more skewed. Solution: Karl Pearson's coefficient of Skewness For Section A:  $Sk_p = \frac{\overline{X} - Z}{\sigma} = \frac{46.83 - 51.67}{14.8} = \frac{-4.84}{14.8} = -0.3270$ For Section B:  $Sk_p = \frac{\overline{X} - Z}{\sigma} = \frac{47.83 - 47.07}{14.8} = \frac{0.76}{14.8} = 0.05135$ 

Marks of Section A is more Skewed. But marks of Section A is negatively Skewed. Marks of Section B are Positively skewed.

2. From a moderately skewed distribution of retail prices for men's shoes, it is found that the mean price is Rs. 20 and the median price is Rs. 17. If the coefficient of variation is 20%, find the Pearsonian coefficient of skewness of the distribution.

Solution: Given: C.V. = 20, 
$$X = 20, M = 17$$
  
C. V. =  $\frac{\sigma}{\overline{X}} X100$   
 $20 = \frac{\sigma}{20} X100 = 20 X 20 / 100 = 400 / 100 = 4$   
 $\sigma = 4$ 

$$Sk_p = \frac{3(\overline{X} - M)}{\sigma} = \frac{3(20 - 17)}{4} = 9/4 = 2.25$$

 Calculate Karl Pearson's coefficient of Skewness for the following data. X 25, 15, 23, 40, 27, 25, 23, 25,20

| Х              | $X^2$             |
|----------------|-------------------|
| 25             | 625               |
| 15             | 225               |
| 23             | 529               |
| 40             | 1600              |
| 27             | 729               |
| 25             | 625               |
| 23             | 529               |
| 25             | 625               |
| 20             | 400               |
| $\sum X = 223$ | $\sum X^2 = 5887$ |

$$\overline{X} = \frac{\sum X}{N} = \frac{223}{9} = 24.78$$

$$\sigma = \sqrt{\frac{\sum X^2}{N} - \left[\frac{\sum X}{N}\right]^2} = \sqrt{\frac{5887}{9} - (24.78)^2}$$

$$= \sqrt{654.1111 - 614.0484} = \sqrt{40.06} = 6.33$$

$$Z = 25$$

$$Sk_p = \frac{\overline{X} - Z}{\sigma} = \frac{24.78 - 25}{6.33} = \frac{-0.22}{6.33} = -0.0348$$

| Wage     | Number         |                  |                |                      | $\frac{1}{X} \sum fX = 5025$ 25.12                                   |
|----------|----------------|------------------|----------------|----------------------|----------------------------------------------------------------------|
| per Item | of items       |                  |                |                      | $X = \frac{1}{\sum f} = \frac{1}{200} = 25.13$                       |
| Rs.(x)   | f              | fx               | x <sup>2</sup> | $fx^2$               |                                                                      |
| 12       | 10             | 120              | 144            | 1440                 |                                                                      |
| 15       | 25             | 375              | 225            | 5625                 | $\left \sum fX^2\right  \left[\sum fX\right]^2$                      |
| 20       | 40             | 800              | 400            | 16000                | $\sigma = \sqrt{\frac{2}{\sum f}} - \left \frac{2}{\sum f}\right  =$ |
| 25       | 70             | 1750             | 625            | 43750                |                                                                      |
| 30       | 32             | 960              | 900            | 28800                | 141415  (25.12) <sup>2</sup> -                                       |
| 40       | 13             | 520              | 1600           | 20800                | $\sqrt{\frac{200}{200}} - (25.15) =$                                 |
| 50       | 10             | 500              | 2500           | 25000                | $\sqrt{707075-6315169} = \sqrt{75558}$                               |
|          | $\sum f = 200$ | $\sum fx = 5025$ |                | $\sum fX^2 = 141415$ | = 8.69                                                               |

4. Calculate Karl Pearson's coefficient of Skewness for the following data.

Greatest frequency = 70, Z = 25

$$Sk_p = \frac{\overline{X} - Z}{\sigma} = \frac{25.13 - 25}{8.69} = 0.13/8.69 = 0.0149$$

5. Calculate Karl Pearson's coefficient of Skewness for the following data.

| Profit     | No of          | m  | fm               | m <sup>2</sup> | fm <sup>2</sup>      |
|------------|----------------|----|------------------|----------------|----------------------|
| (Rs.Lakhs) | Companies      |    |                  |                |                      |
|            | (f)            |    |                  |                |                      |
|            |                |    |                  |                |                      |
| 10-20      | 18             | 15 | 270              | 225            | 4050                 |
| 20-30      | $20 = f_0$     | 25 | 500              | 625            | 12500                |
| 30-40      | $30 = f_1$     | 35 | 1050             | 1225           | 36750                |
| 40-50      | $22 = f_2$     | 45 | 990              | 2025           | 44550                |
| 50-60      | 10             | 55 | 550              | 3025           | 30250                |
|            | $\sum f = 100$ |    | $\sum fm = 3360$ |                | $\sum fm^2 = 128100$ |

$$\overline{X} = \frac{\sum fm}{\sum f} = 3360/100 = 33.6$$
  
$$\sigma = \sqrt{\frac{\sum fm^2}{\sum f} - \left[\frac{\sum fm}{\sum f}\right]^2} = \sqrt{\frac{128100}{100} - (33.6)^2} = \sqrt{1281 - 1128.96} = \sqrt{152.04} = 12.33$$

$$D_1 = f_1 - f_0 = 30 - 20 = 10$$
;  $D_2 = f_1 - f_2 = 30 - 22 = 8$ ;  $L = 30$ ;  $i = 10$ 

$$Z = L + \left[\frac{D_1}{D_1 + D_2}\right]i = 30 + \left[\frac{10}{10 + 8}\right]10 = 30 + \left[\frac{10}{18}\right]10 = 30 + 5.56 = 35.56$$
$$Sk_p = \frac{\overline{X} - Z}{\sigma} = \frac{33.6 - 35.56}{12.33} = -1.96/12.33 = -0.1590$$

| Weight  | No of          | m   | fm                     | $m^2$ | fm <sup>2</sup> | c.f |
|---------|----------------|-----|------------------------|-------|-----------------|-----|
| (lbs)   | Students(f)    |     |                        |       |                 |     |
|         |                |     |                        |       |                 |     |
| 90-100  | 4              | 95  | 380                    | 9025  | 36100           | 4   |
| 100-110 | 2              | 105 | 210                    | 11025 | 22050           | 6   |
| 110-120 | 18             | 115 | 2070                   | 13225 | 238050          | 24  |
| 120-130 | 22             | 125 | 2750                   | 15625 | 343750          | 46  |
| 130-140 | 21             | 135 | 2835                   | 18225 | 382725          | 67  |
| 140-150 | 19             | 145 | 2755                   | 21025 | 399475          | 86  |
| 150-160 | 10             | 155 | 1550                   | 24025 | 240250          | 96  |
| 160-170 | 3              | 165 | 495                    | 27225 | 81675           | 99  |
| 170-180 | 2              | 175 | 350                    | 30625 | 61250           | 101 |
|         | $\sum f = 101$ |     | $\overline{\sum fm} =$ |       | $\sum fm^2 =$   |     |
|         |                |     | 13395                  |       | 1805325         |     |

6. Calculate Karl Pearson's coefficient of Skewness for the following data.

$$\overline{X} = \frac{\sum fm}{\sum f} = 13395/101 = 132.62$$

$$\sigma = \sqrt{\frac{\sum fm^2}{\sum f} - \left[\frac{\sum fm}{\sum f}\right]^2} = \sqrt{\frac{1805325}{101} - (132.62)^2} = \sqrt{1787451 - 1758806}$$

$$= \sqrt{286.45} = 16.9$$

$$\frac{\sum f}{2} = 101/2 = 50.5, \text{ Median Class} = 130 - 140, \text{L} = 130, \text{p.c.} \text{f} = 46, \text{f} = 21, \text{i} = 10$$

$$M = L + \left[\frac{\sum f/2 - p.c.f}{f}\right] \text{i} = 130 + \left[\frac{50.5 - 46}{21}\right] 10 = 130 + \left[\frac{4.5}{21}\right] 10 = 130 + 2.14 = 132.14$$

$$Sk_p = \frac{3(\overline{X} - M)}{\sigma} = \frac{3(132.62 - 132.14)}{16.9} = \frac{3(0.48)}{16.9} = 1.44/16.9 = 0.0852$$

# **BOWLEY'S COEFFICIENT OF SKEWNESS**

7. Compare the Skewness of A and B

|          | $\mathbf{Q}_1$ |       | Μ     | <b>Q</b> 3 |
|----------|----------------|-------|-------|------------|
| Series A | 40             |       | 60    | 80         |
| Series B | 62.85          | 65.25 | 72.15 |            |

Series A  

$$Sk_{B} = \frac{Q_{3} + Q_{1} - 2M}{Q_{3} - Q_{1}} = \frac{80 + 40 - 2(60)}{80 - 40} = \frac{120 - 120}{40} = 0$$
Series B  

$$Sk_{B} = \frac{Q_{3} + Q_{1} - 2M}{Q_{3} - Q_{1}} = \frac{72.15 + 62.85 - 2(65.25)}{72.15 - 62.85} = \frac{135 - 130.5}{9.3} = 4.5/9.3 = 0.4839$$

In series A there is no skewness, In Series B there is moderate positive skewness.

8. Calculate Bowley's coefficient of Skewness.

| No of child | No of         |    |
|-------------|---------------|----|
| per family  | Families      |    |
| Х           | f             | Cf |
| 0           | 7             | 7  |
| 1           | 10            | 17 |
| 2           | 16            | 33 |
| 3           | 25            | 58 |
| 4           | 18            | 76 |
| 5           | 11            | 87 |
| 6           | 8             | 95 |
|             | $\sum f = 95$ |    |

Solution:

Position of Q<sub>1</sub> = 
$$\frac{\sum f + 1}{4} = 95 + 1/4 = 96/4 = 24$$
  
Q<sub>1</sub> = 2  
Position of Q<sub>3</sub> =  $3(\frac{\sum f + 1}{4}) = 3(24) = 72$   
Q<sub>3</sub> = 4  
Position M =  $\frac{\sum f + 1}{2} = 95 + 1/2 = 96/2 = 48$   
M = 3  
 $Sk_B = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} = \frac{4 + 2 - 2(3)}{4 - 2} = \frac{6 - 6}{2} = 0$ 

9. Calculate Bowley's coefficient of Skewness.

| Weekly Wages (Rs.) | No of Workers(f) | cf  |
|--------------------|------------------|-----|
| Below 200          | 10               | 10  |
| 200-250            | 25               | 35  |
| 250-300            | 145              | 180 |

| 300-350     | 220            | 400 |
|-------------|----------------|-----|
| 350-400     | 70             | 470 |
| 400 & above | 30             | 500 |
|             | $\sum f = 500$ |     |

$$\frac{\sum f}{4} = \frac{500}{4} = 125, Q_1 \text{ Class} = 250\text{-}300, L_1 = 250, \text{p.c.} f_1 = 35, f_1 = 145, i_1 = 50$$
$$Q_1 = L_1 + \left[\frac{\sum f/4 - p.c.f_1}{f_1}\right] i_1 = 250 + \left[\frac{125 - 35}{145}\right] 50 = 250 + \left[\frac{90}{145}\right] 50$$
$$Q_1 = 250 + 31.03 = \text{Rs.} 281.03$$

$$3\left(\frac{\sum f}{4}\right) = 3(125) = 375, Q_3 \text{ Class} = 300-350, \qquad L_3 = 300, \text{p.c.} f_3 = 180, f_3 = 220, i_3 = 50$$
$$Q_3 = L_3 + \left[\frac{3(\sum f/4) - p.c.f_3}{f_3}\right] i_3 = 300 + \left[\frac{375-180}{220}\right] 50 = 300 + \left[\frac{195}{220}\right] 50$$
$$Q_3 = 300+44.32 = \text{Rs. } 344.32$$

Median:  

$$\frac{\sum f}{2} = 500/2 = 250, \text{ Median Class} = 300-350, \text{L} = 300, \text{p.c.f} = 180,$$

$$f = 220, \text{i} = 50$$

$$M = L + \left[\frac{\sum f/2 - p.c.f}{f}\right] \text{i} = 300 + \left[\frac{250 - 180}{220}\right] 50 = 300 + \left[\frac{70}{220}\right] 50 = 300 + 15.91$$

$$M = \text{Rs. 315.91}$$

$$Sk_B = \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} = -0.1022$$

## **KURTOSIS**

The Measure of location, dispersion and skewness alone cannot give a complete idea of a distribution. Even if the distributions are symmetrical about the mean. But the frequency curves have different flatness or peakness of a distribution.

**types of Kurtosis:** The types of kurtosis are determined by the excess kurtosis of a particular distribution. The excess kurtosis can take positive or negative values, as well as values close to zero.

**1. Mesokurtic:** Data that follows a mesokurtic distribution shows an excess kurtosis of zero or close to zero. This means that if the data follows a normal distribution, it follows a mesokurtic distribution.



# 2. Leptokurtic

Leptokurtic indicates a positive excess kurtosis. The leptokurtic distribution shows heavy tails on either side, indicating large <u>outliers</u>. In finance, a leptokurtic distribution shows that the investment returns may be prone to extreme values on either side. Therefore, an investment whose returns follow a leptokurtic distribution is considered to be risky.



## 3. Platykurtic

A platykurtic distribution shows a negative excess kurtosis. The kurtosis reveals a distribution with flat tails. The flat tails indicate the small outliers in a distribution. In the finance context, the platykurtic distribution of the <u>investment returns</u> is desirable for investors because there is a small probability that the investment would experience extreme returns.



The **moment coefficient of kurtosis** of a data set is computed almost the same way as the coefficient of skewness: just change the exponent 3 to 4 in the formulas:

**kurtosis**:  $a_4 = m_4 / m_2^2$  and excess kurtosis:  $g_2 = a_4 - 3$ 

where

 $m_4 = \sum (x - \overline{x})^4 / n$  and  $m_2 = \sum (x - \overline{x})^2 / n$ 

## CORRELATION

#### **Definition:**

The term correlation refers to the relationship between two or more Variables. Correlation studies the extent of relationship between two or more variables.

#### **Types of Correlation**

Various types of correlation are considered under the following three heads. They are

- (i) Positive or negative correlation
- (ii) Simple or Partial or Multiple correlation
- (iii) Linear or Non-linear or No correlation

#### **Methods of measuring Correlation**

Four methods of correlation are

- (i) Scatter Diagram
- (ii) Karl Pearson's correlation coefficient(r)
- (iii) Spearman's rank correlation  $coefficient(\rho)$
- (iv) Correlation coefficient by concurrent deviation method(r<sub>c</sub>)

# KARL PEARSON'S COEFFICIENT OF CORRELATION (R)

This is also called product moment correlation coefficient. This is denoted by r. This is covariance between the two variables divided by the product of their standard deviations.

#### Formula

$$r = \frac{cov(x,y)}{\sigma \sigma}$$

$$\sigma_{\chi}\sigma_{\chi}$$

$$\mathbf{r} = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n\Sigma(x)^2} - (\Sigma x)^2} \overline{x\sqrt{n\Sigma(y)^2} - (\Sigma y)^2}$$

$$r = \frac{\sum xy}{\sqrt{\sum x^2} \sqrt{\sum y^2}}, \text{ Where } \sum x = 0, \sum y = 0$$
  
$$\mathbf{r} = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{\sqrt{n\Sigma(u)^2 - (\Sigma u)^2} x \sqrt{n\Sigma(v)^2 - (\Sigma v)^2}}, \text{ where } \mathbf{u} = \mathbf{x} - \mathbf{A}, \mathbf{v} = \mathbf{y} - \mathbf{B}$$

1.Compute the coefficient of correlation between X – Advertisement Expenditure and Y – Sales.

| und 1    | Dureb. |    |    |    |    |    |    |    |    |    |
|----------|--------|----|----|----|----|----|----|----|----|----|
| Х        | 10     | 12 | 18 | 8  | 13 | 20 | 22 | 15 | 5  | 17 |
| Y        | 88     | 90 | 94 | 86 | 87 | 92 | 96 | 94 | 88 | 85 |
| Solution |        |    |    |    |    |    |    |    |    |    |

Solution

| Х              | Y                   | $X^2$                        | $Y^2$              | XY                |
|----------------|---------------------|------------------------------|--------------------|-------------------|
| 10             | 88                  | 100                          | 7744               | 880               |
| 12             | 90                  | 144                          | 8100               | 1080              |
| 18             | 94                  | 324                          | 8836               | 1692              |
| 8              | 86                  | 64                           | 7396               | 688               |
| 13             | 87                  | 169                          | 7569               | 1131              |
| 20             | 92                  | 400                          | 8464               | 1840              |
| 22             | 96                  | 484                          | 9216               | 2112              |
| 15             | 94                  | 225                          | 8836               | 1410              |
| 5              | 88                  | 25                           | 7744               | 440               |
| 17             | 85                  | 289                          | 7225               | 1445              |
| $\sum X = 140$ | $\sum Y = 900$      | $\overline{\sum X^2} = 2224$ | $\sum Y^2 = 81130$ | $\sum XY = 12718$ |
| $N\sum XY$     | $-(\sum X)(\sum Y)$ | 7)                           |                    |                   |

$$r = \frac{1}{\sqrt{N \sum X^{2} - (\sum X)^{2}} \sqrt{N \sum Y^{2} - (\sum Y)^{2}}}$$

$$r = \frac{10(12718) - (140)(900)}{\sqrt{10(2224) - (140)^2}\sqrt{10(81130) - (900)^2}} \qquad r = \frac{127180 - 126000}{\sqrt{22240 - 19600}\sqrt{811300 - 810000}}$$
$$r = \frac{1180}{\sqrt{2640}\sqrt{1300}} \qquad r = \frac{1180}{51.3809X36.0555} \qquad r = \frac{1180}{1852.56404} \qquad r = 0.6370$$

2. The following table gives aptitude test scores and productivity indices of 8 randomly selected workers. Calculate the correlation coefficient between the aptitude score and productivity index.

Let X = Aptitude Score, Y = Productivity Index

| Apptitude      | Productivity   |                    |                    |                   |
|----------------|----------------|--------------------|--------------------|-------------------|
| Score          | Index          |                    |                    |                   |
| Х              | Y              | $X^2$              | $Y^2$              | XY                |
| 57             | 67             | 3249               | 4489               | 3819              |
| 58             | 68             | 3364               | 4624               | 3944              |
| 59             | 65             | 3481               | 4225               | 3835              |
| 59             | 68             | 3481               | 4624               | 4012              |
| 60             | 72             | 3600               | 5184               | 4320              |
| 61             | 72             | 3721               | 5184               | 4392              |
| 62             | 69             | 3844               | 4761               | 4278              |
| 64             | 71             | 4096               | 5041               | 4544              |
| $\sum X = 480$ | $\sum Y = 552$ | $\sum X^2 = 28836$ | $\sum Y^2 = 38132$ | $\sum XY = 33144$ |

$$r = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{N\sum X^2 - (\sum X)^2}\sqrt{N\sum Y^2 - (\sum Y)^2}}$$

$$r = \frac{8(33144) - (480)(552)}{\sqrt{8(28836)} - (480)^2\sqrt{8(38132)} - (552)^2}} \quad r = \frac{265152 - 264960}{\sqrt{230688} - 230400\sqrt{305056} - 304704}$$

$$r = \frac{192}{\sqrt{288\sqrt{352}}} \qquad r = \frac{192}{16.9706X18.7617} \qquad r = \frac{192}{318.3974}$$

$$r = 0.6030$$

3. Calculate the coefficient of correlation between Expenditure on Advertisement in Rs.'000 (X) and Sales in Rs. Lakhs (Y) after allowing the <u>time lag of two months.</u>

| Months | Χ  | Y  | Х              | Y              | $X^2$              | $Y^2$              | XY                |
|--------|----|----|----------------|----------------|--------------------|--------------------|-------------------|
| Jan    | 40 | 75 | 40             | 65             | 1600               | 4225               | 2600              |
| Feb    | 45 | 69 | 45             | 64             | 2025               | 4096               | 2880              |
| Mar    | 47 | 65 | 47             | 70             | 2209               | 4900               | 3290              |
| Apr    | 50 | 64 | 50             | 71             | 2500               | 5041               | 3550              |
| May    | 53 | 70 | 53             | 75             | 2809               | 5625               | 3975              |
| June   | 60 | 71 | 60             | 83             | 3600               | 6889               | 4980              |
| July   | 57 | 75 | 57             | 90             | 3249               | 8100               | 5130              |
| Aug    | 51 | 83 | 51             | 92             | 2601               | 8464               | 4692              |
| Sep    | 48 | 90 |                |                |                    |                    |                   |
| Oct    | 45 | 92 |                |                |                    |                    |                   |
|        |    |    | $\sum X = 403$ | $\sum Y = 610$ | $\sum X^2 = 20593$ | $\sum Y^2 = 47340$ | $\sum XY = 31097$ |

$$r = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{N\sum X^2 - (\sum X)^2}\sqrt{N\sum Y^2 - (\sum Y)^2}}$$
  

$$r = \frac{8(31097) - (403)(610)}{\sqrt{8(20593) - (403)^2}\sqrt{8(47340) - (610)^2}} \quad r = \frac{248776 - 245830}{\sqrt{164744 - 162409}\sqrt{378720 - 372100}}$$
  

$$r = \frac{2946}{\sqrt{2335}\sqrt{6620}} \quad r = \frac{2946}{48.3218X81.3634} \quad r = \frac{2946}{3931.6259} \quad r = 0.7493$$

4. From the following data, compute the coefficient of correlation between X and Y X Y
Sum of squares of deviations from the arithmetic mean 8250 724
Sum of products of deviations of X and Y from respective means 2350
No of pairs of observations 10

Solution:

Given  

$$\sum x^{2} = \sum (X - \overline{X})^{2} = 8250$$

$$\sum y^{2} = \sum (Y - \overline{Y})^{2} = 724$$

$$\sum xy = \sum (X - \overline{X})(Y - \overline{Y}) = 2350$$

$$N = 10$$

$$r = \frac{\sum xy}{\sqrt{\sum x^{2}} \sqrt{\sum y^{2}}} = r = \frac{2350}{\sqrt{8250}\sqrt{724}} = r = \frac{2350}{90.8295X26.9072}$$

$$r = \frac{2350}{2443.9675} = 0.9615$$

5. Calculate Karl Pearson's co-efficient of correlation from the following data using 44 and 26 respectively as the origin of x and y

| Х | 43 | 44 | 46 | 40 | 44 | 42 | 45 | 42 | 38 | 40 | 42 | 57 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|
| у | 29 | 31 | 19 | 18 | 19 | 27 | 27 | 29 | 41 | 30 | 26 | 10 |

$$\mathbf{r} = \frac{n\Sigma u v - (\Sigma u)(\Sigma v)}{\sqrt{n\Sigma (u)^2 - (\Sigma u)^2} x \sqrt{n\Sigma (v)^2 - (\Sigma v)^2}} \text{, where } \mathbf{u} = \mathbf{x} - \mathbf{A}, \, \mathbf{v} = \mathbf{y} - \mathbf{B}$$

| Х  | У  | u = x - A = x - 44 | v = y - B = y - 26 | uv             | $u^2$         | $v^2$         |
|----|----|--------------------|--------------------|----------------|---------------|---------------|
| 43 | 29 | -1                 | 3                  | -3             | 1             | 9             |
| 44 | 31 | 0                  | 5                  | 0              | 0             | 25            |
| 46 | 19 | 2                  | -7                 | -14            | 4             | 49            |
| 40 | 18 | -4                 | -8                 | 32             | 16            | 64            |
| 44 | 19 | 0                  | -7                 | 0              | 0             | 49            |
| 42 | 27 | -2                 | 1                  | -2             | 4             | 1             |
| 45 | 27 | 1                  | 1                  | 1              | 1             | 1             |
| 42 | 29 | -2                 | 3                  | -6             | 4             | 9             |
| 38 | 41 | -6                 | 15                 | -90            | 36            | 225           |
| 40 | 30 | -4                 | 4                  | -16            | 16            | 16            |
| 42 | 26 | -2                 | 0                  | 0              | 4             | 0             |
| 57 | 10 | 13                 | -16                | -208           | 169           | 256           |
|    |    | $\Sigma u = -5$    | $\Sigma v = -6$    | $\Sigma(uv) =$ | $\Sigma(u^2)$ | $\Sigma(v^2)$ |
|    |    |                    |                    | -306           | = 255         | =704          |

$$\mathbf{r} = \frac{n\Sigma u v - (\Sigma u)(\Sigma v)}{\sqrt{n\Sigma(u)^2} - (\Sigma u)^2 x \sqrt{n\Sigma(v)^2} - (\Sigma v)^2}}$$
$$\mathbf{r} = \frac{[12 \ (-306)] - [(-5)(-6)]}{\sqrt{12(-255) - (-5)^2} \sqrt{12(704)} - (-6)^2}}$$
$$\mathbf{r} = \frac{[-3672] - [30]}{\sqrt{3060 - 25} \sqrt{8448} - (36)} \quad \mathbf{r} = \frac{-3702}{3035 \sqrt{8412}}$$

r = -0.7327

Note:

- 1. Correlation coefficient (r) lies between  $-1 \le r \le +1$
- 2. If r = 0, absence of linear correlation
- 3. If r = +1, perfect positive correlation
- 4. If r = -1, perfect negative correlation
- 5. r = Coefficient of correlation
- 6.  $r^2 = Coefficient of Determination$
- 7.  $K^2 = 1 r^2 = Coefficient of Non Determination$

8. K = 
$$\pm \sqrt{1 - r^2}$$
 = Coefficient of Alienation

9. S.E(r) = 
$$\frac{1-r^2}{\sqrt{N}}$$

# SPEARMAN'S RANK CORRELATION (ρ)

(i) When there is no tie and actual ranks are given 
$$\begin{bmatrix} -5 \\ -7 \end{bmatrix}$$

$$\rho = 1 - \left\lfloor \frac{6\sum d^2}{N(N^2 - 1)} \right\rfloor$$
, Where d = difference between Rank of X and rank of Y

(ii) When one value occurs m times

$$\rho = 1 - \left[\frac{6\{\sum d^2 + \frac{m(m^2 - 1)}{12}\}}{N(N^2 - 1)}\right]$$

(iii) When more than one value is repeated

$$\rho = 1 - \left[\frac{6\{\sum d^2 + \frac{m(m^2 - 1)}{12}\} + \frac{m(m^2 - 1)}{12} + \dots\}}{N(N^2 - 1)}\right]$$

1. Rankings of 10 trainees at the beginning (X) and at the end (Y) of a certain course are given below. Calculate the rank correlation.

| Trainees | А | В | С | D | Е | F | G | Н  | Ι | J  |
|----------|---|---|---|---|---|---|---|----|---|----|
| Х        | 1 | 6 | 3 | 9 | 5 | 2 | 7 | 10 | 8 | 4  |
| Υ        | 6 | 8 | 3 | 7 | 2 | 1 | 5 | 9  | 4 | 10 |

| Trainees | Rx | Ry | $\mathbf{d} = \mathbf{R}_{\mathbf{X}} - \mathbf{R}_{\mathbf{Y}}$ | $d^2$            |
|----------|----|----|------------------------------------------------------------------|------------------|
|          |    |    |                                                                  |                  |
| А        | 1  | 6  | -5                                                               | 25               |
| В        | 6  | 8  | -2                                                               | 4                |
| С        | 3  | 3  | 0                                                                | 0                |
| D        | 9  | 7  | 2                                                                | 4                |
| Е        | 5  | 2  | 3                                                                | 9                |
| F        | 2  | 1  | 1                                                                | 1                |
| G        | 7  | 5  | 2                                                                | 4                |
| Н        | 10 | 9  | 1                                                                | 1                |
| Ι        | 8  | 4  | 4                                                                | 16               |
| J        | 4  | 10 | -6                                                               | 36               |
|          |    |    | $\sum d = 0$                                                     | $\sum d^2 = 100$ |

$$\rho = 1 - \left[\frac{6\sum d^2}{N(N^2 - 1)}\right]$$

$$\rho = 1 - \left[\frac{6X100}{10(10^2 - 1)}\right] = 1 - \left[\frac{6X100}{10(100 - 1)}\right] = 1 - \left[\frac{6X100}{10X99}\right] = 1 - \left[\frac{600}{990}\right] = 1 - 0.6061$$

$$\rho = 0.3939$$

2. For the data given below, calculate the rank correlation coefficient.

| Х | 21 | 36 | 42 | 37 | 25 |
|---|----|----|----|----|----|
| Y | 47 | 40 | 37 | 42 | 43 |

| Х  | Y  | Rx | Ry | $d = R_X - R_y$ | $d^2$           |
|----|----|----|----|-----------------|-----------------|
| 21 | 47 | 5  | 1  | 4               | 16              |
| 36 | 40 | 3  | 4  | -1              | 1               |
| 42 | 37 | 1  | 5  | -4              | 16              |
| 37 | 42 | 2  | 3  | -1              | 1               |
| 25 | 43 | 4  | 2  | 2               | 4               |
|    |    |    |    | $\sum d = 0$    | $\sum d^2 = 38$ |

$$\rho = 1 - \left[\frac{6\sum d^2}{N(N^2 - 1)}\right]$$

$$\rho = 1 - \left[\frac{6X38}{5(5^2 - 1)}\right] = 1 - \left[\frac{6X38}{5(25 - 1)}\right] = 1 - \left[\frac{6X38}{5x24}\right] = 1 - \left[\frac{228}{120}\right] = 1 - 1.9$$

$$\rho = -0.9$$

3. Find the rank correlation coefficient for the percentage of marks secured by a group of 8 students in Economics and Statistics.

| Х | 50 | 60 | 65 | 70 | 75 | 40 | 70 | 80 |
|---|----|----|----|----|----|----|----|----|
| Y | 80 | 71 | 60 | 75 | 90 | 82 | 70 | 50 |

|                                                               | X                   | Y            | Rx  | Ry | $\mathbf{d} = \mathbf{R}_{\mathbf{X}} - \mathbf{R}_{\mathbf{y}}$ | $d^2$              |
|---------------------------------------------------------------|---------------------|--------------|-----|----|------------------------------------------------------------------|--------------------|
|                                                               | 50                  | 80           | 7   | 3  | 4                                                                | 16                 |
|                                                               | 60                  | 71           | 6   | 5  | 1                                                                | 1                  |
|                                                               | 65                  | 60           | 5   | 7  | -2                                                               | 4                  |
|                                                               | 70                  | 75           | 3.5 | 4  | -0.5                                                             | 0.25               |
|                                                               | 75                  | 90           | 2   | 1  | 1                                                                | 1                  |
|                                                               | 40                  | 82           | 8   | 2  | 6                                                                | 36                 |
|                                                               | 70                  | 70           | 3.5 | 6  | -2.5                                                             | 6.25               |
|                                                               | 80                  | 50           | 1   | 8  | -7                                                               | 49                 |
|                                                               |                     |              |     |    | $\sum d = 0$                                                     | $\sum d^2 = 113.5$ |
| $1 - \left[\frac{6\{\sum d^2 + \frac{N}{N}\}}{N(N^2)}\right]$ | $\frac{m(m^2)}{12}$ | <u>-1)</u> } | ;   |    |                                                                  |                    |
|                                                               |                     |              |     |    |                                                                  |                    |

when m = 2, 
$$\frac{m(m^2 - 1)}{12} = \frac{2(2^2 - 1)}{12} = \frac{2(4 - 1)}{12} = \frac{2X3}{12} = \frac{6}{12} = \frac{1}{2} = 0.5$$
  
 $1 - \left[\frac{6\{113.5 + 0.5\}}{8(8^2 - 1)}\right] = 1 - \left[\frac{6X114}{8X63}\right] = 1 - \left[\frac{684}{504}\right] = 1 - 1.3571 = -0.3571$ 

 $\rho =$ 

5. Ten competitors in a musical test were ranked by three judges A,B and C in the following order:

Using rank correlation method, discuss which pair of judges has the nearest approach to common likings in music.

| Rank of A | 1 | 6 | 5 | 10 | 3 | 2  | 4 | 9  | 7 | 8 |
|-----------|---|---|---|----|---|----|---|----|---|---|
| Rank of B | 3 | 5 | 8 | 4  | 7 | 10 | 2 | 1  | 6 | 9 |
| Rank of C | 6 | 4 | 9 | 8  | 1 | 2  | 3 | 10 | 5 | 7 |
|           |   |   |   |    |   |    |   |    |   |   |
| l         |   |   |   |    |   |    |   |    |   |   |

 $\rho_{AC}$  is greater, so the pair A and C of judges has the nearest approach to common likings in music. 5.Marks obtained by 8 students in Accountancy (X) and Statistics (Y) are given below. Compute rank correlation coefficient.

| Х | 15 | 20 | 28 | 12 | 40 | 60 | 20 | 80 |
|---|----|----|----|----|----|----|----|----|
| Y | 40 | 30 | 50 | 30 | 20 | 10 | 30 | 60 |

| Х  | Y  | Rx  | Ry | d            | $d^2$             |
|----|----|-----|----|--------------|-------------------|
| 15 | 40 | 7   | 3  | 4            | 16                |
| 20 | 30 | 5.5 | 5  | 0.5          | 0.25              |
| 28 | 50 | 4   | 2  | 2            | 4                 |
| 12 | 30 | 8   | 5  | 3            | 9                 |
| 40 | 20 | 3   | 7  | -4           | 16                |
| 60 | 10 | 2   | 8  | -6           | 36                |
| 20 | 30 | 5.5 | 5  | 0.5          | 0.25              |
| 80 | 60 | 1   | 1  | 0            | 0                 |
|    |    |     |    | $\sum d = 0$ | $\sum d^2 = 81.5$ |

$$\rho = 1 - \left[ \frac{6\{\sum d^2 + \frac{m(m^2 - 1)}{12}\} + \frac{m(m^2 - 1)}{12}\}}{N(N^2 - 1)} \right]$$

when m = 2, 
$$\frac{m(m^2 - 1)}{12} = \frac{2(2^2 - 1)}{12} = \frac{2(4 - 1)}{12} = \frac{2X3}{12} = \frac{6}{12} = \frac{1}{2} = 0.5$$

when m = 3, 
$$\frac{m(m^2 - 1)}{12} = \frac{3(3^2 - 1)}{12} = \frac{3(9 - 1)}{12} = \frac{3X8}{12} = \frac{24}{12} = 2$$

$$\rho = 1 - \left\lfloor \frac{6\{81.5 + 0.5 + 2\}}{8(8^2 - 1)} \right\rfloor = 1 - \left\lfloor \frac{6X84}{8X63} \right\rfloor = 1 - \left\lfloor \frac{504}{504} \right\rfloor = 1 - 1 = 0$$

#### **METHOD OF CONCURRENT DEVIATIONS**

This method requires only a direction of change (+ive to -ive or -ive to +ive) in the successive values of the variable x and in variable y. The co-efficient of correlation is given by the formula

 $r_{\rm C} = \pm \sqrt{\pm \frac{(2C-N)}{N}}$  where  $r_{\rm C}$  is the coefficient of concurrent deviations, C is the

number of concurrent deviations and N is the number of pairs of deviations compared. The sign of  $r_C$  is given as follows. If 2C - N is negative then '- ' sign is taken both inside and outside the square root. In this case  $r_C$  is negative. If 2C - N is positive then '+' sign is taken both inside and outside the square root. In this case  $r_C$  is Positive. The value of ' $r_C$ ' will always lie between -1 and +1, i.e.,  $-1 \le 1$ 

Calculate co-efficient of correlation by the method of concurrent deviation from the following

| Х | - | 84 | 85 | 62 | 48 | 84 | 95 | 103 | 100 | 85 | 115 |
|---|---|----|----|----|----|----|----|-----|-----|----|-----|
| Y | r | 20 | 23 | 19 | 21 | 25 | 25 | 28  | 27  | 26 | 30  |

Solution:

| X   | Change in direction of                          | Y  | Change in direction of      | D <sub>x</sub> x D <sub>y</sub> |
|-----|-------------------------------------------------|----|-----------------------------|---------------------------------|
| Q / | $Variable \mathbf{X} (\mathbf{D}_{\mathbf{x}})$ | 20 | variable T(D <sub>y</sub> ) |                                 |
| 04  |                                                 | 20 |                             |                                 |
| 85  | +                                               | 23 | +                           | +                               |
| 62  | -                                               | 19 | -                           | +                               |
| 48  | -                                               | 21 | +                           | -                               |
| 84  | +                                               | 25 | +                           | +                               |
| 95  | +                                               | 25 | No change                   | -                               |
| 103 | +                                               | 28 | +                           | +                               |
| 100 | -                                               | 27 | -                           | +                               |
| 85  | -                                               | 26 | -                           | +                               |
| 115 | +                                               | 30 | +                           | +                               |
|     | 7                                               |    |                             |                                 |
|     | 2                                               |    |                             |                                 |

$$r_{\rm C} = \pm \sqrt{\pm \frac{(2C - N)}{N}}$$
$$= \pm \sqrt{\pm \frac{(2x7 - 9)}{9}} = +\sqrt{+0.55} = 0.74$$

1. Calculate co-efficient of correlation by the method of concurrent deviation from the following data.

| Х | 60 | 59 | 72 | 51 | 55 | 54 | 65 |
|---|----|----|----|----|----|----|----|
| Y | 23 | 36 | 10 | 38 | 33 | 44 | 33 |

| Х  | Change in direction of       | Y  | Change in direction of | D <sub>x</sub> x D <sub>y</sub> |
|----|------------------------------|----|------------------------|---------------------------------|
|    | variable X (D <sub>x</sub> ) |    | variable $Y(D_y)$      |                                 |
| 60 |                              | 23 |                        |                                 |
| 59 | -                            | 36 | +                      | -                               |
| 72 | +                            | 10 | -                      | -                               |
| 51 | -                            | 38 | +                      | -                               |
| 55 | +                            | 33 | -                      | -                               |
| 54 | -                            | 44 | +                      | -                               |
| 65 | +                            | 33 | -                      | -                               |
|    | 0                            |    |                        |                                 |
|    | 6                            |    |                        |                                 |

$$r_{\rm C} = \pm \sqrt{\pm \frac{(2C - N)}{N}}$$
$$= \pm \sqrt{\pm \frac{(2x0 - 6)}{6}} = -\sqrt{-\frac{-6}{6}} = -\sqrt{1} = -1$$

# **Scatter Diagram Method**

**Definition:** The **Scatter Diagram Method** is the simplest method to study the correlation between two variables wherein the values for each pair of a variable is plotted on a graph in the form of dots thereby obtaining as many points as the number of observations. Then by looking at the scatter of several points, the degree of correlation is ascertained.

he degree to which the variables are related to each other depends on the manner in which the points are scattered over the chart. The more the points plotted are scattered over the chart, the lesser is the degree of correlation between the variables. The more the points plotted are closer to the line, the higher is the degree of correlation. The degree of correlation is denoted by "**r**".

The following types of scatter diagrams tell about the degree of correlation between variable X and variable Y.

1. **Perfect Positive Correlation (r=+1):** The correlation is said to be perfectly positive when all the points lie on the straight line rising from the lower left-hand corner to the upper right-hand corner.



2. **Perfect Negative Correlation (r=-1):** When all the points lie on a straight line falling from the upper left-hand corner to the lower right-hand corner, the variables are said to be negatively correlated.



3. **High Degree of +Ve Correlation (r= + High):** The degree of correlation is high when the points plotted fall under the narrow band and is said to be positive when these show the rising tendency from the lower left-hand corner to the upper right-hand corner.



4. **High Degree of –Ve Correlation** ( $\mathbf{r}$ = – **High**): The degree of negative correlation is high when the point plotted fall in the narrow band and show the declining tendency from the upper left-hand corner to the lower right-hand corner.



5. Low degree of +Ve Correlation (r= + Low): The correlation between the variables is said to be low but positive when the points are highly scattered over the graph and show a rising tendency left-hand corner to the upper right-hand corner.



6. Low Degree of -Ve Correlation (r= + Low): The degree of correlation is low and negative when the points are scattered over the graph and the show the falling tendency from the upper left-hand corner to the lower right-hand corner.



7. No Correlation (r=0): The variable is said to be unrelated when the points are haphazardly scattered over the graph and do not show any specific pattern. Here the correlation is absent and





Thus, the scatter diagram method is the simplest device to study the degree of relationship between the variables by plotting the dots for each pair of variable values given. The chart on which the dots are plotted is also called as a **Dotogram**.