DESCRIPTIVE STATISICS

UNIT II

MEASURES OF CENTRAL TENDENCY

An average or measure of central tendency gives a single representative value for a set of usually unequal values. This value is the point around which all the values cluster. So, the measure of central tendency is also called a measure of central location.

Definition

An average is a value which is a representative of a set of data Various important measures of central tendency are

- i) Arithmetic mean
- ii) Geometric mean

Mathematical Averages

- iii) Harmonic mean
- iv) Median and Quartiles
- v) Mode

Positional Averages

Objectives or Functions of an average

- i. Averages provide a quick understanding of complex data.
- ii. Averages enable comparison
- iii. Average facilitate sampling techniques.
- iv. Averages pave the way for further statistical analysis.
- v. Averages establish the relationship between variables.

Characteristics or desirable properties of an average

- i. It should be simple to understand and easy to calculate.
- ii. An average should be rigidly defined.
- iii. It should be based on all items.
- iv. It should not be unduly affected by extreme values.
- v. It should lend itself for algebraic manipulation.
- vi. It should have sampling stability,

ARITHMETIC MEAN

Definition

Arithmetic mean is the total (sum) of all values divided by the number of observations.

Calculation of Arithmetic mean

Raw data

When the observed values are given individually such as $x_1, x_2, x_3.... x_n$ the arithmetic mean is given by

Given $\overline{X} = 1600$ and n=5 find the total. $\sum x_{i=} n * \overline{X} = 5 * 1600 = 8000$

1. Calculate the arithmetic mean for the following 1600, 1590, 1560, 1610, 1640, 10

Arithmetic mean,
$$\overline{X} = \frac{1600 + 1590 + 1560 + 1610 + 1640 + 10}{6}$$

$$= \frac{8010}{------} = 1335$$

Calculate Arithmetic mean

S.No.	1	2	3	4	5	6	7	8	9	10
Sales in	34	55	45	62	48	57	28	57	62	78
1000's(x)										

Arithmetic mean,
$$\bar{X} = \frac{34 + 55 + 45 + 62 + 48 + 57 + 28 + 57 + 62 + 78}{10}$$

$$= \frac{10}{526}$$

$$= \frac{526}{10}$$

$$= \frac{52.6}{10}$$
 (average sales)

Discrete data

Let $x_i, x_2, x_3, \dots, x_n$ be the n values of the variable x with corresponding frequency $f_i, f_2, f_3, \dots, f_n$, then

the arithmetic mean
$$\overline{X}=$$

$$\begin{array}{c} x_1.f_1+x_2.\ f_2+x_3.f_3+\ldots +x_n\ .\ f_n\\ \\ f_1+f_2+f_3+\ldots +f_n\\ \\ \Sigma\ x_i\ f_i\\ \\ =-----\\ \\ \Sigma\ f_i \end{array}$$

Calculate the arithmetic mean

X	f	xf
2	4	2x4 = 8
4	6	24
6	10	60
8	12	96
10	8	80
12	7	84
14	3	42
	$\Sigma \ f_{i} =$	$\sum x_i f_i$
	50	= 394

Arithmetic mean,
$$\bar{X} = \frac{\sum x_i f_i}{\sum f_i} = \frac{394}{50}$$
 = 78.8

Continuous data

Let m_i , m_2 , m_3 m_n be the mid values of the class interval of the variable x with corresponding frequency f_i , f_2 , f_3 f_n . then

the arithmetic mean
$$\overline{X}=$$

$$\frac{m_1.f_1+m_2.\ f_2+m_3.f_3+\ldots.+m_n\ .\ f_n}{f_1+f_2+f_3+\ldots.+f_n}$$

$$\frac{\Sigma\ m_i\ f_i}{=------}$$

$$\frac{\Sigma\ f_i}{}$$

Calculate the arithmetic mean

Class	m	f	mf
interval(x)			
20-40	(20+40)/2	4	120
	(20+40)/2 = 30		
40-60	50	6	300
60-80	70	10	700
80-100	90	12	1080
100-120	110	8	880
		$\Sigma f_{i} =$	$\sum m_i f_i$
		40	= 3080

Arithmetic mean,
$$\bar{X} = \frac{\sum m_i f_i}{\sum f_i} = \frac{3080}{40}$$

Merits and demerits of Arithmetic mean:

Merits:

- 1. It is rigidly defined.
- 2. It is easy to understand and easy to calculate.
- 3. If the number of items is sufficiently large, it is more accurate and more reliable.
- 4. It is a calculated value and is not based on its position in the series.
- 5. It is possible to calculate even if some of the details of the data are lacking.
- 6. Of all averages, it is affected least by fluctuations of sampling.
- 7. It provides a good basis for comparison.

Demerits:

- 1. It cannot be obtained by inspection nor located through a frequency graph.
- 2. It cannot be in the study of qualitative phenomena not capable of

numerical measurement i.e. Intelligence, beauty, honesty etc.,

- 3. It can ignore any single item only at the risk of losing its accuracy.
- 4. It is affected very much by extreme values.
- 5. It cannot be calculated for open-end classes.
- 6. It may lead to fallacious conclusions, if the details of the data from which it iscomputed are not given.

MEDIAN

It is the value which divides the data into two equal parts.

Fifty percent of the observations will be less than median value and 50% of the values will be more than the median value.

Calculation

Raw data

Median = value of (n+1)/2 th observation after the values are arranged in ascending order of magnitude.

For example, the median of 20,30,35,64,23,46,78,34,20

Arranging the data in ascending order 20,20,23,30,34,35,46,64,78 Md = value of (9+1)/2 =5th observation = 34

Suppose the given number of observations is even then median will be the average of two central values

For example, if the data is the median of 20,30,35,64,23,46,78,34,20,56

Arranging the data in ascending order

20,20,23,30,34,35,46,56,64,78

Md = value of (10+1)/2 = 5.5th observation

= (value of 5th observation + value of 6th observation)/2

=(34+35)/2=34.5

Discrete data

 $Md = value \ of \ x \ corresponding \ to \ the \ cumulative \ frequency \ just \ greater \ than \ or \ equal \ to \ N/2$

- 1. See the data is in ascending order
- 2. Find the c.f.
- 3. Calculate N/2
- 4. In C.f. column see the value greater than or equal to N/2
- 5. Md= value of x corresponding to this c.f.

Find the median

X	2	4	6	8	10	12	14
f	4	6	10	12	8	7	3

X	f	c.f
2	4	4
4	6	10
6	10	20
8	12	<mark>32</mark>
10	8	40
12	7	47
14	3	50
	$\Sigma \ f_i = 50$	

Continuous data

$$Md = L + \{(N/2 - c.f) \times c/f\}$$

L lower limit of the median class

c class interval of the median class

f frequency of the median class

c.f. cumulative frequency of the class preceding the median class

 $N=\Sigma f_i$

Md class is the class corresponding to the c.f. just greater than or equal to N/2

Class interval(x)	f
20-40	4
40-60	6
60-80	10
80-100	12
100-120	8
	$\Sigma \ f_i = 40$

Class	f	c.f
interval(x)		
20-40	4	4
40-60	6	<mark>10</mark>
<mark>60-80</mark>	10	20
80-100	12	32
100-120	8	40
	$\Sigma \ f_i = 40$	

N/2= 40/2 =20 Median class is 60-80 L=60, c=80-60=20, f= 10, c.f= 10

$$Md = L + \{(N/2 - c.f) \times c/f\}$$

$$= 60 + \{(20 - 10) \times (20/10)\}$$

$$= 60 + \{10 \times 2\}$$

$$= 60 + 20 = 80$$

marks	No. of	C.f.
	students	
10-25	6	6
25-40	20	<mark>26</mark>
40-55	<mark>44</mark>	<mark>70</mark>
55-70	26	96
70-85	3	99
85-100	1	100
	$\Sigma \ f_i = 100$	

$$N/2=100/2=50$$
 Median class is 40-55
 L= 40, f = 44, c = 55 - 40 = 15, c.f. = 26
 Md = L + {(N/2 - c.f) x c/f}
 = 40 + {[50 - 26] x 15/44}
 = 40 + {(24 x 15)/44}
 = 40 + [360/44]
 = 40+8.18 = 48.18

Merits of Median:

- 1. Median is not influenced by extreme values because it is a positional average.
- 2. Median can be calculated in case of distribution with open end intervals.
- 3. Median can be located even if the data are incomplete.
- 4. Median can be located even for qualitative factors such as ability, honesty etc.

Demerits of Median:

- 1. A slight change in the series may bring drastic change in median value.
- 2. In case of even number of items or continuous series, median is an estimated value other than any value in the series.
- 3. It is not suitable for further mathematical treatment except its use in mean deviation.
- 4. It is not taken into account all the observations.

QUARTILES

It is the value which divides the data into FOUR equal parts.

There are three quartiles.

 Q_1 the first quartile or the lower quartile divides the data in such a way that 25 percent of the observations will be less than Q_1 value and 75% of the values will be more than the Q_1 value.

 Q_3 the Third quartile or upper quartile divides the data in such a way that 75 percent of the observations will be less than Q_3 value and 25% of the values will be more than the Q_3 value The second quartile is nothing but the median.

Fifty percent of the observations will be less than median value and 50% of the values will be more than the median value.

Calculation

Raw data

Median = value of (n+1)/2 th observation after the values are arranged in ascending order of magnitude.

 Q_1 = value of (n+1)/4 th observation after the values are arranged in ascending order of magnitude.

 Q_3 = value of 3(n+1)/4 th observation after the values are arranged in ascending order of magnitude.

For example, the median of 20,30,35,64,23,46,78,34,20

Arranging the data in ascending order

20,20,23,30,34,35,46,64,78

 $Md = value of (9+1)/2 = 5^{th} observation$

= 34

Find Q₁ and Q₃, 20,30,35,64,23,46,78,34,20

Arranging the data in ascending order

20,20,23,30,34,35,46,64,78

$$\begin{array}{l} Q_1 = value \ of \ (9+1)/4 = & 2.5^{th} \ observation \\ = value \ of \ 2^{nd} \ observation + 0.5(3^{rd} \ value - 2^{nd} \ value) \\ = 20 + 0.5(23 \ -20) \quad = & 20 + 0.5 \ x \ 3 = 20 + 1.5 = 21.5 \end{array}$$

Q₃ = value of
$$3(9+1)/4 = 7.5$$
th observation
= 7 th observation + 0.5 (8 thvalue - 7 th value)
= $46 + 0.5$ ($64-46$) = $46 + (0.5 \times 18) = 46 + 9 = 55$

Suppose the given number of observations is even then median will be the average of two central values

For example, if the data is the median of 20,30,35,64,23,46,78,34,20,56

Arranging the data in ascending order

20,20,23,30,34,35,46,56,64,78

Md = value of (10+1)/2 = 5.5th observation

= (value of 5^{th} observation + value of 6^{th} observation)/2

=(34+35)/2=34.5

Find Q₁ and Q₃ 20,30,35,64,23,46,78,34,20,56 Solution

Arranging the data in ascending order 20,20,23,30,34,35,46,56,64,78

$$Q_1 = \text{value of } (10+1)/4 = 2.75^{\text{th}} \text{ observation}$$

$$= 2^{\text{nd}} \text{ value} + 0.75 (3^{\text{rd}} \text{ value} - 2^{\text{nd}} \text{ value})$$

$$= 20 + 0.75 (23-20)$$

$$= 20 + (0.75 \text{ x3}) = 20 + 2.25 = 22.25$$

$$Q_3 = \text{value of } 3 (n+1/4) \text{th observation}$$

$$= (3 \text{ x2.75} = 8.25^{\text{th}}) \text{ observation}$$

$$= 8^{\text{th}} \text{ value} + 0.25 (9^{\text{th}} \text{ value} - 8^{\text{th}} \text{ value})$$

$$= 56 + 0.25 (64-56)$$

$$= 56 + 0.25 (8) = 56 + 2 = 58$$

Discrete data

 $Md = value \ of \ x \ corresponding \ to \ the \ cumulative \ frequency \ just \ greater \ than \ or \ equal \ to \ N/2$

 Q_1 = value of x corresponding to the cumulative frequency just greater than or equal to N/4

 Q_3 = value of x corresponding to the cumulative frequency just greater than or equal to 3N/4

- 1. See the data is in ascending order
- 2. Find the c.f.
- 3. Calculate N/2
- 4. In C.f. column see the value greater than or equal to N/2
- 5. Md= value of x corresponding to this c.f. find the median and the quartiles

Find the Quartiles

X	f
2	4
4	6
6	10
8	12
10	8
12	7
14	3
	$\Sigma f_{i} = 50$

X	f	c.f.
2	4	4
4	6	10
<mark>6</mark>	10	<mark>20</mark>
8	12	32
10	8	40
12	7	47

14	3	50
	$\Sigma \ f_{i} = \ 50$	

N/2 = 50/2 = 25

Therefore Md=8

N/4 = 50/4 = 12.5

 Q_1 = value of x corresponding to the cumulative frequency just greater than or equal to N/4=20

 $Q_1 = 6$

3 N/4 = 37.5

 Q_3 = value of x corresponding to the cumulative frequency just greater than or equal to 3N/4

Q₃= value of x corresponding to the cumulative frequency just greater than 37.5 i.e.,40

 $Q_3 = 10$

Continuous data

 $Md = L + \{(N/2 - c.f) \times c/f\}$

L lower limit of the median class

c class interval of the median class

f frequency of the median class

c.f. cumulative frequency of the class preceding the median class

 $N = \sum f_i$

 $Q_1 = L_1 + \{(N/4 - c.f_1) \times c_1/f_1\}$

L₁ lower limit of the Q₁ class

c₁ class interval of the Q₁ class

f₁ frequency of the Q₁ class

c.f.₁ cumulative frequency of the class preceding the Q₁ class

 $N=\sum f_i$

Q₁ class is the class corresponding to the c.f. just greater than or equal to N/4

 $Q_3 = L_3 + \{(3N/4 - c.f_3) \ x \ c_3/f_3\}$

L₃ lower limit of the Q₃ class

c₃ class interval of the Q₃ class

f₃ frequency of the Q₃ class

c.f.3 cumulative frequency of the class preceding the Q3 class

 $N = \sum f_i$

Q₃ class is the class corresponding to the c.f. just greater than or equal to 3N/4

Calculate the Quartiles and median

Class	f
interval(x)	
20-40	4
40-60	6
60-80	10
80-100	12
100-120	8
	$\Sigma \ f_i = 40$

Class	f	c.f
interval(x)		
20-40	4	4
40-60	6	10
60-80	10	20
80-100	12	32
100-120	8	40
	$\Sigma f_{i} =$	
	40	

$$\begin{aligned} Md &= L + \{(N/2 - c.f) \times c/f\} \\ &= 60 + \{(20 - 10) \times (20/10)\} \\ &= 60 + \{10x2\} \\ &= 60 + 20 = 80 \end{aligned}$$

marks	No. of	C.f.
	students	
10-25	6	<mark>6</mark>
25-40	<mark>20</mark>	26
40-55	44	70
55-70	26	<mark>96</mark>
70-85	3	99
85-100	1	100
	$\Sigma \ f_i = 100$	

```
N/2 = 100/2 = 50
Median class is 40-55
L=40, f=44, c=55-40=15, c.f.=26
Md = L + \{(N/2 - c.f) \times c/f\}
     = 40 + \{ [50 - 26] \times 15/44 \}
     =40 + \{(24 \times 15)/44\}
     =40 + [360/44]
     =40+8.18=48.18
Q_1 = L_1 + \{(N/4 - c.f_1) \times c_1/f_1\}
Q_1 class 25-40, L_1 = 25, c_1 = 40 - 25 = 15, f_1 = 20, c.f_1 = 6
Q_1 = 25 + \{(25-6)(15/20)\}
   = 25 + \{19 \times 15 / 20\}
   = 25 + 19 \times 0.75
   = 25 + 14.25 = 39.25
Q_3 = L_3 + \{(3N/4 - c.f_3) \times c_3/f_3\}
3N/4 = 3x25 = 75
Q<sub>3</sub> class is 55-70
L_3 = 55, c_3 = 70 -55 =15, f_3 = 26, c.f_3 = 70
Q_3 = L_3 + \{(3N/4 - c.f_3) \times c_3/f_3\}
   = 55 + \{(75 - 70) \times 15 / 26\}
   = 55 + \{ 5 \times 0.57 \}
   = 55 + 2.88
   =57.88.
```

MODE

Mode is the value of x which is repeated more often or more frequently

Raw data

Mode is found by observation. The number of times each value occurs ids noted and the value which is repeated maximum number of times is the mode.

Find mode 20,30,35,64,23,46,78,34,20,56

Mode is 20 as it is repeated twice while other values are repeated only once.

Case i) Unimodal – only one mode

For example in the series 40,30,20,17,18,32,29,23,17,17,24,24,12 mode is 17,

Case ii) Bimodal – two modes

For example in the series 40,30,20,17,18,32,29,23,17,17,24,24,12,24,23

mode1 =17, mode 2 is 24, case iii) in the series 40,34,45,45,34,40 there is no mode or mode is ill-defined

Discrete data

Mode = value of x corresponding to the highest frequency

Calculate the mode for the following data

X	f
2	4
4	6
6	10
8	<mark>12</mark>
10	8
12	7
14	3
	$\Sigma \ f_i = \ 50$

Mode = value of x corresponding to the highest frequency 12 Mode = 8

Continuous data

Mode =
$$1 + [\{(f_1-f_0)/(2f_1-f_0-f_2) \}xc]$$

Where f_1 is the frequency of the modal class f_0 is the frequency of the class preceding the modal class f_2 is the frequency of the class succeeding the modal class c is the class interval of the modal class l is the lower limit of the modal class

Modal class is the class corresponding to the highest frequency

Calculate the mode

Marks	10-25	25-40	40-55	55-70	70-85	85-100
No. of	6	20	44	25	3	1
students						

Solution

marks	No. of
	students
10-25	6

25-40	20 fo
40-55	44 f ₁
55-70	26 f ₂
70-85	3
85-100	1
	$\Sigma \ f_i = 100$

$$\begin{aligned} \text{Mode} &= 1 + \left[\; \left\{ (f_1\text{-}f_0) / \; (2f_1\text{-}f_0\text{-}f_2) \right\} \; xc \right] \\ &= 40 + \left[\left\{ (44 - 20) / \; (2x44 - 20 - 26) \right\} x \; 15 \right] \\ &= 40 + \left\{ \left[\; 24 / \; (88\text{-}46) \right] x \; 15 \right\} \right] \\ &= 40 + \left[(24/42) \; x \; 15 \right] \\ &= 40 + \left[0.5714 \; x \; 15 \right] \\ &= 40 + 8.57 \\ &= 48.57 \end{aligned}$$

Relationship between mean, median and mode Mode = 3median - 2 mean

Merits of Mode:

- 1. It is easy to calculate and in some cases it can be located mere inspection
- 2. Mode is not at all affected by extreme values.
- 3. It can be calculated for open-end classes.
- 4. It is usually an actual value of an important part of the series.
- 5. In some circumstances it is the best representative of data.

Demerits of mode:

- 1. It is not based on all observations.
- 2. It is not capable of further mathematical treatment.
- 3. The Mode is ill-defined, generally, it is not possible to find mode in some cases.
- 4. As compared with the mean, mode is affected to a great extent, by sampling fluctuations.
- 5. It is unsuitable in cases where the relative importance of items has to be considered.

GEOMETRIC MEAN

Definition: Geometric mean of n observations is the $\mathbf{n^{th}}$ root of product of n observations. If $x_1, x_2, x_3... x_n$ be the n observations the G.M is $(x_1 * x_2 * x_3 * ... * x_n)^{(1/n)}$ For example, the G.M. of 2,4,8 is $(2x_1 * 4x_2 * 3x_3 * ... * x_n)^{(1/n)} = 4$.

But in practice we use log to find G.M.

RAW DATA

If
$$x_1, x_2, x_3... x_n$$
 be the n observations
G.M. = $(x_1 * x_2 * x_3 *... *x_n)^{(1/n)}$
Taking log on both sides
 $Log (G.M.) = (1/n) [log x_1 + log x_2 + log x_3 +... + log x_n]$
= $(1/n) \Sigma [log x_i]$
G.M. = Antilog { $(1/n) \Sigma [log x_i]$ }

Find the geometric mean for the following x: 3,6,24,48

X	Log x
3	0.4771
6	0.7782
24	1.3802
48	1.6812
	$\Sigma [\log x_i]$
	=4.3167

G.M. = Antilog
$$\{(1/n) \Sigma [\log x_i]\}$$

= Antilog $\{(1/4) \times 4.3167\}$
= Antilog $\{1.0792\}$
= 12.00

Discrete data:

Let $x_1, x_2, x_3.... x_n$ be the n values of the variable x with corresponding frequency $f_1, f_2, f_3.... f_n$. then

G.M. = Antilog(
$$\frac{\Sigma [f log x]}{\Sigma f}$$
)

Find the geometric mean for the data given below

,	X	10	15	25	40	50
	f	4	6	10	7	3

Solution

X	f	log x	f log x
10	4	1.0000	4.0000
15	6	1.1761	7.0566
25	10	1. 3979	13.9790
40	7	1.6021	11.2147
50	3	1.6990	5.0970
	30		$\Sigma [f \log x] = 41.3473$

G.M. = Antilog(
$$\frac{\sum [f \log x]}{\sum f}$$
) = A.L. [41.3473/30] = A.L.(1.3782) = 23.89

Continuous data:

Let $m_1, m_2, m_3.... m_n$ be the midpoints of the $\, n$ classes of the variable $\, x$ with corresponding frequency $\, f_1, \, f_2, \, f_3.... \, f_n$. then

G.M. = Antilog(
$$\frac{\Sigma [f \log m]}{\Sigma f}$$
)

Compute the geometric mean

Marks (x)	0-10	10-20	20-30	30-40	40-50
No. of students(f)	5	7	15	25	8

Solution

X	f	m	log m	f log m
0-10	5	5	0.6990	3.4950
10-20	7	15	1.1761	8.2327
20-30	15	25	1.3979	20.9685
30-40	25	35	1.5441	38.6025
40-50	8	45	1.6532	13.2256
	$\Sigma f = 60$			84.5243

Merits of Geometric mean:

- 1. It is rigidly defined
- 2. It is based on all items
- 3. It is very suitable for averaging ratios, rates and percentages
- 4. It is capable of further mathematical treatment.
- 5. Unlike AM, it is not affected much by the presence of extreme values

Demerits of Geometric mean:

- 1. It cannot be used when the values are negative or if any of the observations is zero
- 2. It is difficult to calculate particularly when the items are very large or when there is a frequency distribution.
- 3. It brings out the property of the ratio of the change and not the absolute difference of change as the case in arithmetic mean.
- 4. The GM may not be the actual value of the serie

HARMONIC MEAN

Definition:

Harmonic mean is the reciprocal of the arithmetic mean of the reciprocal of observation.

8, 10,40,26

Reciprocals: 8 is 1/8, 10is 1/10, 40 is 1/40, 26 is 1/26

A,M. of 1/8, 1/10,1/40 and 1/26 is (1/8 + 1/10 + 1/40 + 1/26)/4

H.M. = 4/(1/8 + 1/10 + 1/40 + 1/26)

RAW DATA

If $x_1, x_2, x_3... x_n$ be the n observations H.M. = $\frac{n}{\Sigma(1/x)}$

Find the harmonic mean for the following x: 3,6,24,48

X	1/x
3	0.3333
6	0.1667
24	0.0417
48	0.0208
	0.5625

H.M. =
$$\frac{n}{\Sigma(1/x)} = \frac{4}{(0.5625)} = 7.11$$

Discrete data:

Let $x_i, x_2, x_3.... x_n$ be the n values of the variable x with corresponding frequency

$$f_i$$
, f_2 , f_3 f_n . then

 $H.M. = \left[\frac{\sum f}{\sum (f/x)}\right]$

Find the harmonic mean for the data given below

X	10	15	25	40	50
f	4	6	10	7	3

Solution

X	f	f/x
10	4	0.4000
15	6	0.4000
25	10	0.4000
40	7	0.1750
50	3	0.0600
	30	1.4350

H.M. =
$$\left[\frac{\Sigma f}{\Sigma(f/x)}\right] = 30/(1.4350) = 20.$$

Continuous data:

Let m_1 , m_2 , m_3 m_n be the n values of the variable x with corresponding frequency f_1 , f_2 , f_3 f_n . then

$$H.M. = \left[\frac{\sum f}{\sum (f/m)}\right]$$

Compute the Harmonic mean

Marks (x)	0-10	10-20	20-30	30-40	40-50
No. of students(f)	5	7	15	25	8

Solution

X	f	m	f/m
0-10	5	5	1.0000
10-20	7	15	0.4667
20-30	15	25	0.6000
30-40	25	35	0.7143
40-50	8	45	0.1778
	$\Sigma f = 60$		2.9588

H.M. =
$$\left[\frac{\Sigma f}{\Sigma(f/m)}\right]$$
 = 60/2.9588 = 20.28

Merits of H.M:

- 1. It is rigidly defined.
- 2. It is defined on all observations.
- 3. It is amenable to further algebraic treatment.
- 4. It is the most suitable average when it is desired to give greater weight to smaller observations and less weight to the larger ones.

Demerits of H.M:

- 2. It is not easily understood.
- 3. It is difficult to compute.
- 4. It is only a summary figure and may not be the actual item in the series

It gives greater importance to small items and is therefore, useful only when small itemshave to be given greater weightage

Weighted averages

The relative importance given to the values is the weights W

Weighted arithmetic mean

$$\overline{x}_{w} = \frac{\sum [xw]}{\sum w}$$
 x is the variable and w is the weights

Find the weighted arithmetic mean for the following data

X	8	12	25	13	45
W	2	5	1	2	3

Solution

X	w	XW
8	2	16
12	5	60
25	1	25
13	2	26
45	3	135
	13	262

$$\overline{\boldsymbol{x}}_{\mathbf{w}} = \frac{\Sigma [\mathbf{x}\mathbf{w}]}{\Sigma \mathbf{w}} = 262 / 13 = 20.15$$

Weighted G.M. = Antilog($\frac{\Sigma [w \log x]}{\Sigma w}$)

Calculate weighted geometric mean

commodity	A	В	С	D
Weight	1	6	3	2
Price	5	17	30	42

Solution

X	W	Log x	w logx		
5	1	0.6990	0.6990		
17	6	1.2304	7.3824		
30	3	1.4771	4.4313		
42	2	1.6232	3.2464		
	12		15.7591		

Weighted G.M. = Antilog(
$$\frac{\sum [w \log x]}{\sum w}$$
)
= Antilog($\frac{[15.7591]}{12}$) = A.L. (1.3133) = 20.57

Weighted H.M. =
$$\left[\frac{\sum w}{\sum (w/x)}\right]$$

1.An aeroplane flies around a square the sides of which measures 100 km each, it covers the first side at an average speed of 100 km. /hr. the second side at 200km/hr and the third with 300 kms/hr and the fourth side at 400 kms./hr. Use the correct mean to find the average speed round the square.

The average speed round the entire square is the harmonic mean of 100, 200, 300, 400.

H.M. =
$$\left[\frac{n}{\Sigma(1/x)}\right] = \frac{4}{\frac{1}{100} + \frac{1}{200} + \frac{1}{300} + \frac{1}{400}} = \frac{4}{0.0100 + 0.0050 + 0.0033 + 0.0025}$$

H.M. =
$$4 / 0.0208 = 192$$
 kms, /hr

2. You can take a trip which entails travelling 900 kms, by train at an average speed of 60km. /hr., 3000 kms by ship at an average speed of 25km./hr., 400 kms by plane at 350km./hr. and finally 15 kms by taxi at an average speed of 25km./hr, what is the average speed for the entire distance.

Mode of travel	Distance	Speed (x)	W/X
	travelled(w)		
Train	900	60	15.0000
Ship	3000	25	120.0000
Plane	400	350	1.1429
taxi	15	25	0.6000
	4315		136.7429

Weighted H.M. is the best average to find the average speed Weighted H.M. =
$$\left[\frac{\Sigma w}{\Sigma(w/x)}\right] = \left[\frac{4315}{136.7429}\right] = 31.56$$

The average speed of the entire distance is 31.56 kms. /hr.