UNIT V

PL/SQL:PL/SQL Composite Data Types: Records—Tables—
Varrays. PL/SQLNamed Blocks: Procedures—Functions—
Packages-Triggers — Data Dictionary Views.

Text Book: “DATABASE SYSTEMS USING ORACLE”-NILESH SHAH,2"d Edition, PHI

Prepared by Dr.P.Radha

PL/SQL:PL/SQL COMPOSITE DATA TYPES

 Composite data types are like scalar data
types. Scalar data types are atomic, because
they do not consist of a group.

« Composite data types, on the other hand, are
groups, or “collections.”

 Examples of composite data types are
RECORD, TABLE, nested TABLE, and
VARRAY

PL/SQL RECORDS

 PL/SQL records are similar in structure to a
row in a database table.

» Arecord consists of components of any scalar,
PL/SQL record, or PL/SQL table type.

* These components are known as fields, and
they have their own values

PL/SQL RECORDS

 The record does not have a value as a whole:
Instead, It enables you to access these
components as a group.

* It makes your life easier by transferring the
entire row Into a record rather than each
column into a variable separately.

 APL/SQL record Is based on a cursor, a table’s
row, or a user-defined record type.

Creating a PL/SQL Record

* You create a RECORD type first, and then you declare
a record with that RECORD type.

* The general syntax is
TYPE recordtypename IS RECORD

(fieldnamel datatype | variable%TYPE |
table.column%TYPE | table%oROWTYPE [[NOT
NULL] := | DEFAULT Expression]

[, fieldname2 . . .
, FieldName3);
recordname recordtypename;

Cont...

Referencing Fields in a Record

* A field In a record has a name that Is given In
the RECORD-type definition.

* You cannot reference a field by its name only;
you must use the record name as a qualifier:

recordname.fieldname
employee _rec.e sal

Cont...

Working with Records

« A record 1S known In the block where 1t Is
declared.

* When the block ends, the record no longer exists.
You can assign values to a record from columns
In a row by using the SELECT statement or the
FETCH statement.

 The order of fields in a record must match the
order of columns In the row. A record can be
assigned to another record if both records have
the same structure.

Cont...

Nested Records

* You can create a nested record by including a
record Into another record as a field.

 The record that contains another record as a
field is called the enclosing record

PL/SQL TABLES

A table, like a record, IS a composite data
structure in PL/SQL.

A PL/SQL table is a single-dimensional structure
with a collection of elements that store the same
type of value.

In other words, it Is like an array In other
programming languages.

A table Is a dynamic structure that 1s not
constrained, whereas an array IS not dynamic in
most computer languages.

Declaring a PL/SQL Table

« A PL/SQL TABLE declaration is done In two
steps, like a record declaration:

 Declare a PL/SQL table type with a TYPE
statement.
* The structure could use any of the scalar data

types.

* Declare an actual table based on the type declared
In the previous step.

Cont...

"he general syntax Is
TYPE tabletypename IS TABLE OF

datatype | variablename%TYPE |
tablename.columnname%TYPE [NOT NULL]
INDEX BY BINARY INTEGER;

Cont...

Referencing Table Elements/Rows

* The rows In a table are referenced In the same
way that an element in an array Is referenced.

* You cannot reference a table by its name only.

* You must use the primary key value in a pair of
parentheses as Its subscript or index:

tablename (primarykeyvalue)

Cont...

Assigning Values to Rows in a PL/SQL Table

You can assign values to the rows in a table In
three ways:

* Direct assignment.
« Assignment in a loop.
« Aggregate assignment.

Cont...

Direct Assignment.

* You can assign a value to a row with an
assignment statement, as you already learned In
the previous topic.

* This is preferable If only a few assignments are to
be made.

* If an entire database table’s values are to be as-
signed to a table, however, a looping method Is
preferable.

Cont...

Assignment in a Loop

You can use any of the three PL/SQL loops to as- sign
values to rows in a table.

Aggregate Assignment

* You can assign a table’s values to another table. The
data types of both tables must be compatible.

* When you assign a table’s values to another table, the
table receiving those values loses all its previous
primary key values as well as its data column values.

* If you assign an empty table with no rows to another
table with rows, the recipient table is cleared

Cont...

Built-In Table Methods

* The built-in table methods are procedures or
functions that provide iInformation about a
PL/SQL table. The general syntax Is

tablename.methodname [(index1 [, index2])]

TABLE OF RECORDS

The PL/SQL table type iIs declared with a data

type.
The WROWTYPE declaration attribute can be
used to define the record type.

When a table i1s based on a record, the record
must consist of fields with scalar data types.

The record must not contain a nested record

PL/SQL VARRAYS

A VARRAY Is another composite data type or
collection type in PL/SQL.

Varray stands for variable-size array. They are single-
dimensional, bounded collections of elements with the
same data type.

They retain their ordering and subscripts when stored
In and retrieved from a database table.

They are similar to a PL/SQL table, and each element
IS assigned a subscript/index starting with 1.

Cont...

A PL/SQL VARRAY declaration Is done In two
steps, like a table declaration:

Declare a PL/SQL VARRAY type with a TYPE
statement.

The TYPE declaration includes a size to set the
upper bound of a Varray. The lower bound is
always one.

Declare an actual Varray based on the type
declared in the previous step.

Cont...

The general syntax Is
DECLARE

TYPE varraytypename IS VARRAY (size) OF
ElementType [NOT NULL]; varrayname
varraytypename,

Cont...

For example,
DECLARE

TYPE Lname varray type IS VARRAY(5)
OF employee.LName% TYPE;

LLname_varray LLname varray_ type
Lname_varray type();

NAMED BLOCKS

* Procedures
* Functions
« Packages
 Triggers

PROCEDURES

A procedure 1s a named PL/SQL program
block that can perform one or more tasks.

* A procedure Is the building block of modular
programming.

Cont..

The general syntax of a procedure iIs

CREATE [OR REPLACE] PROCEDURE
procedurename [(parameterl [, parameter?2 . .

D]
1S

| constant/variable declarations |
BEGIN
executable statements [EXCEPTION

exception handling statements | END [
procedurename |;

Cont..

Calling a Procedure

* A call to the procedure is made through an
executable PL/SQL statement.

* The procedure iIs called by specifying its name
along with the list of parameters (if any) iIn
parentheses.

The general syntax Is
procedurename [(parameterl, .. .)];

Cont..

For example,

monthly salary(v_salary);
calculate_net(v_monthly salary, 0.28);
display _messages;

Cont..

Procedure Header

* The procedure definition that comes before
the reserved word IS is called the procedure
header.

* The procedure header contains the name of
the procedure and the parameter list with data

types (if any).

Cont...

For example

CREATE OR REPLACE PROCEDURE
monthly salary (v_salary in IN
employee.Salary% TYPE)

CREATE OR REPLACE PROCEDURE
calculate _net (v_monthly salary in IN
employee.Salary% TYPE, v_taxrate in IN
NUMBER)

CREATE OR REPLACE PROCEDURE
display messages

Cont ...

Procedure Body

 The procedure body contains declaration,
executable, and exception-handling sections.

 The declaration and exception-handling
sections are optional.

e The executable section contains action
statements, and 1t must contain at least one.

Cont...

Parameters

« Parameters are used to pass values back and
forth from the calling environment to the
Oracle server.

 The values passed are processed and/or
returned with a procedure execution.

* There are three types of parameters: IN, OUT,
and IN OUT

Cont...

Actual and Formal Parameters

The parameters passed in a call statement are called
the actual parameters.

The parameter names In the header of a module are
called the formal parameters.

« The actual parameters and their matching formal
parameters must have the same data types.

* In aprocedure call, the parameters are passed without
data types.

* The procedure header contains formal parameters
with data types, but the size of the data type Is not
required

Cont...

Matching Actual and Formal Parameters
* There are two different ways in PL/SQL to link formal

ana

e In
Wit

actual parameters:

positional notation, the formal parameter Is linked
n an actual parameter implicitly by position

Positional notation Is more commonly used for
parameter matching.

* In named notation, the formal parameter is linked with
an actual parameter explicitly by name.

The general syntax is
formalparametername => argumentvalue

FUNCTIONS

A function, like a procedure, Is a named
PL/SQL block.

Like a procedure, it Is also a stored block.

The main difference between a function and a
procedure is that a function always returns a
value to the calling block.

A function is characterized as follows:

A function Is characterized as follows:

« A function can be passed zero or more
parameters.

A function must have an explicit RETURN
statement In the executable section to return a
value.

* The data type of the return value must be declared
In the function’s header.

A function cannot be executed as a stand-alone
program

« A function may have parameters of the IN,
OUT, and IN OUT types, but the primary use
of a function Is to return a value with an
explicit RETURN statement.

* The use of OUT and IN OUT parameter types

In functions Is rare—and considered to be a
bad practice

Cont...

The general syntax is

CREATE [OR REPLACE] FUNCTION functionname [
(parameterl [, parameter2)]

RETURN DataType
IS BEGIN

[constant | variable declarations] executable statements
RETURN returnvalue

[EXCEPTION

exception-handling statements RETURN returnvalue]
END [functionname];

Cont..

Function Header

 The function header comes before the reserved
word IS.

* The header contains the name of the function,
the list of parameters (if any), and the
RETURN data type.

Cont...

Function Body

* The body of a function must contain at least one
executable statement.

 |If there 1S no declaration, the reserved word
BEGIN follows IS.

 |f there Is no exception handler, you can omit the
word EXCEPTION.

* The function name label next to END is optional.
There can be more than one return statement, but
only one RETURN Is executed in a function call.

Cont...

RETURN Data Types

* A function can return a value with a scalar data
type, such as VARCHAR2, NUM- BER,
BINARY INTEGER, or BOOLEAN.

* It can also return a composite or complex data
type, such as a PL/SQL table, a PL/SQL
record, a nested table, VARRAY, or LOB.

Cont...

Calling a Function

* A function call is similar to a procedure call. You
call a function by mentioning its name along with
Its parameters (if any).

* The parameter list is enclosed within parentheses.

» A procedure does not have an explicit RETURN
statement, so a procedure call can be an
Independent statement on a separate line.

* A function does return a value, so the function
call is made via an executable statement, such as
an assignment, selection, or output statement.

Cont...

Calling a Function from an SQL Statement

e A stored function block can be called from an
SQL statement, such as SELECT.

For example,
SELECT get_deptname(10) FROM dual;

PACKAGES

A package is a collection of PL/SQL objects. The objects in a package
are grouped within BEGIN and END blocks. A package may contain
objects from the following list:

e Cursors.

« Scalar variables.

« Composite variables.

« Constants.

« Exception names.

 TYPE declarations for records and tables.
* Procedures.

* Functions

Cont...

The objects in a package can be declared as public
objects, which can be referenced from outside, or as
private objects, which are known only to the package.

You can restrict access to a package to its specification
only and hide the actual programming aspect.

A package follows some rules of object-oriented
programming, and It gives programmers some object-
oriented capabilities.

A package compiles successfully even without a body if
the specification compiles.

Cont...

Structure of a Package

A package provides an extra layer to a module.
A module has a header and a body, whereas a
package has a specification and a body.

. A module’s header specifies the name and the
parameters, which tell us how to call that module.

. Similarly, the pack- age specification tells us
how to call different modules within a package.

Cont...

Package Specification

* A package specification does not contain any
code, but i1t does contain information about the
elements of the package.

* It contains definitions of functions and
procedures, declarations of global or public
variables, and anything else that can be declared
In a PL/SQL block’s declaration section.

 The objects In the specification section of a
package are called public objects.

Cont...

The general syntax Is

CREATE [OR REPLACE] PACKAGE
packagename IS
[constant, variable and type declarations | |
exception declarations]

| cursor specifications |

' function specifications]

| procedure specifications]
END [packagename |;

Cont...

Package Body

A package body contains actual programming
code for the modules described In the
specification section.

|t also contains code for the modules not
described in the specification section.

« The module code In the body without a
description In the specification is called a private
module, or a hidden module, and it is not visible
outside the body of the package.

Cont...

The general syntax of a package body is

PACKAGE BODY packagename

1S

 variable and type declarations]

| cursor specifications and SELECT queries] [header and body of functions

]

 header and body of procedures |
 BEGIN

executable statements]

[EXCEPTION

Exception handlers]
END[packagename];

TRIGGERS

A database trigger, known simply as a trigger,
Is a PL/SQL block.

It iIs stored In the database and Is called
automatically when a triggering event occurs.

A user cannot call a trigger explicitly.

The triggering event Is based on a Data
Manipulation Language (DML) statement, such
as INSERT, UPDATE, or DELETE.

A trigger can be created to fire before or after the
triggering event.

Cont...

» The execution of a trigger is also known as firing the trigger.
The general syntax is
CREATE [OR REPLACE] TRIGGER triggername

BEFORE | AFTER | INSTEAD OF triggeringevent ON table|view [FOR
EACH ROW]

[WHEN condition]
DECLARE
Declaration statements
BEGIN
Executable statements
EXCEPTION
Exception-handling statements
END:;

SQL> /* Anonymous block calls function HAS_PREREQ

DOC> and function FIND_PREREQ in package COURSE_INFO */ SQL> DECLARE
V_FLAG BOOLEAN,;

V_COURSEID COURSE.COURSEID%TYPE :="&P_COURSEID’;
V_TITLE VARCHAR2(30);

BEGIN

V_COURSEID := UPPER(V_COURSEID);

V_FLAG := COURSE_INFO.HAS_PREREQ(V_COURSEID);
IFV_FLAG = TRUE THEN

V_TITLE := COURSE_INFO.FIND_PREREQ(V_COURSEID);
DBMS_OUTPUT.PUT_LINE(’Course: ’ || V_COURSEID);
DBMS_OUTPUT.PUT_LINE(’Pre-Requisite - ’|| V_COURSEID);
END IF;

END; 14/

Enter value for p_courseid: C1S265 Course: C1S265

Pre-Requisite - C15253

PL/SQL procedure successfully completed. SQL>/

Enter value for p_courseid: C1S253 No prerequisite

PL/SQL procedure successfully completed.

SQL>/

Enter value for p_courseid: CIS999 Course: CI1S999 does not exist
PL/SQL procedure successfully completed.

SQL>

Cont...

Cont...

BEFORE Triggers

 The BEFORE trigger is fired before execution
of a DML statement.

 The BEFORE trigger is useful when you want
to plug into some values in a new row, insert a
calculated column into a new row, or validate a
value In the INSERT query with a lookup In
another table

Cont...

SQL> CREATE OR REPLACE TRIGGER EMPLOYEE_BI TRIGGER
BEFORE INSERT ON EMPLOYEE

FOR EACH ROW

DECLARE

V_EMPID EMPLOYEE.EMPLOYEEID%TYPE;
BEGIN

SELECT EMPLOYEE_EMPLOYEEID SEQ.NEXTVAL
INTO V_EMPID FROM DUAL;

:NEW.EMPLOYEEID :=V_EMPID;

‘NEW.HIREDATE := SYSDATE;

END;

12/

Trigger created.

SQL>

Cont...

AFTER Triggers

 An AFTER trigger fires after a DML statement
IS executed.

e |t utilizes the built-in Boolean functions
INSERTING, UPDATING, and DELETING.

* If the triggering event is one of the three DML
statements, the function related to the DML
statement returns TRUE and the other two
return FALSE.

Cont...

SQL> CREATE OR REPLACE TRIGGER EMPLOYEE_ADU_TRIGGER
AFTER DELETE OR UPDATE ON EMPLOYEE

DECLARE

V_TRANSTYPE VARCHAR2(6);

BEGIN

IF DELETING THEN

V_TRANSTYPE :="DELETE’;

ELSIF UPDATING THEN

V_TRANSTYPE :="UPDATE’;

END IF;

INSERT INTO TRANSHISTORY

VALUES CEMPLOYEE’, V. TRANSTYPE, USER, SYSDATE);
END;

14 /

Trigger created.

SQL>

DATADICTIONARY VIEWS

* Oracle maintains a very Informative Data
Dictionary.

« A few Data Dictionary views are useful for
getting information about stored PL/SQL blocks.

 The
USE
USE
USE
USE
USE

following are examples of queries to
R_PROCEDURES (for named blocks),
R_TRIGGERS (for triggers only),
R_SOURCE (for all source codes),
R_OBJECTS(for any object), and

R_ERRORS (for current errors) views:

Cont...

SELECT Object Name, Procedure Name
FROM USER PROCEDURES

SELECT Trigg

Trigg

er_Name, Trigger_Type,
ering_Event, Table Name, Trigger Body

FROM USER TRIGGERS

SELECT Name, Type, Line, Text FROM
USER_SOURCE; SELECT Object_Name,
Object_Type FROM USER_OBJECTS;

SELEC

Name,

ype, Sequence, Line, Position

FROM USER_ERRORS;

* These views can provide information ranging
from the name of an object to the entire source
code.

* Use the DESCRIBE command to find out the
names of columns In each Data Dictionary
view, and Issue SELECT queries according to
the information desired.

