
UNIT V

PL/SQL:PL/SQL Composite Data Types: Records–Tables–
Varrays. PL/SQLNamed Blocks: Procedures–Functions–
Packages-Triggers – Data Dictionary Views.

Text Book: “DATABASE SYSTEMS USING ORACLE”-NILESH SHAH,2nd Edition, PHI

Prepared by Dr.P.Radha

PL/SQL:PL/SQL COMPOSITE DATA TYPES

• Composite data types are like scalar data

types. Scalar data types are atomic, because

they do not consist of a group.

• Composite data types, on the other hand, are

groups, or “collections.”

• Examples of composite data types are

RECORD, TABLE, nested TABLE, and

VARRAY

PL/SQL RECORDS

• PL/SQL records are similar in structure to a

row in a database table.

• A record consists of components of any scalar,

PL/SQL record, or PL/SQL table type.

• These components are known as fields, and

they have their own values

PL/SQL RECORDS

• The record does not have a value as a whole;

instead, it enables you to access these

components as a group.

• It makes your life easier by transferring the

entire row into a record rather than each

column into a variable separately.

• A PL/SQL record is based on a cursor, a table’s

row, or a user-defined record type.

Creating a PL/SQL Record

• You create a RECORD type first, and then you declare
a record with that RECORD type.

• The general syntax is

TYPE recordtypename IS RECORD

(fieldname1 datatype | variable%TYPE |
table.column%TYPE | table%ROWTYPE [[NOT
NULL] := | DEFAULT Expression]

[, fieldname2 . . .

, FieldName3);

recordname recordtypename;

Cont…

Referencing Fields in a Record

• A field in a record has a name that is given in

the RECORD-type definition.

• You cannot reference a field by its name only;

you must use the record name as a qualifier:

recordname.fieldname

employee_rec.e_sal

Cont…

Working with Records

• A record is known in the block where it is
declared.

• When the block ends, the record no longer exists.
You can assign values to a record from columns
in a row by using the SELECT statement or the
FETCH statement.

• The order of fields in a record must match the
order of columns in the row. A record can be
assigned to another record if both records have
the same structure.

Cont…

Nested Records

• You can create a nested record by including a

record into another record as a field.

• The record that contains another record as a

field is called the enclosing record

PL/SQL TABLES

• A table, like a record, is a composite data
structure in PL/SQL.

• A PL/SQL table is a single-dimensional structure
with a collection of elements that store the same
type of value.

• In other words, it is like an array in other
programming languages.

• A table is a dynamic structure that is not
constrained, whereas an array is not dynamic in
most computer languages.

Declaring a PL/SQL Table

• A PL/SQL TABLE declaration is done in two
steps, like a record declaration:

• Declare a PL/SQL table type with a TYPE
statement.

• The structure could use any of the scalar data
types.

• Declare an actual table based on the type declared
in the previous step.

Cont…

The general syntax is

TYPE tabletypename IS TABLE OF

datatype | variablename%TYPE |

tablename.columnname%TYPE [NOT NULL]

INDEX BY BINARY_INTEGER;

Cont…

Referencing Table Elements/Rows

• The rows in a table are referenced in the same
way that an element in an array is referenced.

• You cannot reference a table by its name only.

• You must use the primary key value in a pair of
parentheses as its subscript or index:

tablename (primarykeyvalue)

Cont…

Assigning Values to Rows in a PL/SQL Table

You can assign values to the rows in a table in
three ways:

• Direct assignment.

• Assignment in a loop.

• Aggregate assignment.

Cont…

Direct Assignment.

• You can assign a value to a row with an
assignment statement, as you already learned in
the previous topic.

• This is preferable if only a few assignments are to
be made.

• If an entire database table’s values are to be as-
signed to a table, however, a looping method is
preferable.

Cont…

Assignment in a Loop

You can use any of the three PL/SQL loops to as- sign
values to rows in a table.

Aggregate Assignment

• You can assign a table’s values to another table. The
data types of both tables must be compatible.

• When you assign a table’s values to another table, the
table receiving those values loses all its previous
primary key values as well as its data column values.

• If you assign an empty table with no rows to another
table with rows, the recipient table is cleared

Cont…

Built-In Table Methods

• The built-in table methods are procedures or

functions that provide information about a

PL/SQL table. The general syntax is

tablename.methodname [(index1 [, index2])]

TABLE OF RECORDS

• The PL/SQL table type is declared with a data
type.

• The %ROWTYPE declaration attribute can be
used to define the record type.

• When a table is based on a record, the record
must consist of fields with scalar data types.

• The record must not contain a nested record

PL/SQL VARRAYS

• A VARRAY is another composite data type or
collection type in PL/SQL.

• Varray stands for variable-size array. They are single-
dimensional, bounded collections of elements with the
same data type.

• They retain their ordering and subscripts when stored
in and retrieved from a database table.

• They are similar to a PL/SQL table, and each element
is assigned a subscript/index starting with 1.

Cont…

• A PL/SQL VARRAY declaration is done in two
steps, like a table declaration:

• Declare a PL/SQL VARRAY type with a TYPE
statement.

• The TYPE declaration includes a size to set the
upper bound of a Varray. The lower bound is
always one.

• Declare an actual Varray based on the type
declared in the previous step.

Cont…

The general syntax is

DECLARE

TYPE varraytypename IS VARRAY (size) OF

ElementType [NOT NULL]; varrayname

varraytypename;

Cont…

For example,

DECLARE

TYPE Lname_varray_type IS VARRAY(5)

OF employee.LName%TYPE;

Lname_varray Lname_varray_type :=

Lname_varray_type();

NAMED BLOCKS

• Procedures

• Functions

• Packages

• Triggers

PROCEDURES

• A procedure is a named PL/SQL program

block that can perform one or more tasks.

• A procedure is the building block of modular

programming.

Cont..

The general syntax of a procedure is

CREATE [OR REPLACE] PROCEDURE
procedurename [(parameter1 [, parameter2 . .
.])]

IS

[constant/variable declarations]

BEGIN

executable statements [EXCEPTION

exception handling statements] END [
procedurename];

Cont..

Calling a Procedure

• A call to the procedure is made through an

executable PL/SQL statement.

• The procedure is called by specifying its name

along with the list of parameters (if any) in

parentheses.

The general syntax is

procedurename [(parameter1, . . .)];

Cont..

For example,

monthly_salary(v_salary);

calculate_net(v_monthly_salary, 0.28);

display_messages;

Cont..

Procedure Header

• The procedure definition that comes before

the reserved word IS is called the procedure

header.

• The procedure header contains the name of

the procedure and the parameter list with data

types (if any).

Cont…

For example

CREATE OR REPLACE PROCEDURE
monthly_salary (v_salary_in IN
employee.Salary%TYPE)

CREATE OR REPLACE PROCEDURE
calculate_net (v_monthly_salary_in IN
employee.Salary%TYPE, v_taxrate_in IN
NUMBER)

CREATE OR REPLACE PROCEDURE
display_messages

Cont …

Procedure Body

• The procedure body contains declaration,

executable, and exception-handling sections.

• The declaration and exception-handling

sections are optional.

• The executable section contains action

statements, and it must contain at least one.

Cont…

Parameters

• Parameters are used to pass values back and

forth from the calling environment to the

Oracle server.

• The values passed are processed and/or

returned with a procedure execution.

• There are three types of parameters: IN, OUT,

and IN OUT

Cont…

Actual and Formal Parameters

• The parameters passed in a call statement are called
the actual parameters.

• The parameter names in the header of a module are
called the formal parameters.

• The actual parameters and their matching formal
parameters must have the same data types.

• In a procedure call, the parameters are passed without
data types.

• The procedure header contains formal parameters
with data types, but the size of the data type is not
required

Cont…

Matching Actual and Formal Parameters

• There are two different ways in PL/SQL to link formal
and actual parameters:

• In positional notation, the formal parameter is linked
with an actual parameter implicitly by position .
Positional notation is more commonly used for
parameter matching.

• In named notation, the formal parameter is linked with
an actual parameter explicitly by name.

The general syntax is

formalparametername => argumentvalue

FUNCTIONS

• A function, like a procedure, is a named

PL/SQL block.

• Like a procedure, it is also a stored block.

• The main difference between a function and a

procedure is that a function always returns a

value to the calling block.

• A function is characterized as follows:

A function is characterized as follows:

• A function can be passed zero or more
parameters.

• A function must have an explicit RETURN
statement in the executable section to return a
value.

• The data type of the return value must be declared
in the function’s header.

• A function cannot be executed as a stand-alone
program

• A function may have parameters of the IN,

OUT, and IN OUT types, but the primary use

of a function is to return a value with an

explicit RETURN statement.

• The use of OUT and IN OUT parameter types

in functions is rare—and considered to be a

bad practice

Cont…

The general syntax is

CREATE [OR REPLACE] FUNCTION functionname [
(parameter1 [, parameter2])]

RETURN DataType

IS BEGIN

[constant | variable declarations] executable statements

RETURN returnvalue

[EXCEPTION

exception-handling statements RETURN returnvalue]

END [functionname];

Cont..

Function Header

• The function header comes before the reserved

word IS.

• The header contains the name of the function,

the list of parameters (if any), and the

RETURN data type.

Cont…

Function Body

• The body of a function must contain at least one
executable statement.

• If there is no declaration, the reserved word
BEGIN follows IS.

• If there is no exception handler, you can omit the
word EXCEPTION.

• The function name label next to END is optional.
There can be more than one return statement, but
only one RETURN is executed in a function call.

Cont…

RETURN Data Types

• A function can return a value with a scalar data

type, such as VARCHAR2, NUM- BER,

BINARY_INTEGER, or BOOLEAN.

• It can also return a composite or complex data

type, such as a PL/SQL table, a PL/SQL

record, a nested table, VARRAY, or LOB.

Cont…

Calling a Function

• A function call is similar to a procedure call. You
call a function by mentioning its name along with
its parameters (if any).

• The parameter list is enclosed within parentheses.

• A procedure does not have an explicit RETURN
statement, so a procedure call can be an
independent statement on a separate line.

• A function does return a value, so the function
call is made via an executable statement, such as
an assignment, selection, or output statement.

Cont…

Calling a Function from an SQL Statement

• A stored function block can be called from an

SQL statement, such as SELECT.

For example,

SELECT get_deptname(10) FROM dual;

PACKAGES

A package is a collection of PL/SQL objects. The objects in a package
are grouped within BEGIN and END blocks. A package may contain
objects from the following list:

• Cursors.

• Scalar variables.

• Composite variables.

• Constants.

• Exception names.

• TYPE declarations for records and tables.

• Procedures.

• Functions

Cont…

• The objects in a package can be declared as public
objects, which can be referenced from outside, or as
private objects, which are known only to the package.

• You can restrict access to a package to its specification
only and hide the actual programming aspect.

• A package follows some rules of object-oriented
programming, and it gives programmers some object-
oriented capabilities.

• A package compiles successfully even without a body if
the specification compiles.

Cont…

Structure of a Package

• A package provides an extra layer to a module.
A module has a header and a body, whereas a
package has a specification and a body.

• A module’s header specifies the name and the
parameters, which tell us how to call that module.

• Similarly, the pack- age specification tells us
how to call different modules within a package.

Cont…

Package Specification

• A package specification does not contain any
code, but it does contain information about the
elements of the package.

• It contains definitions of functions and
procedures, declarations of global or public
variables, and anything else that can be declared
in a PL/SQL block’s declaration section.

• The objects in the specification section of a
package are called public objects.

Cont…

The general syntax is

CREATE [OR REPLACE] PACKAGE
packagename IS
[constant, variable and type declarations] [
exception declarations]

[cursor specifications]

[function specifications]

[procedure specifications]

END [packagename];

Cont…

Package Body

• A package body contains actual programming
code for the modules described in the
specification section.

• It also contains code for the modules not
described in the specification section.

• The module code in the body without a
description in the specification is called a private
module, or a hidden module, and it is not visible
outside the body of the package.

Cont…

The general syntax of a package body is

PACKAGE BODY packagename

IS

[variable and type declarations]

[cursor specifications and SELECT queries] [header and body of functions
]

[header and body of procedures]

[BEGIN

executable statements]

[EXCEPTION

Exception handlers]

END[packagename];

TRIGGERS

• A database trigger, known simply as a trigger,
is a PL/SQL block.

• It is stored in the database and is called
automatically when a triggering event occurs.

• A user cannot call a trigger explicitly.

• The triggering event is based on a Data
Manipulation Language (DML) statement, such
as INSERT, UPDATE, or DELETE.

• A trigger can be created to fire before or after the
triggering event.

Cont…

• The execution of a trigger is also known as firing the trigger.
The general syntax is

CREATE [OR REPLACE] TRIGGER triggername

BEFORE | AFTER | INSTEAD OF triggeringevent ON table|view [FOR
EACH ROW]

[WHEN condition]

DECLARE

Declaration statements

BEGIN

Executable statements

EXCEPTION

Exception-handling statements

END;

Cont…

SQL> /* Anonymous block calls function HAS_PREREQ

DOC> and function FIND_PREREQ in package COURSE_INFO */ SQL> DECLARE

V_FLAG BOOLEAN;

V_COURSEID COURSE.COURSEID%TYPE := ’&P_COURSEID’;

V_TITLE VARCHAR2(30);

BEGIN

V_COURSEID := UPPER(V_COURSEID);

V_FLAG := COURSE_INFO.HAS_PREREQ(V_COURSEID);

IF V_FLAG = TRUE THEN

V_TITLE := COURSE_INFO.FIND_PREREQ(V_COURSEID);

DBMS_OUTPUT.PUT_LINE(’Course: ’ || V_COURSEID);

DBMS_OUTPUT.PUT_LINE(’Pre-Requisite - ’ || V_COURSEID);

END IF;

END; 14 /

Enter value for p_courseid: CIS265 Course: CIS265

Pre-Requisite - CI5253

PL/SQL procedure successfully completed. SQL> /

Enter value for p_courseid: CIS253 No prerequisite

PL/SQL procedure successfully completed.

SQL> /

Enter value for p_courseid: CIS999 Course: CIS999 does not exist

PL/SQL procedure successfully completed.

SQL>

Cont…

BEFORE Triggers

• The BEFORE trigger is fired before execution

of a DML statement.

• The BEFORE trigger is useful when you want

to plug into some values in a new row, insert a

calculated column into a new row, or validate a

value in the INSERT query with a lookup in

another table

Cont…

SQL> CREATE OR REPLACE TRIGGER EMPLOYEE_BI_TRIGGER

BEFORE INSERT ON EMPLOYEE

FOR EACH ROW

DECLARE

V_EMPID EMPLOYEE.EMPLOYEEID%TYPE;

BEGIN

SELECT EMPLOYEE_EMPLOYEEID_SEQ.NEXTVAL

INTO V_EMPID FROM DUAL;

:NEW.EMPLOYEEID := V_EMPID;

:NEW.HIREDATE := SYSDATE;

END;

12 /

Trigger created.

SQL>

Cont…

AFTER Triggers

• An AFTER trigger fires after a DML statement
is executed.

• It utilizes the built-in Boolean functions
INSERTING, UPDATING, and DELETING.

• If the triggering event is one of the three DML
statements, the function related to the DML
statement returns TRUE and the other two
return FALSE.

Cont…

SQL> CREATE OR REPLACE TRIGGER EMPLOYEE_ADU_TRIGGER

AFTER DELETE OR UPDATE ON EMPLOYEE

DECLARE

V_TRANSTYPE VARCHAR2(6);

BEGIN

IF DELETING THEN

V_TRANSTYPE := ’DELETE’;

ELSIF UPDATING THEN

V_TRANSTYPE := ’UPDATE’;

END IF;

INSERT INTO TRANSHISTORY

VALUES (’EMPLOYEE’, V_TRANSTYPE, USER, SYSDATE);

END;

14 /

Trigger created.

SQL>

DATA DICTIONARY VIEWS

• Oracle maintains a very informative Data
Dictionary.

• A few Data Dictionary views are useful for
getting information about stored PL/SQL blocks.

• The following are examples of queries to
USER_PROCEDURES (for named blocks),
USER_TRIGGERS (for triggers only),
USER_SOURCE (for all source codes),
USER_OBJECTS(for any object), and
USER_ERRORS (for current errors) views:

Cont…

SELECT Object_Name, Procedure_Name
FROM USER_PROCEDURES;

SELECT Trigger_Name, Trigger_Type,
Triggering_Event, Table_Name, Trigger_Body
FROM USER_TRIGGERS;

SELECT Name, Type, Line, Text FROM
USER_SOURCE; SELECT Object_Name,
Object_Type FROM USER_OBJECTS;

SELECT Name, Type, Sequence, Line, Position
FROM USER_ERRORS;

• These views can provide information ranging
from the name of an object to the entire source
code.

• Use the DESCRIBE command to find out the
names of columns in each Data Dictionary
view, and issue SELECT queries according to
the information desired.

