
 UNIT IV: Data warehouses – OLTP – Decision

Support Systems–Executive Information

system–comparing Decision Support and

OLTP systems–Production vs Information

Databases - The Data Warehouse-Client/Server

Transaction Processing – The ACID properties

– Transaction Models.
 TEXT BOOK:

 Robert Orfali, Dan Harkey& Jeri Edwards, “Client/Server Survival

Guide”, Wiley INDIA Edition, 3rd Edition, 2011.

 Prepared by : B.Loganathan

 A warehouse as a separate database for

decision support, which typically contains
vast amounts of information.

 A collection of data objects that have been

inventoried for distribution to a business

community.

 A warehouse is an active intelligent store of

data that can manage and aggregate

information from many sources, distribute it

where needed, and activate business policies.

 The first step on the road to data warehousing

is to understand the constituent elements that

make up a solution. Almost all data

warehousing systems provide the following

four elements. (see the above diagram)

 1.The data replication manager-It sometimes

called "the warehouse manager"-manages the

copying and distribution of data across

databases as defined by the information

hound. The hound defines the data that needs

to be copied, the source and destination

platforms, the frequency of updates, and the

data transforms.

 2.The informational database is a relational

database that organizes and stores copies of

data from data sources in a format that meets

the needs of information hounds.

 The decision-support server that transforms,

aggregates, and adds value to data from

various production sources. It also stores

metadata (or data about data) that describes

the contents of the informational database.

 3.The information directory combines the

functions of a technical directory, business

directory, and information navigator.

 Its primary purpose is to help the information
hound find out what data is available on the
different databases, what format it's in, and
how to access it. It also helps the DBAs
manage the data warehouse.

 4.EIS/DSS tool support (Executive Information
System/Decision Support System) is provided
via SQL. Most vendors support ODBC and
some other protocol. Some vendors-for
example, Red Brick-provide extended SQL
dialects for fast queries and joins. The tools
are more interested in sequential access of
large data quantities than access to a single
record.

 ACID stands for Atomicity, Consistency,

Isolation, and Durability.

 A transaction is an action that changes the

state of an enterprise-for example, a

customer depositing money in a checking

account constitutes a banking transaction.

Technically speaking, a transaction is a

collection of actions imbued with ACID
properties.

 Atomicity means that a transaction is an
indivisible unit of work: all of its actions
succeed or they all fail. It's an all-or-nothing
proposition. The actions under the
transaction's umbrella may include the
message queues, updates to a database, and
the display of results on the client's Screen.
Atomicity is defined from the perspective of
the consumer of the transaction.

 Consistency means that after a transaction
executes, it must leave the system in a correct
state or it must abort. If the transaction
cannot achieve a stable end state, it must
return the system to its initial state.

 Isolation means that a transaction's behavior

is not affected by other transactions that

execute concurrently. The transaction must

serialize all accesses to shared resources and

guarantee that concurrent programs will not

corrupt each other’s operations.

 Durability means that a transaction's effects

are permanent after it commits. changes

should survive system failures. The term

"persistent" is a synonym for "durable."

 What is OLTP?

 Database centred client/server applications
fall into two categories : Decision Support
System (DSS),Online Transaction Processing
(OLTP). These categories provides
dramatically different types of business
solutions.

 OLTP systems are used to create applications
in all walks of business.

 These include reservation system, point of
sale, tracking system, inventory control etc…

 These are typically mission critical application
that require 1-3 response time 100% of the
time.

 The number of clients support by an OLTP
system may vary dramatically throughout the
day, week or year, but response time must be
maintained.

 It applications require a tight control over the
security and integrity of the database.

 The reliability and availability of the overall
system must be very high.

 Data must be kept consistent and correct.

 In OLTP, the client typically interacts with the
transaction server instead of database server.

 These interaction is necessary to provide the
high performance.

 Transaction servers come in two flavours :
OLTP Lite, provided by the stored procedures
and OLTP Heavy, provided by TP monitors.

 OLTP applications require code to be written
for both client component and server
transactions.

 What is Decision-Support System?

 Decision Support System is used to analyze
data and create reports.

 It provides the business professional and
information hounds with a means to obtain
exactly the information they need.

 DSS provides the user with flexible access to
data and the tools to manipulate and present
the data in all kinds of report formats.

 This systems are not generally time-critical
and can tolerate less response time.

 Client/server decision support systems are
typically not suitable for mission-critical
production environments.

 They have poor integrity controls and limited
multiple access capabilities.

 These are built using a new generation
screen-layout tools that allow non-
programmers to build GUI front-end and
reports by painting, pointing and clicking.

 What is an Executive Information System?
 Executive Information System (EIS) are even more

powerful, easy to use and business-specific the
DSS tools.

 They are certainly more expensive.
 The EIS tools are recently expanded their scope

and offer a broader range of functions at the
enterprise level.

 “E” in EIS stands for “Enterprise” instead of
“Executive” because this system now have a
hundreds of users with many roles such as
executive, manager and business analyst.

 Some vendors prefer to call them “Everyone’s
Information System” while still charging a small
fortune for their tools.

 The evolving EIS/DSS system referred to as Online
Analytical Processing (OLAP) or Multidimensional
Analysis (MDA) tools.

 Decision support systems application can be

created directly by the user.

 Network administrators are still needed to

help set up the client/server system and

Database administrator (DBA) may help

assemble collections of views, columns and

tables that are relevant to the user.

 The design of client/server systems for OLTP

is a lot more involved.

 Comparing the Programming Effort for
Decision Support and OLTP

 Flat transactions: These are the workhorses of

the current generation of transactional systems.

They're called flat because all the work done

within a transaction's boundaries is at the same

level (see shaded area in the diagram).

 The transaction starts with begin _transaction

and ends with either a commit _transaction or

abort _transaction. It's an all-or-nothing

proposition and there is no way to commit or

abort parts of a flat transaction. All the actions

are indivisible, which is what we wanted in the

first place.

 A typical flat transaction does not last more

than two or three seconds to avoid

monopolizing critical system resources such

as database locks.

 As a result, OLTP client/server programs are

divided into short transactions that execute

back-to-back to produce results. (Shown in

diagram)

 We call this effect transaction baby step-ping

or getting work done by moving in "baby

steps" from one stable state to the next.

 The Distributed Flat Transaction

 Even though a high level of parallelism may be
involved, as far as the programmer is
concerned, it is still just a flat transaction.
(Shown in diagram)

 The programmer is not aware of the
considerable amount of "under-the-cover"
activity that is required to make the multisite
transaction appear flat.

 The transaction must travel across multiple
sites to get to the resources it needs. Each
site is TP Monitor must manage its local piece
of the transaction.

 Within a site, the TP Monitor coordinates the

transactions with the local ACID subsystems

and source managers, including database

managers, queue managers, persistent

objects and message transports.

 For example, the TP Monitor will ensure that

when database gets updated, a message gets

delivered and an entry is made in a workflow

queue.

 Either all of these actions will occur (exactly

once) or none. In addition, one of the TP

Monitors must coordinate the actions of all its

fellow monitors.

 This is all done using a two-phase commit

protocol, which coordinates transaction is

commit or abort across multiple sites.

 Limitations of the Flat Transaction

 The following are examples of business

transactions that require a more flexible

approach :

 i)Compound business transactions that need to
be partially rolled back:

 The classic example is a complex trip that

includes travel arrangements hotel

reservations, and a car rental.

 What happens if we simple want to cancel the

car reservation but preserve the rest of the

reservations. We can't do that within a flat

transaction and the entire reservation is rolled

back.

 This means we must give up the hotel and

plane reservations just to get rid (avoid) of the

car. The hotel/car reservation problem is used

to justify the need for nested or chained

transactions.

 We use multiple flat transactions to simulate

the compound one.

 ii) Business transactions with humans in the loop:

 This is a classic GUI client/server transaction

where a set of choices are presented to the user

on a screen, and the server must wait for the

decision. In the meantime, locks are held for the

records on the screen.

 What happens if an operator that's viewing some

airline seats decides to go to lunch? How long are

the seats locked out?

 If it is executed as a single flat transaction, the

seats will be held as long as that user is thinking or

eating. Nobody else can get to those seats.

 This is obviously not a very good way to run a

business.

 The solution is to split the reservation into two

transactions: a query transaction that displays

the available seats, and a reservation

transaction that performs the actual

reservation.

 Iii)Business transactions that span long
periods of time:

 These are typical engineering Computer-

Aided Design (CAD) transactions that may

require CAD-managed components to be

worked on for days and passed from engineer

to engineer.

 The CAD transaction must be able to suspend

itself and resume after shutdowns, preserve

ongoing work across shutdowns, and know

where it left off and what needs to be done

next. In essence, it becomes a workflow

manager.

 Flat transactions must be augmented by a

workflow program to handle such long-lived

work. This is an area where alternative

transactional database check-in check-out

transactions, replica management, versioning,

and workflow look very promising.

 Iv)Business transactions with a lot of bulk :

 How do we handle one million record updates

under transactional control?

 Must the entire transaction be rolled back if a

failure occurs after record 999,999 is

updated.

 On the other hand, if we make each update a

separate transaction, it is much slower and a

million separate commits are required.

 v)Business transactions that span across
companies or the Internet:

 The problem here is a political one.

 A MOM (Message Oriented Middleware) solution

allows organizations to split the unit of work into

many transactions that can be executed

asynchronously, processed on different

machines, and coordinated by independent TP

Monitors within each company.

 From a software perspective, we ended up

breaking a single two-phase commit flat

transaction into three independent flat

transactions that execute on company A's TP

Monitor, MOM, and company B 's TP Monitor.

 The MOM transaction ensures that the transaction

has safely made it from company A's computer to

company B's computer.

 Most of the proposed alternatives to the flat

transaction are based on mechanisms that

extend the flow of control beyond the linear

unit of work.

 Two of the most obvious ways to extend the

flow of control are by chaining units of work in

linear sequences of "mini" transactions or by

creating some kind of nested hierarchy of

work called the nested transaction.

 Syncpoints, Chained Transactions and Sagas:

 The chained transaction, as the name implies,
introduces some form of linear control for
sequencing through transactions.

 Syncpoints are known as savepoints. Within a
flat transaction that allow periodic saves of
accumulated work.

 The syncpoint lets roll back work and still
maintain a live transaction. In contrast, a
commit ends a transaction.

 Syncpoints also give better granularity of
control over what we save and undo.

 But, the big difference is that the commit is

durable while the syncpoint is volatile. If the

system crashes during a transaction, all data

accumulated in syncpoints is lost.

 Chained transactions are a variation of

syncpoints that make the accumulated work

durable. They allow us to commit work while

staying within the transaction, so we do not

have to give up our locks and resources.

 Sagas extend the chained transactions to let

we roll back the entire chain. They do that by

maintaining a chain of compensating

transactions.

 We still get the crash resistance of the
intermediate commits, but we have the choice
of rolling back the entire chain under program
control. This lets we treat the entire chain as
an atomic unit of work.

 Nested Transactions:

 Nested Transactions provide the ability to
define transactions within other transactions.
They do that by breaking a transaction into
hierarchies of "subtransactions“.

 The main transaction starts the
subtransactions, which behave as dependent
transactions.

 A subtransaction can also start its own
subtransactions, thus making the entire
structure very recursive.

 Each subtransaction can issue a commit or
rollback for its designated pieces of work.

 When a subtransaction commits, its results
are accessible only to the parent that
spawned it. A subtransaction's commit
becomes permanent after it issues a local
commit and all its ancestors commit.

 If a parent transaction does a rollback, all its
descendent transactions are rolled back,
regardless of whether they issued local
commits.

 The main benefit of nesting is that a failure in

a subtransaction can be trapped and retried

using an alternative method, which still allows

the main transaction to succeed.

 Nesting helps programmers write granular

transactions. The only commercial

implementation of nested transactions we

know of is the “Encina TP Monitor”.

 Encina's Transactional C or C+ + allows us to

declare the nesting directly in our code where

it starts resembling regular procedure

invocations.

