
Sub Code: 18BIT46S

Skill Based Subject – II: MICRO PROCESSOR & ASSEMBLY

LANGUAGE PROGRAMMING

UNIT IV: Peripheral devices and their interfacing: Address space

partitioning - Memory and I/O interfacing -Data Transfer schemes-

Interrupts of Intel 8085.

Prepared by Dr.P.SUMATHI

UNIT IV- PERIPHERAL DEVICES AND THEIR INTERFACING

4.1. Introduction

A microprocessor combined with memory and input/output devices forms a microcomputer. The

microprocessor is the heart of a microcomputer. Memories and input/output devices are

interfaced to microprocessor to form a microcomputer.

4.1. Address space partitioning

Intel 8085 uses a 16-bit wide address bus or addressing memory and I/O devices. It can access

216=64k bytes of memory and I/O devices. There are two schemes for the allocation of address to

memories or I/O devices.

1. Memory mapped I/O scheme

2. I/O mapped I/O scheme

Memory Mapped I/O Scheme

In this scheme there is only one address space. Address space is defined as set of all possible

addresses that a microprocessor can generate. Some address are assigned to memories and some

address to I/O devices. Suppose memory locations are assigned the address 2000-2500. One

address is assigned to each memory location. These addresses cannot be assigned to I/O devices.

The addresses assigned to I/O devices are different from address assigned to memory. For

example, 2500, 2501, 2502 etc. may be assigned to I/O devices. One address is assigned to each

I/O device.

In this scheme all the data transfer instruction of the microprocessor can be used for both

memory as well as I/O devices. For example, MOV A, M will be valid for data transfer from the

memory location or I/O device whose address is in H-L pair. This scheme is suitable for small

system.

I/O Mapped I/O Scheme

In this scheme the address are assigned to memory locations can also be assigned to I/O devices.

To distinguish whether the address on an address bus is for memory location or I/O

devices. The Intel 8085 issues IO/M...... signal for this purpose. When the signal is high the

address of an address bus is for I/O device. When low, the address is for a memory location. Two

extra instructions IN and OUT are used to address I/O device. The IN instruction is used to read

data from an input device. And OUT instruction is used to an output device. This scheme is

suitable for large system.

4.2. Memory and I/O Interfacing

An address decoding circuit is employed to select the required I/O device or a memory

chip. When IO/M is high, decoder is to active and the require IO device is selected. If IO/M is

low, the decoder1 is activated the required memory chip is selected. A few MSB of address line is

applied to the decoder to select the memory chip or an I/O device.

4.1. Schematic Diagram for memory and I/O interfacing

4.3. Data Transfer Schemes

The method that is used to transfer information between internal storage and external I/O

devices is known as I/O interface. The CPU is interfaced using special communication links

by the peripherals connected to any computer system. These communication links are used

to resolve the differences between CPU and peripheral. There exists special hardware

components between CPU and peripherals to supervise and synchronize all the input and

output transfers that are called interface units.

Data transfer to and from the peripherals may be done in any of the three possible ways

1. Programmed data transfer scheme

2. DMA (Direct Memory Access)

Programmed I/O: It is due to the result of the I/O instructions that are written in the

computer program. Each data item transfer is initiated by an instruction in the program.

Usually the

transfer is from a CPU register and memory. In this case it requires constant monitoring by

the CPU of the peripheral devices.

Example of Programmed I/O: In this case, the I/O device does not have direct access

to the memory unit. A transfer from I/O device to memory requires the execution of several

instructions by the CPU, including an input instruction to transfer the data from device to

the CPU and store instruction to transfer the data from CPU to memory. In programmed

I/O, the CPU stays in the program loop until the I/O unit indicates that it is ready for data

transfer. This is a time consuming process since it needlessly keeps the CPU busy. This

situation can be avoided by using an interrupt facility.

i)Synchronous Data Transfer Scheme

ii) Asynchronous Data Transfer Scheme

iii) Interrupt Driven Data Transfer Scheme

Direct Memory Access: The data transfer between a fast storage media
such as magnetic disk and memory unit is limited by the speed of the
CPU. Thus we can allow the peripherals directly communicate with each
other using the memory buses, removing the intervention of the CPU.
This type of data transfer technique is known as DMA or direct memory
access. During DMA the CPU is idle and it has no control over the
memory buses. The DMA controller takes over the buses to manage the
transfer directly between the I/O devices and the memory unit.

Types of DMA transfer using DMA controller:

i) Burst Transfer : DMA returns the bus after complete data transfer. A
register is used as a byte count, being decremented for each byte transfer,
and upon the byte count reaching zero, the DMAC will release the bus.
When the DMAC operates in burst mode, the CPU is halted for the
duration of the data transfer.

ii) Cyclic Stealing :

An alternative method in which DMA controller transfers one word
at a time after which it must return the control of the buses to the CPU.
The CPU delays its operation only for one memory cycle to allow the
direct memory I/O transfer to “steal” one memory cycle.

Synchronous Data Transfer

Synchronous means “ at the same time”. The device which spends
data and the device which receives data are synchronized with the
same clock. When the CPU and I/O devices match in speed this
technique of data transfer is employed.

Synchronous transmission is effective, dependable, and often
utilised for transmitting a large amount of data. It offers real-time
communication between linked devices. An example of
synchronous transmission would be the transfer of a large text file.
Before the file is transmitted, it is first dissected into blocks of
sentences. The blocks are then transferred over the communication
link to the target location.

Because there are no beginning and end bits, the data transfer rate
is quicker but there’s an increased possibility of errors occurring.
Over time, the clocks will get out of sync, and the target device
would have the incorrect time, so some bytes could become
damaged on account of lost bits. To resolve this issue, it’s necessary
to regularly re-synchronise the clocks, as well as to make use of
check digits to ensure that the bytes are correctly received and
translated.

Asynchronous Data Transfer

In asynchronous transmission, data moves in a half-paired approach, 1 byte or 1

character at a time. It sends the data in a constant current of bytes. The size of a

character transmitted is 8 bits, with a parity bit added both at the beginning and at

the end, making it a total of 10 bits. It doesn’t need a clock for integration—rather,

it utilizes the parity bits to tell the receiver how to translate the data.It is

straightforward, quick, cost-effective, and doesn’t need 2-way communication to

function.

4.2. Asynchronous Data Transfer

Interrupt Driven Data Transfer

In the asynchronous mode of transfer, microprocessor is busy all the time in

checking for the availability of data from the slower I/O devices. And it also busy

in checking if I/O device is ready for the data transfer or not. In other words in this

data transfer scheme, some of the microprocessor time is wasted in waiting while

an I/O device is getting ready. To overcome this

problem interrupt driven I/O data transfer introduced. In this interrupt driven I/O data transfer

method the I/O device informs the microprocessor for the data transfer whenever the I/O device

is ready. This is achieved by interrupting the microprocessor by using the interrupt pins of

microprocessor.

4.3. Interrupt Driven Data Transfer Scheme for an A/D Converter

In the beginning the microprocessor initiates data transfer by requesting the I/O device ‘to get

ready’ and then continue executing its original program rather wasting its time by checking the

status of I/O device. Whenever the device is ready to accept or supply data, it informs the

processor through a control signal. This control signal known as interrupt (INTR) signal. In

response to this interrupt signal, the microprocessor sends back an interrupt acknowledge signal

to the I/O device. Interrupts driven data transfer is better from asynchronous mode but it is still

not very effective technique when data needs to be transferred in large amounts because it

requires an interrupt for every character read or written. This leads us to an another approach

called direct memory access(DMA) mode.

4.4. Interrupts of intel 8085

Interrupt is a process where an external device can get the attention of the microprocessor.

The process starts from the I/O device. The process is asynchronous, means can occur at any time

during execution of program. In order to communicate with pP & I/O devices either Polling or

Interrupt method is used. An interrupt is considered to be an emergency signal. The

Microprocessor should respond to it as soon as possible.

Polling Method in polling, pP polls i.e. ask each device in sequence whether it is ready for

communication (data transfer). If device is ready, then data transfer takes place between device &

pP. If device is not ready or completed its data transfer, then pP asks the next device in chain.

Main disadvantage of this method is that most of the time pP remains busy in polling. So some

useful tasks get less time to execute. This method is useful only if pP has contains few I/O

devices.

Interrupt is signal send by an external device to the microprocessor to request the processor

to perform a particular task or work. It is a simple routine program that keeps a check for the

occurrence of the interrupt. Mainly in the microprocessor based system the interrupts are used for

data transfer between the peripheral (I/O) and the microprocessor. If the pP accept the interrupt

and send the INTA (active low) signal to the peripheral. When interrupt is received, pP suspends

its current activity and upon completion, it resumes the suspended activity. The processor

executes an interrupt service routine (ISR) addressed in program counter. It returned to main

program by RET instruction. Advantage is that pP need not waste time in polling the devices.

4.4.1. Interrupt process

When the MPU is executing a program it checks all the interrupt lines during the

execution of each instruction.

• If any Interrupt line is enables, the processor completes the current going

instruction execution.

• If more than one lines are enabled simultaneously then the processor pick up the

request which have the highest priority and all other are discarded.

• After completion of the current instruction execution, processor checks for the

respective conditions for the activated interrupt or selected interrupt in case of

more than one.

• If condition are not favorable then request is discarded or stored or if the condition

are favorable then the processor generates an external INTA or internal

acknowledges signal to insert a RST(restart) instruction or the vector location

respectively.

• Now the processor save the address of the next instruction (program counter value)

on to stack and switch to the related RST location or vector location.

• Service routine written on the location is completed which have RET as its last

instruction which returns the program control to the main program by retrieving

the return address from the stack.

4.4.2. Types of interrupts

i. S oftware Interrupt

ii. Hardware Interrupt

Software interrupts: It is a instruction based Interrupt which is completely control by software.

That means programmer can use this instruction to execute interrupt in main program. There are

eight software interrupt available in pP that are RST0 to RST7.

The vector address for these interrupts can be calculate as Interrupt number * 8 = vector address

For RST 5 5*8 = 40(in decimal) =28H (in Hexa) Vector address for interrupt RST5 is 0028H.

This vector address is stored in Program Counter(PC). These instruction allow transfer of

program control from the main program to predefined service routine is also referred to as

ISR(Interrupt Service Routine).

Hardware interrupts: This interrupt is caused by sending a signal on one of the interrupt pins of

the microprocessor. An external device initiates the hardware interrupts and placing an

appropriate signal at the interrupt pin of the processor. If the interrupt is accepted then the process

or executes an interrupt service routine (ISR). Hardware interrupt is Asynchronous(it can occur at

any time). The 8085 has five hardware interrupts (1)TRAP (2)RST7.5 (3)RST6.5 (4)RST5.5

(5)INTR(address is supplied externally). The hardware interrupts are classified Two types:

i. Maskable Interrupts

ii. Non-Maskable Interrupts

Maskable interrupts: An interrupt which can be disabled by software that means we can disable

the interrupt by sending appropriate instruction, is called a maskable interrupt. RST 7.5, RST 6,

RST 5.5 , INT R are the example of Maskable Interrupt.

Non-Maskable interrupts: Cannot disable the interrupt by sending any instruction is called Non

Maskable Interrupt. TRAP interrupt is the non-maskable interrupt for 8085. It means that if an

interrupt comes via TRAP, 8085 will have to recognize the interrupt we cannot mask it.

Triggering levels: When a device interrupts, it actually wants the MP to give a service which is

equivalent to asking the MP to call a subroutine. This subroutine is called ISR (Interrupt Service

Routine). This interrupts can be enable and disable by using EI (enable interrupt) & DI (disable

interrupt) instructions. The ‘EI’ instruction is a one byte instruction and is used to Enable the

non-maskable interrupts. The ‘DI’ instruction is a one byte instruction and is used to Disable the

non-maskable interrupts.

Enable Interrupt(EI) The interrupt process is enable by using EI instruction in the main

program. It is 1-byte instruction. It enables the interrupt process. Enabling will save the current

status and jumps to an interrupt service routine (ISR). After completion it will return back to the

main program again.

MSER 7-5

RST 5-5 MASK

RST 6-5 MASK

RST 7-5 MASK

MASK SET ENABLE

RESET RST 7-5

UNDEFINED

SOD ENABLE
armed with

SERIAL OUTPUT DATA
CamScanner

4.5. Accumulator Content for SIM

Disable Interrupt(DI) This DI instruction is used to disable the interrupt. It is 1-byte instruction.

This instruction reset the interrupt enable and disables the interrupt. Both EI & DI are used to

enable and disable the interrupts. If the interrupt is masked (disabled), they will not

be recognized by microprocessor. To enable It again they must
be unmasked (enabled) by using EI.

