Sub Code: 18BIT46S Skill Based Subject – II: MICRO PROCESSOR & ASSEMBLY LANGUAGE PROGRAMMING

UNIT III: Assembly language programming - Addition of two 8-bit numbers - 8-bit subtraction -Decimal addition of two 8-bit numbers - Addition of two 16-bit numbers - 8-bit decimal subtraction - finding square from look-up table - Finding largest number in a data array - Arrange a data array in ascending and descending order - Sum of series of 8-bit numbers - 8-bit multiplication - 8-bit division.

Prepared by Dr.P.SUMATHI

Assembly language programming

1) Addition of two 8 bit numbers: Sum 8-Bits

PROGRAM

Memory	Mnemonics	Operands	Comments
Address			
2000	LXI	H, 2501 H	Get address of 1 st number in H-L pair
2003	MOV	A, M	1 st number in accumulator
2004	INX	H	Increment content of H-L pair
2005	ADD	M	Add 1 st and 2 nd number
2006	STA	2503 H	Store sum in 2503 H.
2009	HLT		Stop

DATA

2501 - 49 H

2502 - 56 H

The sum is stored in the memory location 2503 H.

Result

2503 – 9F H.

2) 8-Bit subtraction

PROGRAM

Memory	Mnemonics	Operands	Comments
Address			
2000	LXI	H, 2501 H	Get address of 1 st number in H-L pair
2003	MOV	A, M	1 st number in accumulator
2004	INX	Н	Content of H-L pair increases from 2501 to 2502 H
2005	SUB	M	1 st number - 2 nd number
2006	INX	Н	Content of H-L pair becomes 2503 H
2007	MOV	M, A	Store sum in 2503 H.
2008	HLT		Halt

DATA

2501 - 49 H

2502 - 32 H

The sum is stored in the memory location 2503 H.

Result

2503 - 17 H

3) Decimal Addition of Two 8-Bit Numbers, Sum: 16 Bits

$\mathbf{p}\mathbf{p}$	0	GR	Δ	1	1
1 1/	•	(T I \	$\overline{}$		′∎

Memory Address	Label	Mnemonics	Operands	Comments
2000		LX1	H, 2501 H	Address of 1st number in H-L Pair
2003		MVI	C, 00	MSBs of sum in register C. Initial value=00
2005		MOV	A, M	1 st Number in Accumulator
2006		INX	Н	Address of 2nd number 2502 in H-L pair
2007		ADD	M	Ist number $+ 2^{nd}$ Number.
2008		DAA		Decimal adjust.
2009		JNC	AHEAD	Is carry? No, go to the label AHEAD.
200C		INR	C	Yes, increment C.
200D	AHEAD	STA	2503 H	LSDs of sum in 2503 H.
2010		MOV	A, C	MSDs of sum in accumulator.
2011		STA	2504	MSDs of sum in 2504 H.
2014		HLT		

Example 1

DATA

2501 - 84 D

2502 - 75 D

Result

2503 - 59 D, LSDs of the sum.

2504 - 01 D, MSDs of the sum

4) Addition of Two 16 – Bit Numbers, Sum: 16 Bits or more

PROGRAM

	1110 0111111						
Memory	Label	Mnemonics	Operands	Comments			
Address							
2000		LHLD	2501 H	Ist 16 – number in H-L Pair.			
2003		XCHG		Get Ist number in D – E pair.			
2004		LHLD	2503 H	2nd 16 – bit number in H –L pair.			
2007		MVI	C, 00	MSBs of sum in Register C.			
				Initial value $= 00$.			
2009		DAD	D	Ist number + 2nd number.			
200A		JNC	AHEAD	Is carry? No, go to the label AHEAD.			
200D		INR	C	Yes, increment C.			
200E	AHEAD	SHLD	2505 H	Store LSBs of sum in 2505 and 2506 H.			
2011		MOV	A, C	MSDs of sum in accumulator.			
2012		STA	A, C	Store MSBs of sum in 2507 H			
2015		HLT	2507 H	Halt			

Example 1

DATA

2501 - 98 H, LSBs of Ist number.

2502 - 5B H, MSBs of Ist number.

2503 – 4C H, LSBs of 2nd number.

2504 - 8E H, MSBs of 2nd number.

5) 8-Bit Decimal Subtraction

PROGRAM

Memory Address	Mnemonics	Operands	Comments
2000	LXI	H, 2502 H	Get address of 2nd number in H-L Pair.
2003	MVI	A, 99	Place 99 in accumulator.
2005	SUB	M	9's complement of 2nd number.
2006	INR	A	10's complement of 2nd number.
2007	DCX	Н	Get address Ist number.
2008	ADD	M	Add Ist number and 10's complement of 2nd
			number.
2009	DAA		Decimal adjust.
200A	STA	2503 H	Store result in 2503 H
200D	HLT		Halt

Example 1

DATA

2501 - 96

2502 - 38

Result

2503 - 58

6. Find Square from Lookup Table

PROGRAM

Address	Mnemonics	Operand	Comments
2000	LDA	2500 H	Get data in accumulator.
2003	MOV	L, A	Get data in register L.
2004	MVI	H, 26 H	Get 26 in register H.
2006	MOV	A, M	Square of data in accumulator.
2007	STA	2501	Store square in 2501 H.
200A	HLT		Stop

DATA

2500 - 07 D

7. Find the Largest Number in a Data Array

Labels	Mnemonics	Operands	Comment
	LXI	H,2500,H	Address for count in H-I pair.
	MOV	C, M	Count in register C.
	INX	Н	Address of 1 st number in H-L pair.
	MOV	A, M	1 st number in accumulator.
	DCR	C	Decrement count.
LOOP	INX	Н	Address of next number.
	CMP	M	Compare next number with previous maximum. Is next number > Previous maximum?
	JNC	AHEAD	No larger number is in accumulator. Go to the label AHEAD.
	MOV	A, M	Yes, get larger number in accumulator.
AHEAD	DCR	C	Decrement count.
	JNZ	LOOP	
	STA	2450 H	Store result in 2450 H.
	HLT		Stop
	LOOP	LXI MOV INX MOV DCR LOOP INX CMP JNC MOV AHEAD DCR JNZ STA	LXI H,2500,H MOV C, M INX H MOV A, M DCR C LOOP INX H CMP M JNC AHEAD MOV A, M AHEAD DCR C JNZ LOOP STA 2450 H

DATA

2500-03

2501 - 98

2502-75

2503 - 99

Result

2450 - 99

8. To Arrange a Series of Numbers in Descending Order

PROGRAM

INOGIAL	**			
Address	Label	Mnemo nics	Operand	Comments
2000		LXI	D, 2601	Memory locations to store results.
2003		LXI	H, 2500	Count address in $H - L$.
2006			MOV	Count in register B to check whether all
				Numbers have been arranged in
				descending order.
2007	START	CALL	2200	Call subordinate-1 to find largest number.
200A		STAX	D	Store result.

200B	CALL	2050	Call subrouting-2 to check which number is largest.
200E	INX	D	-
200F	DCR	В	Have all numbers been arranged in descending order?
2010	JNZ	START	No, repeat process.
2013	HLT		Stop

9. To Arrange a Data Array in Ascending Order

PROGRAM							
Address	Labels	Mnemonics	Operands	Comments			
2000		LXI	D, 2601	Memory location to store result.			
2003		LXI	H, 2500	Count address in $H - L$ pair.			
2006		MOV	B, M	Count in register B to check whether all numbers have been arranged in ascending order.			
2007	START	CALL	2200	Call Subroutine – 1 to find smallest number.			
200A		STAX	D	Store the result.			
200B		CALL	2050	Call Subroutine – 2 to check which number is smallest.			
200E		INX	D	Have all numbers been arranged in ascending order?			
200F		DCR	В	No, repeat process.			

START

Stop

10. Sum of a Series of 8 – Bit Numbers; Sum: 8 Bits.

JNZ

HLT

PROGRAM

2010

2013

Address	Labels	Mnemonics	Operands	Comments		
2400		LXI	H, 2500 H	Address for the count inn $H - L$ pair.		
2403		MOV	C, M	The count in register C.		
2404		MVI	A, 00	Initial value of sum $= 00$.		
2406	LOOP	INX	Н	Address of next data is $H - L$ pair.		
2407		ADD	M	Previous sum + next number.		
2408		DCR	C	Decrement count.		
2409		JNZ	LOOP	Is count = 0 ? No, jump to LOOP.		
240C		STA	2450 H	Store sum in 2450 H.		
240F		HLT		Stop		
11. 8-Bit Multiplication: Product 16 – Bit						

Address Labels Mnemonics Operands Comments

2000 LHLD 2501 H Get multiplicand in H-L pair.

2003		XCHG		Multiplicand in D − E pair.
2004		LDA	2503 H	Multiplier in accumulator.
2007		LXI	H, 0000	Invalid value of product = 00 in H – L pair.
200A		MVI	C, 08	Count = 8 in register C.
200C	LOOP	DAD	H	Shift partial product left by 1 bit.
200D		RAL		Rotate multiplier left one bit. Is multiplier's
				bit -1 ?
200E		JNC	AHEAD	No, go to AHEAD.
2011		DAD	D	Product = Product + Multiplicand.
2312	AHEAD	DCR	C	Decrement count.
2013		JNC	LOOP	
2016		SHLD	2504	Store result.
2019		HLT		

Example 1

DATA

 $2501-84\ H,$ LSBs of multiplicand.

2502 – 00, MSBs of multiplicand.

2503 – 56 H, Multiplier.

Result

 $2504-58\ H,$ LSBs of product.

2505 – 2C MSBs of product.

12) 8 – Bit division

PROGRAM

Address	Labels	Mnemonics	Operands	Comments
2400		LHLD	2501 H	Get dividend in H – L pair.
2403		LDA	2503 H	Get divisor from 250 H.
2406		MOV	B, A	Divisor in register B.
2407		MVI	C, 08	Count = 08 in register C.
2409	LOOP	DAD	Н	Shift dividend and quotient left by one bit.
240A		MOV	A, H	Most significant bits of dividend in accumulator.
240B		SUB	В	Subtract divisor from most significant bits of dividend.
240C		JC	AHEAD	Is most significant part of dividend > divisor? No, go to AHEAD.
240F		MOV	H, A	Most significant bits of dividend in register H.
2410		INR	L	Yes, add 1 to quotient.
2411	AHEAD	DCR	C	Decrement count.
2412		JNZ	LOOP	Is count = 0? No, jump to LOOP.
2415		SHLD	2504 H	Store quotient in 2504 and remainder in 2505 H.
2418		HLT		Stop