Sub Code: 18BIT46S
 Skill Based Subject - II: MICRO PROCESSOR \& ASSEMBLY LANGUAGE PROGRAMMING

UNIT III: Assembly language programming - Addition of two 8-bit numbers - 8bit subtraction -Decimal addition of two 8 -bit numbers - Addition of two 16 -bit numbers - 8-bit decimal subtraction - finding square from look-up table - Finding largest number in a data array - Arrange a data array in ascending and descending order - Sum of series of 8 -bit numbers - 8 -bit multiplication - 8 -bit division.

Prepared by Dr.P.SUMATHI

Assembly language programming

1) Addition of two 8 bit numbers: Sum 8-Bits

PROGRAM

Memory Address	Mnemonics	Operands	Comments
2000	LXI	$\mathrm{H}, 2501 \mathrm{H}$	Get address of $1^{\text {st }}$ number in H-L pair
2003	MOV	A, M	$1^{\text {st }}$ number in accumulator
2004	INX	H	Increment content of H-L pair $_{2005}$
ADD	M	Add $1^{\text {st }}$ and $2^{\text {nd }}$ number	
2006	STA	2503 H	Store sum in 2503 H.
2009	HLT		Stop

DATA
2501-49 H
$2502-56 \mathrm{H}$
The sum is stored in the memory location 2503 H .

Result
2503 - 9F H.

2) 8 -Bit subtraction

PROGRAM

Memory Address	Mnemonics	Operands	Comments
2000	LXI	$\mathrm{H}, 2501 \mathrm{H}$	Get address of $1^{\text {st }}$ number in H-L pair
2003	MOV	A, M	$1^{\text {st }}$ number in accumulator
2004	INX	H	Content of H-L pair increases from 2501 to $2502 \mathrm{H}_{2005}$
SUB	M	$1^{\text {st }}$ number $-2^{\text {nd }}$ number	
2006	INX	H	Content of H-L pair becomes 2503 H
2007	MOV	M, A	Store sum in 2503 H.
2008	HLT		Halt

DATA

2501-49 H
2502-32 H
The sum is stored in the memory location 2503 H .

Result

2503-17 H

3) Decimal Addition of Two 8-Bit Numbers, Sum: 16 Bits				
PROGRAM				
Memory Address	Label	Mnemonics	Operands	Comments
2000		LX1	H, 2501 H	Address of $1^{\text {st }}$ number in H-L Pair
2003		MVI	C, 00	MSBs of sum in register C. Initial value $=00$
2005		MOV	A, M	$1{ }^{\text {st }}$ Number in Accumulator
2006		INX	H	Address of 2nd number 2502 in H-L pair
2007		ADD	M	Ist number $+2{ }^{\text {nd }}$ Number.
2008		DAA		Decimal adjust.
2009		JNC	AHEAD	Is carry? No, go to the label AHEAD.
200C		INR	C	Yes, increment C.
200D	AHEAD	STA	2503 H	LSDs of sum in 2503 H .
2010		MOV	A, C	MSDs of sum in accumulator.
2011		STA	2504	MSDs of sum in 2504 H .
2014		HLT		

Example 1
DATA
2501-84 D
2502-75 D

Result

2503-59 D, LSDs of the sum.
2504-01 D, MSDs of the sum
4) Addition of Two 16 - Bit Numbers, Sum: 16 Bits or more

PROGRAM

Memory Label Mnemonics Operands Comments
Address

2000
2003
2004
2007
2009
200A
200D
200E
2011
2012
2015

	LHLD	2501 H	Ist 16 - number in H-L Pair.
	XCHG		Get Ist number in $\mathrm{D}-\mathrm{E}$ pair.
	LHLD	2503 H	2nd 16 - bit number in H -L pair.
	MVI	C, 00	MSBs of sum in Register C. Initial value $=00$.
	DAD	D	Ist number +2 nd number.
AHEAD	JNC	AHEAD	Is carry? No, go to the label AHEAD.
	INR	C	Yes, increment C.
	SHLD	2505 H	Store LSBs of sum in 2505 and 2506 H .
	MOV	A, C	MSDs of sum in accumulator.
	STA	A, C	Store MSBs of sum in 2507 H
	HLT	2507 H	Halt

Example 1

DATA

2501-98 H, LSBs of Ist number.
2502-5B H, MSBs of Ist number.
2503 - 4C H, LSBs of 2nd number.
2504-8E H, MSBs of 2nd number.
5) 8-Bit Decimal Subtraction

PROGRAM

Memory Address	Mnemonics	Operands	Comments
2000	LXI	H, 2502 H	Get address of 2nd number in H-L Pair.
2003	MVI	A, 99	Place 99 in accumulator.
2005	SUB	M	9's complement of 2nd number.
2006	INR	A	10's complement of 2nd number.
2007	DCX	H	Get address Ist number.
2008	ADD	M	Add Ist number and10's complement of 2nd
2009	DAA		Decimal adjust.
200A	STA	2503 H	Store result in 2503 H
200D	HLT		Halt

Example 1

DATA
2501-96
2502-38
Result
2503-58

6. Find Square from Lookup Table

PROGRAM

Address	Mnemonics	Operand	Comments
2000	LDA	2500 H	Get data in accumulator.
2003	MOV	L, A	Get data in register L.
2004	MVI	H, 26 H	Get 26 in register H.
2006	MOV	A, M	Square of data in accumulator.
2007	STA	2501	Store square in 2501 H.
200A	HLT		Stop

DATA
2500-07 D

PROGRAM Address	Labels	Mnemonics	Operands	Comment
2000		LXI	H,2500, H	Address for count in H-I pair.
2003		MOV	C, M	Count in register C.
2004		INX	H	Address of $1^{\text {st }}$ number in H-L pair.
2005		MOV	A, M	$1^{\text {st }}$ number in accumulator.
2006		DCR	C	Decrement count.
2007	LOOP	INX	H	Address of next number.
2008		CMP	M	Compare next number with previous maximum. Is next number > Previous maximum?
2009		JNC	AHEAD	No larger number is in accumulator. Go to the label AHEAD.
200C		MOV	A, M	Yes, get larger number in accumulator.
200D	AHEAD	DCR	C	Decrement count.
200E		JNZ	LOOP	
2011		STA	2450 H	Store result in 2450 H .
2014		HLT		Stop
DATA				
2500-03				
2501-98				
2502-75				
2503-99				
Result				
2450-99				
8. To Arrange a Series of Numbers in Descending Order				
PROGRAM				
Address	Label	Mnemo nics	Operand	Comments
2000		LXI D	$\mathrm{D}, 2601$	Memory locations to store results.
2003		LXI H	H, 2500 Cols	Count address in $\mathrm{H}-\mathrm{L}$.
2006			MOV	Count in register B to check whether all Numbers have been arranged in descending order.
2007	START	CALL 2	2200 C	Call subordinate-1 to find largest number.
200A		STAX D	D S	Store result.

200 B	CALL 2050	Call subrouting-2 to check which number is largest.	
200 E	INX	D	Have all numbers been arranged in descending order?
200 F	DCR	B	No, repeat process. 2010
2013	JNZ	START	Stop

9. To Arrange a Data Array in Ascending Order

PROGRAM

Address	Labels	Mnemonics	Operands	Comments
2000		LXI	D, 2601	Memory location to store result.
2003		LXI	H, 2500	Count address in $\mathrm{H}-\mathrm{L}$ pair.
2006		MOV	B, M	Count in register B to check whether all numbers have been arranged in ascending order.
2007	START	CALL	2200	Call Subroutine -1 to find smallest number.
200A		STAX	D	Store the result.
200B		CALL	2050	Call Subroutine -2 to check which number is smallest.
200E		INX	D	Have all numbers been arranged in ascending order?
200F		DCR	B	No, repeat process.
2010		JNZ	START	Stop
2013		HLT		

10. Sum of a Series of 8 -Bit Numbers; Sum: 8 Bits.

PROGRAM

Address	Labels	Mnemonics	Operands	Comments
2400		LXI	H, 2500 H	Address for the count inn H - L pair.
2403		MOV	C, M	The count in register C.
2404		MVI	A, 00	Initial value of sum =00.
2406	LOOP	INX	H	Address of next data is H - L pair.
2407		ADD	M	Previous sum + next number.
2408		DCR	C	Decrement count.
2409		JNZ	LOOP	Is count $=0$? No, jump to LOOP.
240 C		STA	2450 H	Store sum in 2450 H.
240 F		HLT		Stop

11. 8-Bit Multiplication: Product 16 - Bit

Address Labels Mnemonics Operands Comments
2000 LHLD $2501 \mathrm{H} \quad$ Get multiplicand in $\mathrm{H}-\mathrm{L}$ pair.

2003		XCHG			
2004		LDA	2503 H		Multiplicand in D - E pair.
:---					
Multiplier in accumulator.					
2007					

Example 1
 DATA
 2501-84 H, LSBs of multiplicand.
 $2502-00$, MSBs of multiplicand.
 2503 - 56 H, Multiplier.

Result
$2504-58 \mathrm{H}$, LSBs of product.
2505 - 2C MSBs of product.
12) 8 - Bit division

PROGRAM

Address	Labels	Mnemonics	Operands	Comments
2400		LHLD	2501 H	Get dividend in $\mathrm{H}-\mathrm{L}$ pair.
2403		LDA	2503 H	Get divisor from 250 H .
2406		MOV	B, A	Divisor in register B.
2407		MVI	C, 08	Count $=08$ in register C.
2409	LOOP	DAD	H	Shift dividend and quotient left by one bit.
240A		MOV	A, H	Most significant bits of dividend in accumulator.
240B		SUB	B	Subtract divisor from most significant bits of dividend.
240C		JC	AHEAD	Is most significant part of dividend > divisor? No, go to AHEAD.
240F		MOV	H, A	Most significant bits of dividend in register H .
2410		INR	L	Yes, add 1 to quotient.
2411	AHEAD	DCR	C	Decrement count.
2412		JNZ	LOOP	Is count $=0$? No, jump to LOOP .
2415		SHLD	2504 H	Store quotient in 2504 and remainder in 2505 H .

HLT
Stop

