
Subject title: Allied 4: COMPUTER SYSTEM ARCHITECTURE

YEAR 2018-19 ONWARDS SEMESTER: IV

SUBJECT CODE: 18BIT44A

UNIT V: Memory organization: memory

hierarchy – main memory – auxiliary memory –

associative memory – cache memory – virtual

memory.

Memory organization:

Memory hierarchy

The memory unit is an essential component in

any digital computer since It Is needed for storing

programs and data. They are used for storing system

programs, large data, and other backup information.

Only programs and data currently needed by the

processor reside in main memory.

Cache memory

Memory hierarchy

Main Memory

The main memory is the central storage unit in a
computer system. It is a relatively large and fast
memory used to store programs and data during the
computer operation. The principal technology used
for the main memory is based on semiconductor
integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and
dynamic.

The static RAM consists essentially of internal
flip-flops that store the binary information. The stored
information remains valid as long as power is applied
to the unit.

The dynamic RAM stores the binary information
in the form of electric charges that are applied to
capacitors. The capacitors are provided inside the
chip by MOS transistors. The stored charge on the
capacitors tend to discharge with time and the
capacitors must be periodically recharged by
refreshing the dynamic memory.
Refreshing is done by cycling through the words
every few milliseconds to restore the decaying
charge.

The dynamic RAM offers reduced power
consumption and larger storage capacity in a single
memory chip.

 The static RAM is easier to use and has shorter
read and write cycles.

Most of the main memory in a general-purpose
computer is made up of RAM integrated circuit chips,
but a portion of the memory may be constructed with
ROM chips. Originally, RAM was used to refer to a
random-access memory, but now it is used to
designate a read/write memory to distinguish it from
a read-only memory, although ROM is also random
access.

RAM is used for storing the bulk of the programs
and data that are subject to change.

ROM is used for storing programs that are
permanently resident in the computer and for tables

of constants that do not change in value once the
production of the computer is completed.

Among other things, the ROM portion of main
memory is needed for storing an initial program called
a bootstrap loader. The bootstrap loader is a program
whose function is to start the computer software
operating when power is turned on.
Since RAM is volatile, its contents are destroyed
when power is turned off.
The contents of ROM remain unchanged after power
is turned off and on again. The startup of a computer
consists of turning the power on and starting the
execution of an initial program.

 Thus when power is turned on, the hardware of
the computer sets the program counter to the first
address of the bootstrap loader. The bootstrap
program loads a portion of the operating system from
disk to main memory and control is then transferred
to the operating system, which prepares the computer
for general use.

RAM and ROM chips are available in a variety of
sizes. If the memory needed for the computer is larger
than the capacity of one chip, it is necessary to
combine a number of chips to form the required
memory size. To demonstrate the chip

interconnection, we will show an example of a 1024 x

8 memory constructed with 128 x 8 RAM chips and
512 x 8 ROM chips.

RAM and ROM Chips

A RAM chip is better suited for communication
with the CPU if it has one or more control inputs that
select the chip only when needed. Another common
feature is a bidirectional data bus that allows the
transfer of data either from memory to CPU during a
read operation, or from CPU to memory during a write
operation. A bidirectional bus can be constructed with
three-state buffers. A three-state buffer output can be
placed in one of three possible states:

 a signal equivalent to logic 1,
 a signal equivalent to logic 0,
or a high impedance state.
The logic 1 and 0 are normal digital signals. The

high impedance state behaves like an open circuit,

which means that the output does not carry a signal
and has no logic significance.

ROM CHIP

Auxiliary Memory

The most common auxiliary memory devices
used in computer systems are magnetic disks and
tapes. Other components used, but not as frequently,
are magnetic drums, magnetic bubble memory, and
optical disks.

To understand fully the physical mechanism of
auxiliary memory devices one must have a
knowledge of magnetics, electronics, and
electromechanical systems.

MEMORY CONNECTION TO CPU

Magnetic Disks
A magnetic disk is a circular plate constructed of

metal or plastic coated with magnetized material.
Often both sides of the disk are used and several
disks may be stacked on one spindle with read/write
heads available on each surface.

All disks rotate together at high speed and are not

stopped or started for access purposes. Bits are
stored in the magnetized surface in spots along
concentric circles called tracks. The tracks are
commonly divided into sections called sectors. In
most systems, the minimum quantity of information
which can be transferred is a sector. The subdivision
of one disk surface into tracks and sectors is shown
in Fig.

Magnetic Tape
A magnetic tape transport consists of the

electrical, mechanical, and electronic components to
provide the parts and control mechanism for a
magnetic-tape unit. The tape itself is a strip of plastic
coated with a magnetic recording medium. Bits are
recorded as magnetic spots on the tape along several
tracks.

Usually, seven or nine bits are recorded
simultaneously to form a character together with a
parity bit. Read/write heads are mounted one in each
track so that data can be recorded and read as a
sequence of characters.

Magnetic tape units can be stopped, started to
move forward or in reverse, or can be rewound.
However, they cannot be started or stopped fast
enough between individual characters. For this
reason, information is recorded in blocks referred to
as records. Gaps of unrecorded tape are inserted
between records where the tape can be stopped. The
tape starts moving while in a gap and attains its
constant speed by the time it reaches the next record.
Each record on tape has an identification bit pattern
at the beginning and end. By reading the bit pattern
at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the
record, the control recognizes the beginning of a gap.
A tape unit is addressed by specifying the record

number and the number of characters in the record.
Records may be of fixed or variable length.

Associative Memory

Many data-processing applications require the
search of items in a table stored in memory. An
assembler program searches the symbol address
table in order to extract the symbol's binary
equivalent. An account number may be searched in a
file to determine the holder's name and account
status. The established way to search a table is to
store all items where they can be addressed in
sequence. The search procedure is a strategy for
choosing a sequence of addresses, reading the
content of memory at each address, and comparing
the information read with the item being searched
until a match occurs. The number of accesses to
memory depends on the location of the item and the
efficiency of the search algorithm. Many search
algorithms have been developed to minimize the
number of accesses while searching for an item in a
random or sequential access memory.
The time required to find an item stored in memory
can be reduced considerably if stored data can be
identified for access by the content of the data itself
rather than by an address. A memory unit accessed

by content is called an associative memory or content
addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the
basis of data content rather than by specific address
or location. When a word is written in an associative
memory, no address is given. The memory is capable
of finding an empty unused location to store the word.
When a word is to be read from an associative
memory, the content of the word, or part of the word,
is specified. The memory locates all words which
match the specified content and marks them for
reading.
Because of its organization, the associative memory
is uniquely suited to do parallel searches by data
association. Moreover, searches can be done on an
entire word or on a specific field within a word. An
associative memory is more expensive than a
random access memory because each cell must have
storage capability as well as logic circuits for matching
its content with an external argument. For this reason,
associative memories are used in applications where
the search time is very critical and must be very short.
Hardware Organization

The block diagram of an associative memory is

shown in Fig. It consists of a memory array and logic

for m words with n bits per word. The argument

register A and key register K each have n bits, one for

each bit of a word. The match register M has m bits,
one for each memory word. Each word in memory
is compared in parallel with the content of the
argument register. The words that match the bits of
the argument register set a corresponding bit in the
match register.

After the matching process, those bits in the
match register that have been set indicate the fact
that their corresponding words have been matched.

Reading is accomplished by a sequential access
to memory for those words whose corresponding bits
in the match register have been set.

The key register provides a mask for choosing a
particular field or key in the argument word. The entire
argument is compared with each memory word if the
key register contains all l' s. Otherwise, only those bits
in the argument that have l's in their corresponding
position of the key register are compared.

ASSOCIATIVE MEMORY

Match Logic
The match logic for each word can be derived

from the comparison algorithm for two binary
numbers. First, we neglect the key bits and compare
the argument in A with the bits stored in the cells of

the words. Word i is equal to the argument in A if Ai =

F,i for j = 1, 2, . . . , n . Two bits are equal if they are

both 1 or both 0. The equality of two bits can be
expressed logically by the Boolean function where xi

= 1 if the pair of bits in position j are equal; otherwise,

xi = 0.

For a word i to be equal to the argument in A we
must have all xi variables equal to 1. This is the
condition for setting the corresponding match bit M, to
1. The Boolean function for this condition is and
constitutes the AND operation of all pairs of matched
bits in a word.

Read Operation

If more than one word in memory matches the
unmasked argument field, all the matched words will
have 1's in the corresponding bit position of the match
register. It is then necessary to scan the bits of the
match register one at a time.

The matched words are read in sequence by applying
a read signal to each word line whose corresponding
M, bit is a 1 .

 Write Operation

An associative memory must have a write
capability for storing the information to be searched.
Writing in an associative memory can take different
forms, depending on the application. If the entire
memory is loaded with new information at once prior
to a search operation then the writing can be done by
addressing each location in sequence. This will make
the device a random access memory for writing and
a content addressable memory for reading. The
advantage here is that the address for input can be
decoded as in a random access memory. Thus
instead of having m address lines, one for each word
in memory, the number of address lines can be

reduced by the decoder to d lines, where m = 2'.

Cache Memory

Analysis of a large number of typical programs
has shown that the references to memory at any
given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is

known as the property of locality of reference locality

of reference . The reason for this property may be

understood considering that a typical computer
program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently.
When a program loop is executed, the CPU
repeatedly refers to the set of instructions in memory
that constitute the loop. Every time a given subroutine
is called, its set of instructions are fetched from
memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To
a lesser degree, memory references to data also tend
to be localized. Table-lookup procedures repeatedly
refer to that portion in memory where the table is
stored. Iterative procedures refer to common memory
locations and array of numbers are confined within a
local portion of memory. The result of all these
observations is the locality of reference property,
which states that over a short interval of time, the
addresses generated by a typical program refer to a
few localized areas of memory repeatedly, while the
remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are
placed in a fast small memory, the average memory
access time can be reduced, thus reducing the total
execution time of the program. Such a fast small
memory is referred to as a cache memory. It is placed
between the CPU and main memory.

The basic operation of the cache is as follows. When
the CPU needs to access memory, the cache is
examined. If the word is found in the cache, it is read
from the fast memory. If the word addressed by the
CPU is not found in the cache, the main memory is
accessed to read the word. A block of words
containing the one just accessed is then transferred
from main memory to cache memory. The block size
may vary from one word (the one just accessed) to
about 16 words adjacent to the one just accessed. In
this manner, some data are transferred to cache so
that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently
measured in terms of a quantity called hit ratio .
When the CPU refers to memory and finds the word
in cache, it is said to produce a hit . If the word is not
found in cache, it is in main memory and it counts as
a miss . The ratio of the number of hits divided by
the total CPU references to memory (hits plus
Misses) is the hit ratio.

The hit ratio is best measured experimentally by
running representative programs in the computer
and measuring the number of hits and misses during
a given interval of time. Hit ratios of 0.9 and higher
have been reported. This high ratio verifies the
validity of the locality of reference property.

The average memory access time of a computer
system can be improved considerably by use of a
cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of
main memory, the average access time is closer to
the access time of the fast cache memory.

 For example, a computer with cache access
time of 100 ns, a main memory access time of 1000
ns, and a hit ratio of 0.9 produces an average
access time of 200 ns. This is a considerable
improvement over a similar computer without a
cache memory, whose access time is 1000 ns .The
basic characteristic of cache memory is its fast
access time.

Therefore, very little or no time must be wasted
when searching for words in the cache.

The transformation of data from main memory to
Cache memory is referred to as a mapping
process. Three types of mapping procedures are
of practical interest when considering the
organization of cache memory:

1. Associative mapping
2. Direct mapping

3. Set-associative mapping

Associative Mapping
The fastest and most flexible cache organization uses
an associative memory

 Direct Mapping

Associative memories are expensive compared
to random-access memories because of the added
logic associated with each cell

Set-Associative Mapping

It was mentioned previously that the
disadvantage of direct mapping is that two words with
the same index in their address but with different tag
values cannot reside in cache memory at the same
time. A third type of cache organization,called set-
associative mapping, is an improvement over the
directmapping organization in that each word of
cache can store two or more words of memory under
the same index address. Each data word is stored
together with its tag and the number of tag-data items
in one word of cache is said to form a set. An example
of a set-associative cache organization for a set size
of two is shown in Fig.

Virtual Memory

In a memory hierarchy system, programs and data
are first stored in auxiliary memory. Portions of a
program or data are brought into main memory as
they are needed by the CPU. Virtual memory is a
concept used in some large computer systems that
permit the user to construct programs as though a
large memory space were available, equal to the
totality of auxiliary memory. Each address that is
referenced by the CPU goes through an address
mapping from the so-called virtual address to a
physical address in main memory.

Virtual memory is used to give programmers the
illusion that they have a very large memory at their
disposal, even though the computer actually has a
relatively small main memory.

A virtual memory system provides a mechanism
for translating program-generated addresses into
correct main memory locations.
This is done dynamically, while programs are being
executed in the CPU. The translation or mapping is
handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a
virtual address, and the set of such addresses the

address space . An address in main memory is called
a location or physical address . The set of such
locations is called the memory space .
Thus the address space is the set of addresses
generated by programs as they reference instructions
and data; the memory space consists of the actual
main memory locations directly addressable for
processing. In most computers the address and
memory spaces are identical. The address space is
allowed to be larger than the memory space in
computers with virtual memory.
As an illustration, consider a computer with a main-

memory capacity of 32K words (K = 1024). Fifteen

bits are needed to specify a physical address in ·

memory since 32K = 215• Suppose that the computer

has available auxiliary memory for storing 220 =

1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32
main memories. Denoting the address space by N
and the memory space by M, we then have for this

example N = 1024K and M = 32K.

In a virtual memory system, programmers are told
that they have the total address space at their
disposal. Moreover, the address field of the
instruction code has a sufficient number of bits to
specify all virtual addresses.

In our example, the address field of an instruction
code will consist of 20 bits but physical memory
addresses must be specified with only 15 bits. Thus
CPU will reference instructions and data with a 20-bit
address, but the information at this address must be
taken from physical memory because access to
auxiliary storage for individual words will be
prohibitively long.

Relation between address and memory space in virtual
memory

Memory table for mapping virtual address

Address Mapping Using Pages
The table implementation of the address mapping

is simplified if the information in the address space
and the memory space are each divided into groups
of fixed size. The physical memory is broken down
into groups of equal size called blocks, which may
range from 64 to 4096 words each. The term page
refers to groups of address space of the same size.
For example, if a page or block consists of 1K words,
then, using the previous example, address space is
divided into 1024 pages and main memory is divided
into 32 blocks. Although both a page and a block are
split into groups of 1K words, a page refers to the
organization of address space, while a block refers to
the organization of memory space. The programs are
also considered to be split into pages.

Portions of programs are moved from auxiliary
memory to main memory in records equal to the size
of a page. The term "page frame" is sometimes used
to denote a block.

Associative Memory Page Table

A random-access memory page table is
inefficient with respect to storage utilization. In the
example of Fig. we observe that eight words of
memory are needed, one for each page, but at least
four words will always be marked empty because

main memory cannot accommodate more than four
blocks.

In general, a system with n pages and m blocks

would require a memory-page table of n locations of

which up to m blocks will be marked with block
numbers and all others will be empty. As a second
numerical example, consider an address space of
1024K words and memory space of 32K words. If
each page or block contains 1K words, the number of
pages is 1024 and the number of blocks 32. The
capacity of the memory-page table must be 1024
words and only 32 locations may have a presence bit
equal to 1. At any given time, at least 992 locations
will be empty and not in use.

A more efficient way to organize the page table
would be to construct it with a number of words equal
to the number of blocks in main memory. In this way
the size of the memory is reduced and each location
is fully utilized. This method can be implemented by
means of an associative memory with each word in
memory containing a page number together with its
corresponding block number. The page field in each
word is compared with the page number in the virtual
address. If a match occurs, the word is read from
memory and its corresponding block number is
extracted.

Associative memory page table

