: COMPUTER SYSTEM ARCHITECTURE

SUBJECT CODE: 18BIT44A

UNIT 1V: Computer arithmetic: addition and
subtraction — multiplication algorithm — division
algorithm — input output organization: peripheral
devices- input output interface — asynchronous data
transfer — modes of transfer — direct memory access —
Input output processor (I0OP).

Computer arithmetic

Addition and Subtraction

Addition and Subtraction with Signed-Magnitude
Data

Addition (subtraction) algorithm:

when the signs of A and B are identical
(different), add the two magnitudes and attach the
sign of A to the result. When the signs of A and B
are different (identical), compare the magnitudes
and subtract the smaller number from the larger.
Choose the sign of the result to be the same as A

If A> B or the complement of the sign of A if A <

B. If the two magnitudes are equal, subtract B
from A and make the sign of the result positive.

The two algorithms are similar except for the sign
comparison. The procedure to be followed for
identical signs in the addition algorithm is the same
as for different signs in the subtraction algorithm, and
vice versa.

Hardware for addition and subtraction

AYF L Complercnic - 7— == M (Mode contral)

cany lnriww

Stibdract operation Add operation

Minuend in A Augend in 4
Subtrahend in 8 Addend in H]

EA+A+E+| EA+A+8
AVE+1 l

A<EH

A+4

A*Hil A, +0
Ay - A

(result isin 4 and Ay}

Multiplication Algorithms

Hardware for multiplication

8,
B egister Sequence counter (3C)
Complementer and
paralle] adder
(rightmast bit)

Ay 1 O

r 1

0= E A regster E—— () regster

Flowchart for multiplication

Mudtiply operation

|

Multiplicand in &
Multiplier in

|

A, ~ @8,
¢, + 2@ 8,
A+~0,E+~0
SC*=n — 1

| EA+~A+B

shr EAQ

{product 15 in AQ)

Multiplicand B = 10111 E A Q S

Multiplier in Q 0 00000 10011 101
Q.=1;add B 10111
First partial product 0 w0
Shift right EAQ 0 0101 1001 100
Q.= 1;add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100 011
. = 0; shift right EAQ 0 0000 1010 010
(. = 0; shift right EAQ 0 00100 01011 OO
Q. =1;add B 10111
Fifth partial product 0 11011
Shift right EAQ 0 01101 10101 000

Final product in AQ = (110110101

Booth Multiplication Algorithm

Booth algorithm gives a procedure for multiplying
binary integers in signed-2's complement
representation. It operates on the fact that strings of
O's in the multiplier require no addition but just
shifting, and a string of 1's in the multiplier from bit
weight 2' to weight 2m can be treated as 2'+1 - 2m.

Hardware for booths multiplication algorithm

BR register

Sequencecounter (3C)

Complementer and
paralle] adder

!

!

AC register

Flowcha

rt for

booths multiplication

Multiply

(

Multiplicand in B8
Multipher in QR

AC= 0
Gﬂ:i-[l‘_ﬂ
JC+ n

AC+= AC

+BR +1

L

AC+AC+ BR

1

sshr (AC&E QR

SC+5C—1

w0

~_

8C

END

algorithm

Division Algorithms

Hardware Algorithm

The hardware divide algorithm is shown in the flowchart of Fig. 10-13. The
dividend isin A and () and the divisorin B. The sign of the result is transferred
into (), to be part of the quotient. A constant is set into the sequence counter
5C to spedfy the number of bits in the quotient. As in multiplication, we
assume that operands are transferred to registers from a memory unit thathas

Figure 10-13 Flowchart for divide aperation

Divide operation

iwvidend in 4
Dhvisar in &

Divide magnitudes

5C+n - | shl EAQ

EA+~A+EB EA+~A+R
DVF+~1 DVF -0

END END
(Divide overflow) {Quaotient is in
remainder is in A4)

words o f n bits. Since a n operand must b e stored
with its sign, one bit of the word will be occupied by
the sign and the magnitude will consist of n - 1 bits.

Input Output Organization

Peripheral Devices

Input or output devices attached to the computer
are also called peripherals . Among the most
common peripherals are keyboards, display
units, and printers. Peripherals that provide
auxiliary storage for the system are magnetic
disks and tapes. Peripherals are
electromechanical and electromagnetic devices
of some complexity.

Input-Output Interface

Input-output interface provides a method for
transferring information between internal storage and
external 1/0 devices. Peripherals connected to a
computer need special communication links for
interfacing them with the central processing unit. The

purpose of the communication link is to resolve the

differences that exist between the central computer
and each peripheral.

The major differences are:

1. Peripherals are electromechanical and
electromagnetic devices and their manner of
operation is different from the operation of the CPU
and memory, which are electronic devices. Therefore,
a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually
slower than the transfer rate of the CPU, and
consequently, a synchronization mechanism may be
needed.

3. Data codes and formats in peripherals differ from
the word format in the CPU and memory.

4. The operating modes of peripherals are different
from each other and each must be controlled so as
not to disturb the operation of other peripherals
connected to the CPU.

Connection of i/o bus to i/o device

| / O versus Memory Bus
In addition to communicating with VO, the processor

must communicate with the memory unit. Like the VO
bus, the memory bus contains data, address, and
read/write control lines. There are three ways that
computer buses can be used to communicate with

memory and |/O:

1. Use two separate buses, one for memory and the
other for I/O.

2. Use one common bus for both memory and VO but
have separate control lines for each.

3. Use one common bus for memory and VO with

common control lines.

Asynchronous Data Transfer

strobe

handshaking

timing diagram

The internal operations in a digital system are synchronized by means ofclock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such asa
CPU and an V'O interface, are designed independently of each other. If the
registers in the interface share a common dock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi-
cate the time at which data is being transmitted One way of achieving this is
by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred witha control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data This type of agree-
ment between two independent units is referred to as handshaking.

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to IO transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen-
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
aninput ora read transfer. It is customary to spedfy the asynchronous transfer
between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in

the buses. The sequence of control during an asynchronous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Control

The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destinationunit. Figure 11-3(a) shows a source-initiated transfer.

Source initiated strobe control method
Data bus

Source Destination
unit Strobe unit

{a) Block diagram

Data -+——— Valid data —=

Strobe

(b Timmng diagram

The data bus carries the binary information from source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places
the data on the data bus. After a brief delay to ensure that the data settle to
a steady value, the source activates the strobe pulse. The information on the
data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unituses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New wvalid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus
enough for the destination unit to accept it. The falling edge of the strobe pulse
can be used again to trigger a destination register. The destination unit then
disables the strobe. The source removes the data from the bus after a predeter-
mined time interval

. In many computers the strobe pulse is actually controlled by the dock
pulses in the CPLL The CFLU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,

Destination initiated
Databus
Source =1 Destination
unlt | SUObE i
(a) Block diagram

Data Fh‘alid data —=
m

(b) Timing dhagram

strobe

which is the destination, that this is a write operation.

Similarly, the strobe of Fig. could be a memory-read

control signal from the CPU to a memory unit. The

destination, the CPU, initiates the read operation to

inform the memory, which is the source, to place a

selected word into the data bus.

Modes of Transfer

Binary information received from an external device
IS usually stored in memory for later processing.
Information transferred from the central computer into

an external device originates in the memory unit. The

CPU merely executes the /0 instructions and may

accept the data temporarily, but the ultimate source

or destination is the memory unit. Data transfer
between the central computer and 1/0 devices may be
handled in a variety of modes. Some modes use the

CPU as an intermediate path; others transfer the data

directly to and from the memory unit. Data transfer to
and from peripherals may be handled in one of three
possible modes:

1. Programmed 1/0

2. Interrupt-initiated 1/0

3. Direct memory access (DMA)

Each data item transfer is initiated by an
Instruction in the program. Usually, the transfer is to
and from a CPU register and peripheral. Other
Instructions are needed to transfer the data to and
from CPU and memory. Transferring data under
program control requires constant monitoring of the
peripheral by the CPU. Once a data transfer is
Initiated, the CPU is required to monitor the interface
to see when a transfer can again be made.

It is up to the programmed instructions executed
In the CPU to keep close tabs on everything that is
taking place in the interface unit and the 1/0 device.

In the programmed I/0 method, the CPU stays in
a program loop until the I/O unit indicates that it Is
ready for data transfer. This is a time-consuming
process since it keeps the processor busy needlessly.

It can be avoided by using an interrupt facility and

special commands to inform the interface to issue an

Interrupt request signal when the data are available
from the device. In the meantime the CPU can
proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the
Interface determines that the device is ready for data
transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt
signal, the CPU momentarily stops the task it is
processing, branches to a service program to process
the 1/0 transfer, and then returns to the task it was
originally performing.

Transfer of data under programmed 1/0 is between
CPU and peripheral.

In direct memory access (DMA), the interface

transfers data into and out of the memory unit through
the memory bus. The CPU initiates the transfer by

supplying the interface with the starting address and
the number of words needed to be transferred and
then proceeds to execute other tasks. When the

transfer is made, the DMA requests memory cycles
through the memory bus.
When the request is granted by the memory

controller, the DMA transfers the data directly into

memory. The CPU merely delays its memory access
operation to allow the direct memory 110 transfer.
Since peripheral speed is usually slower than
processor speed, 1/O-memory transfers are
Infrequent compared to processor access to memory.

Direct Memory Access (DMA)
The transfer of data between a fast storage

device such as magnetic disk and memory is often
limited by the speed of the CPU. Removing the CPU
from the path and letting the peripheral device
manage the memory buses directly.

IOP

CPU - 10P COMMUNICATION

The communication between CPU and IOP may
take different forms, depending on the particular

computer considered. In most cases the memory unit

acts as a message center where each processor
leaves information for the other. To appreciate the
operation of a typical IOP, we will illustrate by a
specific example the method by which the CPU and
IOP communicate. This is a simplified example that
omits many operating details in order to provide an

overview of basic concepts.

CPU oporations IOFP oporations

Send instroction

1o test HOF path]
Tramnsferstatus word

/ 1o memeory locavon
If statws O, send

start LA instruction - Access memory for
to TOFF TOF program

CPLUF continues with

another program Conduct LD ransfers

using DM A prepare
slalfus report

Y

10 mransfer completed:
/ interrupt CPU

Tramsfer status word
o memory kecation

Reguest HOP states

Ch:,.:t SLATUS ""l":ﬁ'l'd /

fior corme<t transfer

!

Contimue

