: COMPUTER SYSTEM ARCHITECTURE

SUBJECT CODE: 18BIT44A

UNIT [1I: Central processing unit: general
register organization — stack organization —
Instruction formats — addressing modes — data
transfer and manipulation — programmed control
— reduced instruction set computer — CISC.

Central processing unit:

INTRODUCTION
The part of the computer that performs the bull<

of data-processing operations is called the central
processing unit and is referred to as the CPU. The
CPU is made up of three major parts, as shown in Fig.
The register set stores intermediate data used during

the execution of the instructions. The arithmetic logic
unit (ALU) performs the required micro operations for

executing the instructions. The control unit supervises

the transfer of information among the registers and

Instructs the ALU as to which operation to perform.
The CPU performs a variety of functions dictated by

the type of instructions that are incorporated in the
computer. Computer architecture is sometimes
defined as the computer structure and behavior as
seen by the programmer that uses machine language
Instructions. This includes the instruction formats,

addressing modes, the instruction set, and the

general organization of the CPU registers.
Components of CPU

General register organization

A bus organization for seven CPU registers is
shown in Fig. The output of each register is connected
to two multiplexers (MUX) to form the two buses A
and B . The selection lines in each multiplexer select
one register or the input data for the particular bus.
The A and B buses form the inputs to a common
arithmetic logic unit (ALU). The operation selected in
the ALU determines the arithmetic or logic micro
operation that is to be performed. The result of the
micro operation is available for output data and also
goes into the inputs of all the registers. The register
that receives the information from the output bus is
selected by a decoder. The decoder activates one of
the register load inputs, thus providing a transfer path
between the data in the output bus and the inputs of
the selected destination register.

The control unit that operates the CPU bus
system directs the information flow through the
registers and ALU by selecting the various
components in the system. For example, to perform
the operation

R1<-R2+R3
the control must provide binary selection variables to
the following selector inputs:
1. MUX A selector (SELA): to place the content of R2
Into bus A .

2 . MUX B selector (SELB): to place the contento f R
3into bus B .

3 . ALU operation selector (OPR): to provide the
arithmetic addition A + B .

4. Decoder destination selector (SELD): to transfer

the content of the output bus into R1 .

The four control selection variables are generated
In the control unit and must be available at the
beginning of a clock cycle. The data from the two
source registers propagate through the gates in the
multiplexers and the ALU, to the output bus, and into
the inputs of the destination register, all during the
clock cycle interval. Then, when the next clock
transition occurs, the binary information from the
output bus is transferred into R 1. To achieve a fast
response time, the ALU is constructed with high-
speed circuits.

Control Word

There are 14 binary selection inputs in the unit, and
their combined value specifies a control word.

Encoding of register selection fields

Binary
Code SELA SELB SELD

000 Input Input None

001 Rl R1 Rl
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5

110 Ré Ré Ré
111 R7 R7 R7

ALU

The ALU provides arithmetic and logic operations. In
addition, the CPU must provide shift operations. The
shifter may be placed in the input of the ALU to
provide a pre shift capability, or at the output of the

ALU to provide post shifting capability. In some
cases, the shift operations are included with the ALU.

OPR

Select Operation Symbol
LY Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XORAandB XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Examples of Micro operations

R1<-R2-R3

specifies R2 for the A input of the ALU, R3 for
the B input of the ALU, R1 for the destination
register, and an ALU operation to subtract A - B.

Field: SELA SELB SELD OfR
gk ROB RSB
Cotolvork 010 01 00 (i

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

Rl«R2-R} R R3 Rl SUB (10 011 0G0 00101
Ré=R4yRS R4 RS R4 OR 100 100 100 01010

Re=R6+1 Ré = R6 INCA 110 000 110 000M
R7«<R1 Rl — K7 TSFA 001 000 111 00000
Output<R2 R2 — None TSFA (010 000 000 00000
QuiputeInput Input — Nome TSFA 000 000 000 00000
Ré~shlRé R4 — R4 SHLA 100 000 100 11000
RS0 K5 B RS XOR 101 101 101 01100

Stack organization

A useful feature that is included in the CPU of
most computers is a stack or last-in, first-out (UFO)
list. A stack is a storage device that stores information
In such a manner that the item stored last is the first
item retrieved. The operation of a stack can be

compared to a stack of trays. The last tray placed on
top of the stack is the first to be taken off.

The register that holds the address for the stack
Is called a stack pointer (SP) because its value
always points at the top item in the stack.

The two operations of a stack are the insertion and
deletion of items. The operation of insertion is called
push (or push-down) because it can be thought of as
the result of pushing a new item on top. The operation
of deletion is called pop (or pop-up) because it can be
thought of as the result of removing one item so that
the stack pops up.

ta
2 o= K oW R

oR

64 word stack

In a 64-word stack, the stack pointer contains 6
bits because 26 = 64. Since SP has only six bits, it
cannot exceed a number greater than 63 (111111 in
binary). When 63 is incremented by 1, the result is O
since 111111 + 1 = 1000000 in binary, but SP can
accommodate only the six least significant bits.
Similarly, when 000000 is decremented by 1, the
resultis111111.The one-bit register FULL is set
to 1 when the stack is full, and the one-bit register
EMTY is set to 1 when the stack is empty of items.
DR is the data register that holds the binary data to
be written into or read out of the stack. Initially, SP is
clearedto O, EMTY issetto 1, and FULL is cleared to
0, so that SP points to the word at address 0 and the
stack is marked empty and not full. If the stack is not
full (if FULL = 0), a new item is inserted with a push
operation.

The push operation is implemented with the
following sequence of micro operations;

SP<-SP+1
M [SP] <- DR

If (SP =0) then (FULL <--1)
EMTY <--0

Check if stack is full

Mark the stack not empty

The stack pointer is incremented so that it points
to the address of the next-higher word. A memory

write operation inserts the word from DR into the top
of the stack. Note that SP holds the address of the top
of the stack and that M [SP] denotes the memory
word specified by the address presently available in
SP. The first item stored in the stack is at address 1
The last item Is stored at address 0. If SP reaches 0,
the stack is full of items, so FULL is set to 1 This
condition is reached if the top item prior to the last
push was in location 63 and, after incrementing SP,
the last item is stored in location 0. Once an item is
stored in location 0, there are no more empty registers
In the stack.

If an item is written in the stack, obviously the
stack cannot be empty, so EMTY is cleared to O.
A new item is deleted from the stack if the stack is not
empty (if EMTY = 0).

The pop operation consists of the following
sequence of micro operations:

DR <--M [SP]
SP<-SP-1

If (SP =0) then (EMTY <--1)

FULL <--0
Read item from the top of stack
Decrement stack pointer
Check if stack is empty
Mark the stack not full
The top item is read from the stack into DR . The stack
pointer is then decremented. If its value reaches zero,

the stack is empty, so EMTY is set to 1 This condition
IS reached if the item read was in location 1.0nce this
item is read out, SP is decremented and reaches the

value 0, which is the initial value of SP. Note that if a

pop operation reads the item from location 0 and then
SP is decremented, SP changes to 111111, which is
equivalent to decimal 63 . In this configuration, the
word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the
stack is pushed when FULL = 1 or popped when
EMTY =1.

Instruction Formats

The most common fields found in instruction formats
are:

1. An operation code field that specifies the operation
to be performed.

2. An address field that designates a memory address
Or a processor register.

3. A mode field that specifies the way the operand or

the effective address is determined.
Most computers fall into one of three types of
CPU organizations:
1. Single accumulator organization.
2. General register organization.

3. Stack organization.

To illustrate the influence of the number of
addresses on computer programs, we will evaluate
the arithmetic statement

X=(A+B)+(C+D)
using zero, one, two, or three address instructions.

Three-Address Instructions

Computers with three-address instruction formats
can use each address field to specify either a
processor register or a memory operand. The
program in assembly language that evaluates

X=(A+B)-*(C+D)is shown below, together
with comments that explain the register transfer
operation of each instruction.

ADD Rl AB RleH[A]+H[B
D B2, C, D BReH[C)+H[D]
ML X, R, B2 H[X]eRlsd2

It is assumed that the computer has two processor
registers, R 1 and R2. The symbol M [A] denotes the
operand at memory address symbolized by A .

The advantage o f the three-address format i s
that i t results in short programs when evaluating
arithmetic expressions.

The disadvantage is that the binary-coded
Instructions require too many bits to specify three
addresses.

An example of a commercial computer that uses
three-address instructions is the Cyber 170. The
Instruction formats in the Cyber computer are
restricted to either three register address fields or two
register address fields and one memory address field.

Two-Address Instructions

Two-address instructions are the most common in commercial computers.
Here again each address field can spedfy either a processor register ar a
memory word. The program to evaluate X = (A + B)#(C + D) is as follows:

MOV RL, A RlL«<M[A]

RDD R1, B R1l«Rl+ M[B]
MOV R2,C RE2«M[C]

ADD Be, D Re «Re + M[D]
MUL RL,Re Rl<Rl=R¢
MOV X, Rl M[X]«BRl

The MOV instruction moves or transfers the operands to and from memory
and processor registers. The first symbal listed in an instruction is assumed to
be both a source and the destination where the result of the operation is
transferred

One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data
manipulation. For multiplication and division there is a need for a second
register. However, here we will neglect the second register and assume that
the AC contains the result of all operations The program to evaluate
X=(A+B)=*C+D)is

LOAD A AC<M[B]

ADD B AC«AC + M[B]
STORE T M[T]«AC
LOAD C AC«H|[C]

ADD D AC«AC+ M[D)
MOL T AC«AC*M[T]
STORE X M[X]«AC

All operations are done between the AC register and a memory operand

T is the address of a temporary memory location required for storing the
intermediate result.

Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions
ADD and MUL The PUSH and POP instructions, however, need an address
field to specify the operand that communiates with the stack. The following
program shows how X = (A + B)*(C + D) will be written for a stack-
organized computer. (TOS5 stands for top of stack.)

PUOSH A TOS «A

PUSH B TOS «—B

ADD TOS« (R + B)

POSH C TOS «C

PUOSH D TOS «D

ADD TOS «(C + D)

MUL TOS«~(C+D)=*(A +B)
POP X M[X]+TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to
convert the expression into reverse Polish notation. The name “zero-address”
is given to this type of computer because of the absence of an address field in
the computational instructions.

Addressing Modes

Computers use addressing mode techniques for
the purpose of accommodating one or both of the
following provisions:

1. To give programming versatility to the user by
providing such facilities as pointers to memory,
counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field
of the instruction.

The availability of the addressing modes gives the
experienced assembly language programmer
flexibility for writing programs that are more efficient

with respect to the number of instructions and
execution time .

The control unit of a computer is designed to go
through an instruction cycle that is divided into three
major phases:

1. Fetch the instruction from memory.
2. Decode the instruction.

3. Execute the instruction

There is one register in the computer called the
program counter or PC that keeps track of the
Instructions in the program stored in memory. PC
holds the address of the instruction to be executed

next and IS incremented each time an instruction iIs
fetched from memory.

Although most addressing modes modify the
address field of the instruction, there are two modes
that need no address field at all. These are the implied
and immediate modes.

Implied Mode:

In this mode the operands are specified implicitly
In the definition of the instruction. For example, the
Instruction "complement accumulator” is an implied-
mode instruction because the operand Iin the
accumulator register is implied in the definition of the
Instruction. In fact, all register reference instructions
that use an accumulator are implied-mode
Instructions.

Zero-address instructions in a stack-arganized computer are implied-mode
instructions since the operands are implied to be on top of the stack.

Immediate Mode: In this mode the operand is specified in the instruction
itself. In other words, an immediate-mode instruction has an operand field
rather than an address field. The operand field contains the actual operand to
be used in conjunction with the operation spedfied in the instruction. Imme-
diate-mode instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may
specify either a memary word or a processor register. When the address field
spedfies a processor register, theinstruction is said to be in the register mode.

Register Mode: Inthismode theoperands are in registers thatreside within
the CPU. The particular register is selected from a register field in the instruc-
tion. A k-bit field can specify any one of 2' registers.

Register Indirect Mode: In this modetheinstructionspecifiesa register in the
CPU whose contents give the address of the operand in memory. In other
words, the selected register contains the address of the operand rather than
the operand itself. Before using a register indirect mode instruction, the pro-
grammer must ensure that the memory address of the operand is placed in the
processor register with a previous instruction. A reference to the register is
then equivalent to spedfying a memory address. The advantage of a register
indirect mode instruction is that the address field of the instruction uses fewer
bits to select a register than would have been required to specify a memory
address directly.

Autoincrement or Autodecrement Mode: This is similar to the register in-
direct mode except that the register is incremented or decremented after (or
before) its value is used to access memory. When the address stored in the
register refers to a table of data in memory, it is necessary to increment or
decrement the register after every access to the table. This can be achieved by
using the increment or decrement instruction. However, because it is such a
common requirement, some computers incorporate a special mode that auto-
matically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU
toobtain the operand from memory. Sometimes the value givenin the address
field is the address of the operand, but sometimes it is just an address from
which the address of the operand is calculated. To differentiate among the
various addressing modes it is necessary to distinguish between the address
part of the instruction and the effective address used by the control when
executing the instruction. The effective address is defined to be the memory
address obtained from the computation dictated by the given addressing
mode. The effective address is the address of the operand in a computational-

type instruction. It is the address where control branches in response to a
branch-type instruction. We have already defined two addressing modes in
Chap. 5. They are summarized here for reference.

Direct Address Mode: In this mode the effective address is equal to the
address part of the instruction. The operand resides in memory and its address
is given directly by the address field of the instruction. In a branch-type
instruction the address field specifies the actual branch address.

Indirect Address Mode: In this mode the address field of the instruction
gives the address where the effective address is stored in memory. Control
fetches the instruction from memory and uses its address part to access mem-
ory again to read the effective address. The indirect address mode is also
explained in Sec. 5-1 in conjunction with Fig. 5-2

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CP'U. The effective address
in these modes is obtained from the following computation:

effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing
mode which is used for a different application

Relative Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective
address. The address part of the instruction is usually a signed number (in 2's
complement representation) which @n be either positive or negative. When
this number is added to the content of the program counter, the result pro-
duces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program
counter contains the number 825 and the address part of the instruction
contains the number 24. The instruction at location 825 is read from memory
during the fetch phase and the program counter is then incremented by one
to 826. The effective address computation for the relative address mode is
826 + 24 = B50. This is 24 memory locations forward from the address of the
next instruction Relative addressing is often used with branch-type instruc-
tions when the branch address is in the area surrounding the instruction word
itself. It results in a shorter address field in the instruction format since the
relative address can be specified with a smaller number of bits compared tothe
number of bits required to designate the entire memary address.

Indexed Addressing Mode: In this mode the content of an index register is
added to the address part of the instruction toobtain the effectiveaddress. The

index register is a spedal CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array
in memory. Each operand in the array is stored in memory relative to the
beginning address. The distance between the beginning address and the
address of the operand is the index value stored in the index register. Any
operand in the array can be accessed with the same instruction provided that
the index register contains the correct index value. The index register can be
incremented to facilitate access to consecutive operands. Note that if an index-
type instruction does not include an address field in its format, the instruction
converts to the register indirect mode of operation.

Some computersdedicate one CPU register to function solely as an index
register. This register is involvedimplicitly when the index-mode instruction
is used. In computers with many processar registers, any one of the (PU
registers can contain the index number. In such a case the register must be
spedfied explidtly in a register field within the instruction format.

Base Register Addressing Mode: In thismode the content of a base register
is added to the address part of the instruction to obtain the effective address
This is similar to the indexed addressing mode except that the registeris now
called a base registerinstead of an index register. The difference between the
two modes is in the way they are used rather than in the way that they are
computed An index register is assumed to hold an index number that is
relative o the address part of the instruction. Abaseregister is assumed to hold
a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in
computers to facilitate the relocation of programs in memory. When programs
and data are moved from one segment of memary to another, as required in
multiprogramming systems, the address values of instructions must reflect
this change of posiion. With a base register, the displacement values of
instructions do not have to change. Only the value of the base register requires

updating to reflect the beginning of a new memory segment.

Data Transfer and Manipulation
Data Transfer Instructions

Data transfer instructions move data from one
place in the computer to another without changing
the data content. The most common transfers are
between memory and processor registers, between
processor registers and input or output, and
between the processor registers themselves.

Name Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH
Pop POP

Data Manipulation Instructions

Data manipulation instructions perform operations on
data and provide the computational capabilities for
the computer.

The data manipulation instructions in a typical
computer are usually divided into three basic types:
1. Arithmetic instructions

2. Logical and bit manipulation instructions

3. Shift instructions

Arithmetic instructions

Mame Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide Drv
Add with carry ADD(C
Subtract with borrow SUBB

Megate (2's complement) NEG

Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on
strings of bits stored in registers. They are useful for
manipulating individual bits or a group of bits that
represent binary-coded information. The logical
Instructions consider each bit of the operand
separately and treat it as a Boolean variable.

MName Mnemomic
Clear CLER
Complement COnd
AT AMND
OR OR
Exclusive-OR HKOR
Clear carry CLRC
Set carry SETC
Complement carry COMMC
Enable interrupt El

Diisable interrupt DI

Shift Instructions

Instructions to shift the content of an operand are
quite useful and are often provided in several
variations. Shifts are operations in which the bits of a
word are moved to the left or right. The bit shifted in
at the end of the word determines the type of shift
used. Shift instructions may specify either logical
shifts, arithmetic shifts, or rotate-type operations.

Name Mnemonic
Logical shift nght SHE
Logical shift left SHL
Arithmetic shaft nght SHRA
Anthmetic shft keft SHLA
Rotate right ROR
Rotate keft ROL

Rotate right through carry RORC
Rotate left through carry ROLC

Program Control

Mame Mnpemomc

Branch BE
Jump JMP
Skip SKP
Call CALL
Return RET

Compare {(by subtraction) CMP
Test (by ANDing) T5T

Reduced Instruction Set Computer (RISC)
RISC Characteristics

The concept of RISC architecture involves an
attempt to reduce execution time by simplifying the
Instruction set of the computer. The major
characteristics of a RISC processor are:
1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access Ilimited to load and store
Instructions

4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format
6. Single-cycle instruction execution

/. Hardwired rather than micro programmed control

The small set of instructions of a typical RISC
processor consists mostly of register-to-register
operations, with only simple load and store operations
for memory access. Thus each operand is brought
Into a processor register with a load instruction. All
computations are done among the data stored In
processor registers. Results are transferred to
memory by means of store instructions.

This architectural feature simplifies the instruction set
and encourages the optimization of register
manipulation. The use of only a few addressing
modes results from the fact that almost all instructions
have simple register addressing.

Other addressing modes may be included, such as
Immediate operands and relative mode.

CISC Characteristics

1. A large number of instructions-typically from 100 to
250 instructions

2. Some Instructions that perform specialized tasks
and are used infrequently

3. A large variety of addressing modes-typically from
5 to 20 different modes

4. Variable-length instruction formats
5. Instructions that manipulate operands in memory.

