
Subject title: Allied 4: COMPUTER SYSTEM ARCHITECTURE

YEAR 2018-19 ONWARDS SEMESTER: IV

SUBJECT CODE: 18BIT44A

UNIT III: Central processing unit: general

register organization – stack organization –

instruction formats – addressing modes – data

transfer and manipulation – programmed control

– reduced instruction set computer – CISC.

Central processing unit:

INTRODUCTION

The part of the computer that performs the bull<

of data-processing operations is called the central

processing unit and is referred to as the CPU. The

CPU is made up of three major parts, as shown in Fig.

The register set stores intermediate data used during

the execution of the instructions. The arithmetic logic

unit (ALU) performs the required micro operations for

executing the instructions. The control unit supervises

the transfer of information among the registers and

instructs the ALU as to which operation to perform.
The CPU performs a variety of functions dictated by

the type of instructions that are incorporated in the

computer. Computer architecture is sometimes

defined as the computer structure and behavior as

seen by the programmer that uses machine language

instructions. This includes the instruction formats,

addressing modes, the instruction set, and the

general organization of the CPU registers.
Components of CPU

General register organization
A bus organization for seven CPU registers is

shown in Fig. The output of each register is connected
to two multiplexers (MUX) to form the two buses A
and B . The selection lines in each multiplexer select
one register or the input data for the particular bus.
The A and B buses form the inputs to a common
arithmetic logic unit (ALU). The operation selected in
the ALU determines the arithmetic or logic micro
operation that is to be performed. The result of the
micro operation is available for output data and also
goes into the inputs of all the registers. The register
that receives the information from the output bus is
selected by a decoder. The decoder activates one of
the register load inputs, thus providing a transfer path
between the data in the output bus and the inputs of
the selected destination register.

The control unit that operates the CPU bus
system directs the information flow through the
registers and ALU by selecting the various
components in the system. For example, to perform
the operation

R 1 <--R2 + R3
the control must provide binary selection variables to
the following selector inputs:
1. MUX A selector (SELA): to place the content of R2
into bus A .

2 . MUX B selector (SELB): to place the content o f R
3 into bus B .

3 . ALU operation selector (OPR): to provide the

arithmetic addition A + B .

4. Decoder destination selector (SELD): to transfer

the content of the output bus into R1 .
The four control selection variables are generated

in the control unit and must be available at the
beginning of a clock cycle. The data from the two
source registers propagate through the gates in the
multiplexers and the ALU, to the output bus, and into
the inputs of the destination register, all during the
clock cycle interval. Then, when the next clock
transition occurs, the binary information from the
output bus is transferred into R 1. To achieve a fast
response time, the ALU is constructed with high-
speed circuits.

Control Word
There are 14 binary selection inputs in the unit, and
their combined value specifies a control word.

Encoding of register selection fields

ALU
The ALU provides arithmetic and logic operations. In
addition, the CPU must provide shift operations. The
shifter may be placed in the input of the ALU to
provide a pre shift capability, or at the output of the

ALU to provide post shifting capability. In some
cases, the shift operations are included with the ALU.

Examples of Micro operations

R 1 <- R 2 - R3
specifies R2 for the A input of the ALU, R3 for

the B input of the ALU, R1 for the destination
register, and an ALU operation to subtract A - B.

Stack organization

A useful feature that is included in the CPU of
most computers is a stack or last-in, first-out (UFO)
list. A stack is a storage device that stores information
in such a manner that the item stored last is the first
item retrieved. The operation of a stack can be

compared to a stack of trays. The last tray placed on
top of the stack is the first to be taken off.

The register that holds the address for the stack
is called a stack pointer (SP) because its value
always points at the top item in the stack.

The two operations of a stack are the insertion and
deletion of items. The operation of insertion is called
push (or push-down) because it can be thought of as
the result of pushing a new item on top. The operation
of deletion is called pop (or pop-up) because it can be
thought of as the result of removing one item so that
the stack pops up.

64 word stack

In a 64-word stack, the stack pointer contains 6
bits because 26 = 64. Since SP has only six bits, it
cannot exceed a number greater than 63 (111111 in
binary). When 63 is incremented by 1, the result is 0
since 111111 + 1 = 1000000 in binary, but SP can
accommodate only the six least significant bits.
Similarly, when 000000 is decremented by 1, the
result is 1 1 1 1 1 1 . The one-bit register FULL is set
to 1 when the stack is full, and the one-bit register
EMTY is set to 1 when the stack is empty of items.
DR is the data register that holds the binary data to
be written into or read out of the stack. Initially, SP is
cleared to 0, EMTY is set to 1, and FULL is cleared to
0, so that SP points to the word at address 0 and the
stack is marked empty and not full. If the stack is not
full (if FULL = 0), a new item is inserted with a push
operation.

 The push operation is implemented with the
following sequence of micro operations;

SP <- SP + 1
M [SP] <- DR

If (SP = 0) then (FULL <--1)
EMTY <--0

Check if stack is full
Mark the stack not empty

The stack pointer is incremented so that it points

to the address of the next-higher word. A memory

write operation inserts the word from DR into the top
of the stack. Note that SP holds the address of the top
of the stack and that M [SP] denotes the memory
word specified by the address presently available in
SP. The first item stored in the stack is at address 1
The last item is stored at address 0. If SP reaches 0,
the stack is full of items, so FULL is set to 1 This
condition is reached if the top item prior to the last
push was in location 63 and, after incrementing SP,
the last item is stored in location 0. Once an item is
stored in location 0, there are no more empty registers
in the stack.

If an item is written in the stack, obviously the
stack cannot be empty, so EMTY is cleared to 0.
A new item is deleted from the stack if the stack is not
empty (if EMTY = 0).

The pop operation consists of the following
sequence of micro operations:

DR <--M [SP]
SP <--SP - 1

If (SP = 0) then (EMTY <--1)
FULL <--0

Read item from the top of stack
Decrement stack pointer
Check if stack is empty
Mark the stack not full
The top item is read from the stack into DR . The stack
pointer is then decremented. If its value reaches zero,

the stack is empty, so EMTY is set to 1 This condition
is reached if the item read was in location 1.Once this
item is read out, SP is decremented and reaches the

value 0, which is the initial value of SP. Note that if a

pop operation reads the item from location 0 and then
SP is decremented, SP changes to 111111, which is
equivalent to decimal 63 . In this configuration, the
word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the
stack is pushed when FULL = 1 or popped when
EMTY = 1 .

Instruction Formats
The most common fields found in instruction formats
are:
1. An operation code field that specifies the operation
to be performed.
2. An address field that designates a memory address
or a processor register.

3. A mode field that specifies the way the operand or

the effective address is determined.
Most computers fall into one of three types of

CPU organizations:
1. Single accumulator organization.
2. General register organization.

3. Stack organization.

To illustrate the influence of the number of
addresses on computer programs, we will evaluate
the arithmetic statement

X = (A + B) • (C + D)
using zero, one, two, or three address instructions.

Three-Address Instructions

Computers with three-address instruction formats
can use each address field to specify either a
processor register or a memory operand. The
program in assembly language that evaluates

 X = (A + B) • (C + D) is shown below, together
with comments that explain the register transfer
operation of each instruction.

It is assumed that the computer has two processor
registers, R 1 and R2. The symbol M [A] denotes the
operand at memory address symbolized by A .

The advantage o f the three-address format i s
that i t results in short programs when evaluating
arithmetic expressions.

The disadvantage is that the binary-coded
instructions require too many bits to specify three
addresses.

An example of a commercial computer that uses
three-address instructions is the Cyber 170. The
instruction formats in the Cyber computer are
restricted to either three register address fields or two
register address fields and one memory address field.

Addressing Modes

Computers use addressing mode techniques for
the purpose of accommodating one or both of the
following provisions:
1. To give programming versatility to the user by
providing such facilities as pointers to memory,
counters for loop control, indexing of data, and
program relocation.
2. To reduce the number of bits in the addressing field
of the instruction.
The availability of the addressing modes gives the
experienced assembly language programmer
flexibility for writing programs that are more efficient
with respect to the number of instructions and
execution time .

The control unit of a computer is designed to go
through an instruction cycle that is divided into three
major phases:
1. Fetch the instruction from memory.
2. Decode the instruction.

3. Execute the instruction

There is one register in the computer called the
program counter or PC that keeps track of the
instructions in the program stored in memory. PC
holds the address of the instruction to be executed

next and is incremented each time an instruction is
fetched from memory.

Although most addressing modes modify the

address field of the instruction, there are two modes
that need no address field at all. These are the implied
and immediate modes.
Implied Mode:

In this mode the operands are specified implicitly
in the definition of the instruction. For example, the
instruction "complement accumulator" is an implied-
mode instruction because the operand in the
accumulator register is implied in the definition of the
instruction. In fact, all register reference instructions
that use an accumulator are implied-mode
instructions.

Data Transfer and Manipulation
Data Transfer Instructions

Data transfer instructions move data from one
place in the computer to another without changing
the data content. The most common transfers are
between memory and processor registers, between
processor registers and input or output, and
between the processor registers themselves.

Data Manipulation Instructions
Data manipulation instructions perform operations on
data and provide the computational capabilities for
the computer.
The data manipulation instructions in a typical
computer are usually divided into three basic types:
1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

 Arithmetic instructions

Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on
strings of bits stored in registers. They are useful for
manipulating individual bits or a group of bits that
represent binary-coded information. The logical
instructions consider each bit of the operand
separately and treat it as a Boolean variable.

Shift Instructions
Instructions to shift the content of an operand are

quite useful and are often provided in several
variations. Shifts are operations in which the bits of a
word are moved to the left or right. The bit shifted in
at the end of the word determines the type of shift
used. Shift instructions may specify either logical
shifts, arithmetic shifts, or rotate-type operations.

Program Control

Reduced Instruction Set Computer (RISC)
RISC Characteristics

The concept of RISC architecture involves an
attempt to reduce execution time by simplifying the
instruction set of the computer. The major
characteristics of a RISC processor are:
1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access limited to load and store
instructions

4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format
6. Single-cycle instruction execution

7. Hardwired rather than micro programmed control

The small set of instructions of a typical RISC
processor consists mostly of register-to-register
operations, with only simple load and store operations
for memory access. Thus each operand is brought
into a processor register with a load instruction. All
computations are done among the data stored in
processor registers. Results are transferred to
memory by means of store instructions.
This architectural feature simplifies the instruction set
and encourages the optimization of register
manipulation. The use of only a few addressing
modes results from the fact that almost all instructions
have simple register addressing.

Other addressing modes may be included, such as
immediate operands and relative mode.
CISC Characteristics
1. A large number of instructions-typically from 100 to
250 instructions
2. Some instructions that perform specialized tasks
and are used infrequently
3. A large variety of addressing modes-typically from
5 to 20 different modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory.

